Erratum: Minkowski space structure of the Higgs potential in the two-Higgs-doublet model [Phys. Rev. D 75, 035001 (2007)]

I. P. Ivanov

(Received 16 July 2007; published 30 August 2007)

DOI: 10.1103/PhysRevD.76.039902

PACS numbers: 14.80.Cp, 12.60.Fr, 99.10.Cd

The proof of proposition 10 in [1] is erroneous (I am thankful to C. Nishi who discovered the flaw). Nevertheless, the proposition still holds. Here is the corrected proof.

Proposition 10.—Tensor $\Lambda^{\mu\nu}$ is positive definite on the future light cone if and only if the following three conditions hold:

(1) $\Lambda^{\mu\nu}$ is diagonalizable by an *SO*(1, 3) transformation,

(2) the timelike eigenvalue Λ_0 is positive,

(3) all spacelike eigenvalues Λ_i are smaller than Λ_0 .

Proof.—Obviously, if $\Lambda^{\mu\nu}$ satisfies conditions (1)–(3), then the positive definiteness follows immediately. So, one needs to prove that conditions (1)–(3) do follow from the positive definiteness.

Despite $\Lambda_{\mu\nu}$ being real and symmetric, its eigenvalues can be complex because of the non-Euclidean metric. The first step is to prove that the positive definiteness in the future light cone LC^+ implies that all the eigenvalues of $\Lambda_{\mu\nu}$ are real.

Indeed, suppose there is a pair of complex eigenvalues, λ and λ^* , with respective complex eigenvectors p^{μ} and q^{μ} :

$$\Lambda^{\mu}{}_{\nu}p^{\nu} = \lambda p^{\mu}, \qquad \Lambda^{\mu}{}_{\nu}q^{\nu} = \lambda^* q^{\mu}.$$

One can show that there can be only one pair of complex eigenvalues; thus, λ is nondegenerate. Since Λ^{μ}_{ν} is real, $q^{\mu} \propto p^{\mu*}$ (and can be taken equal to $p^{\mu*}$). These eigenvectors are orthogonal, $p^{\mu}q_{\mu} = 0$ (it follows from the standard argument due to $\lambda \neq \lambda^*$), and can be normalized so that $p^{\mu}p_{\mu} = q^{\mu}q_{\mu} = 1$.

Consider now a real vector r^{μ} ,

$$r^{\mu} = c p^{\mu} + c^* p^{*\mu}.$$

Suppose that $r^{\mu}r_{\mu} = c^2 + c^{*2} = 2|c|^2 \cos(2\phi_c) > 0$, so that either r^{μ} or $-r^{\mu}$ lies inside the forward light cone. Then, the corresponding quadratic form is

$$\Lambda_{\mu\nu}r^{\mu}r^{\nu} = \lambda c^2 + \lambda^* c^{*2} \equiv 2|\lambda||c|^2 \cos(2\phi_c + \phi_{\lambda}).$$

Because of the phase shift $\phi_{\lambda} \neq 0$, one can always find ϕ_c such that $\cos(2\phi_c) > 0$ but $\cos(2\phi_c + \phi_{\lambda}) < 0$, i.e. one can always find an $r^{\mu} \in LC^+$ such that $\Lambda_{\mu\nu}r^{\mu}r^{\nu} < 0$, which contradicts the assumption.

Since all the eigenvalues of $\Lambda_{\mu\nu}$ are real, the eigenvectors can also be chosen all real and orthogonal. One can show that they can be normalized so that one of the eigenvectors has positive norm, $p_0^{\mu}p_{0\mu} = 1$, while the other three have negative norms $p_i^{\mu}p_{i\mu} = -1$ for each i = 1, 2, 3. Thus, the transformation matrix T that diagonalizes $\Lambda_{\mu\nu}$ is real, and after diagonalization $\Lambda_{\mu\nu}$ takes the form diag $(\Lambda_0, -\Lambda_1, -\Lambda_2, -\Lambda_3)$. Note that transformation T also conserves norm, $r^{\mu}r_{\mu} =$ const. It means that T can be realized as a transformation from the proper Lorentz group.

Now, the requirement that $\Lambda^{\mu\nu}$ is positive definite in LC^+ means

$$\Lambda_0 - \rho(\Lambda_1 \sin\theta \cos\phi + \Lambda_2 \sin\theta \sin\phi + \Lambda_3 \cos\theta) > 0$$

for all $0 < \rho < 1$, $0 \le \theta \le \pi$, and all ϕ . This holds when Λ_0 is positive and larger than all Λ_i .

[1] I. P. Ivanov, Phys. Rev. D 75, 035001 (2007).