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Unparticles proposed by Georgi carry CP conserving phases in their propagators. We demonstrate that
these peculiar phases have an important impact on CP violation. Without including the strong QCD
phases, we study the unparticle phase effects on the direct CP asymmetries in the exclusive decays of
�Bd ! ���� and B! �K, in which the flavor changing neutral currents are forbidden at tree level but

induced by one-loop diagrams. Interesting and consistent results comparing to the data are obtained. In
addition, we find that unparticles will significantly enhance the differential branching ratio of b! s‘�‘�

at the small invariant mass of ‘�‘�. The forward-backward asymmetries for b! s‘�‘� due to
unparticles are also explored.

DOI: 10.1103/PhysRevD.76.036007 PACS numbers: 11.15.Tk, 14.80.�j

I. INTRODUCTION

In Refs. [1,2] Georgi has suggested that a scale invariant
sector with a nontrivial IR fixed point decoupled at a large
scale is associated with unparticles, which could couple to
the standard model (SM) particles at the TeV scale.
Consequently, the unparticle physics phenomenology has
been extensively explored in Refs. [1–21]. Moreover, in
Ref. [2] Georgi has pointed out that the unparticle propa-
gators in the timelike region are associated with some
peculiar CP conserving phases depending on the nonin-
tegral number of the scale dimension dU. He has shown
that these phases can induce some unusual CP conserving
interference effects between the timelike unparticle ex-
change amplitudes and the SM amplitudes in e�e� !
����. The effect of the virtual unparticle propagation
has also been noticed in Ref. [3].

Recently, in Ref. [5] we have demonstrated that the
peculiar CP conserving phases in the unparticle propaga-
tors can also play very important roles in CP violation. We
have explicitly examined the phase effects on the direct CP
asymmetries (CPAs) in Bd ! ���� and Bd ! ‘�‘� de-
cays based on operators with fermion flavor changing
neutral currents (FCNCs) at tree level. We have found
that the direct CPAs in both decays could be large. In
this paper, we will examine the unparticle phase effects
on CP violation with only flavor conserving operators at
tree level. Specifically, we only consider those effects in
which FCNCs are forbidden at tree level, like the SM, but
they can be generated by one-loop diagrams including the
penguin unparticle ones.

It is well known that in a decay process the direct CPA
(ACP) depends on two types of phases, called weak (�)
and strong (�) phases, which are CP violating and con-
serving, respectively. In particular, one has that

 A CP / sin� sin�: (1)

Clearly, to have a sizable value of ACP, both phases have
to be nonzero and large. In the SM, the weak CP violating
phase is the unique phase in the 3� 3 Cabibbo-Kobayashi-
Maskawa (CKM) quark mixing matrix [22], which has
been fixed by experiments [23,24]. The CP conserving
strong phase is process dependent, which is normally
hard to be determined due to hadronic uncertainties.
Since the unparticle phases appear in the propagators and
conserve CP, it is interesting to speculate that these phases
could act as the strong phases in some physical processes
[5]. To explore this possibility, we will concentrate on B
decays, as there are many experimental CP violating phe-
nomena [24] from the current B factories as well as future
super-B facilities. In particular, we will investigate direct
CPAs in the decays of B! �� and B! �K. It is clear
that our study can be extended to other processes such asK
and D decays.

The paper is organized as followed. In Sec. II, we
present FCNCs which are induced by the unparticle pen-
guin diagrams. We show the unparticle effects on charm-
less nonleptonic and semileptonic B decays in Sec. III. We
give our numerical analysis in Sec. IV and conclude our
results in Sec. V.

II. FLAVOR CHANGING NEUTRAL CURRENTS
INDUCED BY UNPARTICLE PENGUIN DIAGRAMS

To study the low energy effects of unparticle physics, for
simplicity, we assume that unparticles only couple to the
flavor conserving fermion currents, described by [1,2]

 

1

�dU�1
U

�f���Cf
LPL � C

f
RPR�fO

�
U (2)

where PL�R� � �1� �5�=2 and OU is the vector unparticle
operator. Clearly, at tree level, the fermion flavor is con-
served. Similar to the SM, FCNCs such as f ! f0U can be

*physchen@mail.ncku.edu.tw
†geng@phys.nthu.edu.tw

PHYSICAL REVIEW D 76, 036007 (2007)

1550-7998=2007=76(3)=036007(10) 036007-1 © 2007 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.76.036007


induced by the charged weak currents at one-loop level.
Because of the CKM mixing matrix element Vtb � 1 and
the heavy top-quark enhancement, we will concentrate on
B decays to illustrate some important physics phenomena
involving unparticles. Our discussions can be straightfor-
wardly generalized to K and D decays. The leading effec-
tive interaction for the flavor changing transition of b! q
is induced by the unparticle penguin diagram shown in
Fig. 1, which leads to

 LU �
g2

�dU�1
U

VtbV	tqC
qb
L �q��PLbO

�
U; (3)

where

 CqbL �
1

�4��2
I�xt�;

I�xt� �
xt�2C

t
R � C

t
Lxt�

2�1� xt�2
��1� xt � lnxt�

(4)

with xt � m2
t =m

2
W . Here, we have adopted the Feynman-

’t Hooft gauge, and the contributions from the charged
Goldstone boson have been included. For simplicity, in
the following analysis, we will set CtR � CtL.

To obtain the unparticle-mediated effects, we need to
know the unparticle propagator, which is given by [1,2]

 

Z
d4xeip
xh0jT�O�

U�x�O
�
U�0��j0i � i�U�p2�e�i�U ; (5)

where
 

�U�p
2� �

AdU
2 sin�dU��

�g�� � p�p�=p2

�p2 � i��2�dU
;

�U � �dU � 2��;

(6)

with

 AdU �
16�5=2

�2��2dU
��dU � 1=2�

��dU � 1���2dU�
: (7)

Note that in Eq. (5) the phase factor arises from
��1�dU�2 � e�i��dU�2� and the vector operator is assumed
to satisfy the transverse condition @�O

�
U � 0. In terms of

the effective interaction in Eq. (3) and the unparticle
propagator in Eq. (5), the effective Hamiltonian for b!
qf �f can be written as
 

HU � �
GF���

2
p VtbV

	
tq

~�U�p
2�e�i�U �q��PLb �f

� �Cf
LPL � C

f
RPR�f; (8)

where GF � 8
���
2
p
g2=m2

W is the Fermi constant and

 

~� U�p
2� � 8CqbL

AdU
2 sindU�

m2
W

p2

�
p2

�2
U

�
dU�1

: (9)

We note that f can be neutrinos or charged leptons or
quarks. We remark that, by replacing b by s in the effective
Hamiltonian of Eq. (8), we may study s! qf �f decays.

III. CHARMLESS NONLEPTONIC AND
SEMILEPTONIC B DECAYS

For the nonleptonic decays of b! qq00 �q00, we start with
the explicit expression of the effective Hamiltonian in the
SM [25],
 

Heff �
GF���

2
p

X
q0�u;c

�qq0
�
C1���O

�q�
1 ��� � C2���O

�q�
2 ���

�
X10

i�3

Ci���Oi���
�
; (10)

where �qq0 � Vq0bV	q0q denotes the product of the CKM
matrix elements and the operators O1–O10 are defined by
 

O�q�1 � � �q	q
0

�V�A� �q

0

b	�V�A;

O�q�2 � � �q	q
0
	�V�A�

�q0
b
�V�A;

O3 � � �q	b	�V�A
X
q00
� �q00
q00
�V�A;

O4 � � �q	b
�V�A
X
q00
� �q00
q

00
	�V�A;

O5 � � �q	b	�V�A
X
q00
� �q00
q

00

�V�A;

O6 � � �q	b
�V�A
X
q00
� �q00
q00	�V�A;

O7 �
3

2
� �q	b	�V�A

X
q00
eq00 � �q

00

q
00

�V�A;

O8 �
3

2
� �q	b
�V�A

X
q00
eq00 � �q00
q

00
	�V�A;

O9 �
3

2
� �q	b	�V�A

X
q00
eq00 � �q

00

q
00

�V�A;

O10 �
3

2
� �q	b
�V�A

X
q00
eq00 � �q00
q

00
	�V�A;

(11)

with 	 and 
 being the color indices, C1–C10 the Wilson
coefficients (WCs), eq00 the electric charge of q00, and

FIG. 1. Feynman diagram for b! qU.
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� �q00q�V�A � �q00���1� �5�q
00. In Eq. (10),O1–O2 are from

the tree level of weak interactions, O3–O6 are the so-called
gluon penguin operators, and O7–O10 are the electroweak
penguin operators. Using the unitarity condition, the CKM
matrix elements for the penguin operatorsO3–O10 can also
be related by

 �qu � �
q
c � ��

q
t : (12)

Comparing to Eq. (8), we clearly see that the structures
of four-Fermi interactions with unparticle contributions are
the same as those of O3 and O5. Consequently, we can
easily get the unparticle contributions by replacing C3 and
C5 in the SM with

 CqU3 �p
2� � C3 �

1
4
~�U�p

2�CqLe
�i�U ;

CqU5 �p
2� � C5 �

1
4
~�U�p

2�CqRe
�i�U :

(13)

Accordingly, the associated effective WCs could be clas-
sified and reexpressed to be more useful forms by
 

a1 � C2 �
C1

Nc
;

a2 � C1 �
C2

Nc
;

aqU3 � CqU3 �
C4

Nc
�

3

2
eq

�
C9 �

C10

Nc

�
;

aqU4 � C4 �
CqU3

Nc
�

3

2
eq

�
C10 �

C9

Nc

�
;

aqU5 � CqU5 �
C6

Nc
�

3

2
eq

�
C7 �

C8

Nc

�
;

aqU6 � C6 �
CqU5

Nc
�

3

2
eq

�
C8 �

C7

Nc

�
;

(14)

where Nc � 3 is the number of color.

A. B! �� decays

In this section, we are going to study the decays of B!
�� dictated by b! dq �q. Using the effective operators
displayed in Eqs. (11) and (14), it is easy to see that the
decays are tree dominated. However, it is clear that the
unparticle effects on B� ! ���0 could be neglected if
CdL�R� � CuL�R�, as the effects are always related to

��auU3 � adU3 � � �a
uU
5 � adU5 �, where the minus sign in-

side brackets is from the pion flavor wave function, j�0i �

� �uu� �dd�=
���
2
p

, and the other one outside the brackets is
due to the pseudoscalar decay constant, defined by
hP�p�j �f0���1� �5�fj0i � �ifPp

�. On the other hand,
as no significant CPA for B� ! ���0 is found based on
the current experimental world average, it should be a good
scenario to take CdL�R� � CuL�R�. Unfortunately, since the
unparticle contributions arise at one-loop level, we do not
expect that we can solve the problem of the large branching
ratio (BR) on Bd ! �0�0, in which the tree contribution

plays a dominant role. Hence, we will concentrate on the
CPA of Bd ! ����.

It is known that the penguin effects on Bd ! ���� are
significant even though the decay is tree dominated. In
order to generate strong phases for the CPA, in the SM
the annihilation topology from O6 / �V � A� � �V � A�
plays a very important role. With the Fierz transformation,
since the corresponding QCD effects involve the timelike
form factor denoted by h��j �q0�1� �5�qj0i, the theoretical
calculations are very uncertain. For instance, with the QCD
factorization [26], to cure divergences one needs to intro-
duce free parameters to parametrize the corresponding
form factors. With the perturbative QCD approach [27],
although singularities could be removed by transverse
degrees of freedom, the dominant dynamical scale is close
to the nonperturbative scale which is around 1 GeV [28].
Using the soft-collinear effective theory, it is found that, at
the lowest order in 	s, the annihilation contributions are
real [29]. In addition, these timelike form factors are all
power suppressed in mP=mB, with mP being the mass of
the light pseudoscalar [30]. Hence, it still needs to make
lots of efforts to fix the strong phases induced by the QCD
effects.

As stated before, the CP-conserved phase in the unpar-
ticle propagator could provide a kind of strong phase
needed for the CPA [5]. It has been realized that the phase
could contribute to the CPA of Bd ! ���� with tree-
allowed FCNCs [5]. In this study, we take the fermion
flavor conservation at tree level like the SM. To examine
the influence of the unparticle phase alone, we will neglect
the uncertain strong phases induced by QCD interactions.
By following the effective Hamiltonian in Eq. (10), we
present the decay topologies in Fig. 2 where (a) [(b)]
denotes the tree (loop) effects. Since Bd ! ���� is a
color-allowed process, the factorization assumption is
good enough to estimate the transition matrix elements.
Consequently, the decay amplitude for �Bd ! ���� is
given by
 

MU
���� �

GF���
2
p f�m

2
BF

B�
0 �m

2
��
�VtbV

	
td�a

uU
4 � 2r�a

uU
6 �

� VubV	uda1�; (15)

where the form factor FB�0 is defined by

 

h��p�j �b��uj �B�pB�i �
�
�pB � p�� �

m2
B

q2 q�

�
FB�1 �q

2�

�
m2
B

q2 q�F
B�
0 �q

2� (16)

with q � pB � p and r� � m0
�=mB associated with

h�j �d�5uj0i � if�m0
�. For the light meson production in

B decays, we take FB��m2
�� � FB�0 �0�. Hereafter, we will

use FB�0 instead of FB�0 �0�. As a result, the BR and CPA
could be obtained by
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B� �Bd ! ����� �
�Bd

16�mB
jMU

����j
2;

ACP �
�B� �Bd ! ����� �B�Bd ! �����
�B� �Bd ! ����� �B�Bd ! �����

;

(17)

where �Bd is the lifetime of Bd and the pion mass has been
neglected. To be more clear, to see the relationship of the
CPA with the unparticle phase �U, we rewrite the CPA for
�Bd ! ���� as

 A CP �
�2�U

�� sin	 sin�U

j1� �SM
��e

i	j2 � j�U
��j

2 � 2�U
�� cos	 cos�U

(18)

where 	 � 
� � and

 �U
�� �

~�U�p
2�

4Nca1

j�dt j

j�duj
�CuL � 2r�CuR�;

�SM
�� �

1

a1

j�dt j

j�duj
�au4 � 2r�au6�:

(19)

Note that aq4�6� can be derived from Eq. (14) by setting
CqL�R� � 0. Obviously, the CPA in �Bd ! ���� depends on
not only the weak phase 	 but also the CP-conserved
unparticle phase �U.

B. B! �K decays

It is known that the decays of b! sq �q are penguin-
dominant processes, as the tree contributions are sup-
pressed by the CKM matrix elements of VubV	us. Since
the unparticle effects are also induced from penguin loops,
one expects that they should be significant. In B! �K
decays, there are four specific decay modes. Since the BRs
for B! �K and the CPA of Bd ! ��K� are observed
well in experiments, we have to discuss all modes in detail.
We begin with our analysis on the decay of B� ! �� �K0.
According to the flavor diagram in Fig. 3(a), the decay
corresponds to q � d. Hence, taking the same conditions
as Bd ! ����, the decay amplitude for B� ! �� �K0 can
be expressed by

 MU
�� �K0 � �

GF���
2
p VtbV	tsfKm2

BF
B�
0 �a

dU
4 � 2rKa

dU
6 �;

(20)

where fK is the kaon decay constant and rK � m0
K=mB,

with m0
K defined as m0

�. Similar to B� ! �� �K0, we can
easily find the decay amplitude of �Bd ! ��K� by using
q � u instead of q � d, given by

 

MU
��K� �

GF���
2
p fKm2

BF
B�
0 
�VtbV

	
ts�auU4 � 2rKauU6 �

� VubV
	
usa1�; (21)

where we have included the tree contributions illustrated in
Fig. 3(c).

Next, we analyze the decay of Bd ! �0K0. Besides the
flavor diagrams appearing in the decay of B� ! �� �K0,
there are new diagrams shown in Figs. 3(b) and 3(d). In the
SM, these contributions correspond to the electroweak
penguin and color-suppressed effects, respectively.
Taking q � u and d in Figs. 3(a) and 3(b), respectively,
the decay amplitude for �Bd ! �0 �K0 is given by

 ���
2
p

MU
�0 �K0 �

GF���
2
p m2

BfVtbV
	
ts
fKFB�0 �a

dU
4 � 2rKa

dU
6 �

� f�
FBK0 � � VubV
	
usf�a2FBK0 g; (22)

where 
 � auU3 � adU3 � adU5 � auU5 . We note that the
new term f�
F

BK
0 , corresponding to the contribution in

Fig. 3(b), is opposite in sign to other terms. The reason
comes from the flavor wave function of �0 being � �uu�
�dd�=

���
2
p

. Note that Fig. 3(b) picks both components while
Fig. 3(a) only takes the �dd component. Since the tree
contributions are color suppressed, the corresponding
WC is a2.

After introducing the decay amplitudes for B� !
�� �K0, �Bd ! ��K�, and �Bd ! �0 �K0, the amplitude of
B� ! �0K� could be immediately obtained as

FIG. 2. Flavor diagrams from (a) tree and (b) penguin diagrams for Bd ! ���� decay, where the square symbol denotes the weak
vertex.
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 ���
2
p

MU
�0K�

�
GF���

2
p m2

B
VtbV
	
ts��fKF

B�
0 �a

uU
4 � 2rKa

uU
6 �

� f�
FBK0 �

� VubV	us�fKa1FB�0 � f�a2FBK0 ��: (23)

Clearly, the amplitudes for the first three decay modes all
appear in the decay of B� ! �0K�. That is, once the first
three decays are determined, the decay of B� ! �0K� is
also fixed. We point out that, although Fig. 3(b) contributes
to the modes of �0 �K0 and �0K�, similar to the case in
B! ��, the unparticle effects in this topology will vanish
if we take CdL�R� � CuL�R�. In our study, we also neglect their
contributions. In summary, the BRs and CPAs for the B!
�K decays can be found by the definitions in Eq. (17).

C. Inclusive semileptonic decays of b! q �‘‘

If unparticles couple to leptons, we can apply the in-
duced interactions for b! qU to study the semileptonic
decays of b! q �‘‘. The corresponding Feynman diagram
is presented in Fig. 4. It is easy to see that, due to the CKM
suppression, the semileptonic decays with b! d are much
less than those of b! s. Hence, in the following discus-
sions, we will concentrate on b! s‘�‘�. Nevertheless, all
discussions and formulas could be applied to b! d‘�‘�

as well. It is also worth mentioning that, because the CKM
matrix element Vtd carries aCP violating phase, the system
of b! d‘�‘� could be even more interesting on CP
violation in the framework of unparticle physics.

Before including new physics interactions into b!
s‘�‘�, we write the effective Hamiltonian for the SM as

 H eff �
GF	em�t���

2
p
�

H1�L

� �H2�L
5��; (24)

with
 

H1� � Ceff
9 ��� �s��PLb�

2mb

q2 C7����si���q
�PRb;

H2� � C10 �s��PLb;

L� � �‘��‘;

L5� � �‘���5‘;

(25)

FIG. 4. b! q‘�‘� decays induced by an unparticle penguin
diagram.

FIG. 3. Flavor diagrams for B! �K decays dictated by (a) [(b)] penguin and (c) [(d)] tree diagrams.
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where 	em is the fine structure constant, �t � VtbV
	
ts, Ceff

9

and C7;10 are the WCs with their explicit expressions given
in Ref. [25] for the SM,mb is the current b-quark mass, and
q2 is the invariant mass of the ‘�‘� pair. Although long-
distance effects of c �c bound states could contribute to Ceff

9 ,

to study the behavior of unparticle physics in the semi-
leptonic decays, for simplicity they are not included in the
present study. On the other hand, the bound states could be
excluded experimentally by cutting the phase space at the
resonant regions. Explicitly, one has that [25]

 

Ceff
9 ��� � C9��� � �3C1��� � C2����h�x; s�;

h�z; s� � �
8

9
ln
mb

�
�

8

9
lnz�

8

27
�

4

9
x�

2

9
�2� x�j1� xj1=2

8><
>:

lnj
�������
1�x
p

�1�������
1�x
p

�1
j � i�; for x � 4z2=s< 1;

2 arctan 1�������
x�1
p ; for x � 4z2=s> 1;

(26)

where h�z; s� describes the one-loop matrix elements of
operators Oc

1 � �s	��PLb
 �c
��PLc	 and Oc
2 �

�s��PLb �c��PLc [25], with z � mc=mb and s � q2=m2
b.

Comparing to Eq. (8), we find that the operator structures
of the unparticle contributions are the same as those of the
SM. The unparticle effects with the SM contributions can
be derived by using CU

9 and CU
10, defined by

 CU
9 �q

2� � Ceff
9 �

�
	em

C‘R � C
‘
L

2
~�U�q

2�e�i�U ;

CU
10�q

2� � C10 �
�
	em

C‘R � C
‘
L

2
~�U�q

2�e�i�U ;

(27)

instead of Ceff
9 and C10, respectively.

With Eq. (24) and the three-body phase space, the
inclusive differential decay rate for b! s‘�‘� (‘ �
e;�) can be expressed by
 

d�

ds
�
G2
Fm

5
b	

2
em

768�5
jVtsV

	
tbj

2�1� s�2R�s�;

R�s� � �jCU
9 �s�j

2 � jCU
10�s�j

2��1� 2s�

� 12 Re�C	7C
U
9 �s�� � 4

�
1�

2

s

�
jC7j

2;

(28)

where the lepton mass has been neglected. Besides the
BRs, it has been known that the forward-backward asym-
metry (FBA), defined by [31]

 

dAFB
ds

�

R
1
�1 d cos�d�=dsd cos�sgn�cos��R

1
�1 d cos�d�=dsd cos�

; (29)

could be a good candidate to probe new physics. By
including the unparticle contributions, from Eqs. (28) and
(29) we get

 

dAFB
ds

� �3
s

R�s�
Re
��
CU

9 �s� �
2

s
C7

�
CU	

10 �s�
�
: (30)

We note that, as a whole, the decay of b! s‘�‘� is not
sensitive to the CP-conserved phases carried by the un-
particle propagators. However, it is important to point out
that at the low q2 regions the unparticle physics has large
effects on these physical quantities, as the unparticle
propagator is proportional to �q2�dU�2. In these region,

we expect that both BR and FBA in b! s‘�‘� have
significant deviations from the SM predictions.

IV. NUMERICAL ANALYSIS

To estimate the numerical values, we take the com-
mon parameters to be GF � 1:166� 10�5 GeV�2, f� �
0:13 GeV, fK � 0:16 GeV, m0

K � 2:4 GeV, m0
� �

1:7 GeV, Vtd � 8:46� 10�3e�i
 with 
 � 25�, Vub �
3:6� 10�3e�i� with � � 72�, and 	em � 1=129 [24].
For the nonleptonic B decays, since we concentrate on
the CPAs, the CP-averaged BRs are regarded as inputs
and their world averages are adopted as [32]
 

B� �Bd ! ����� � �5:16� 0:22� � 10�6;

B�B� ! �� �K0� � �23:1� 1:0� � 10�6;

B� �Bd ! ��K�� � �19:4� 0:6� � 10�6;

B� �Bd ! �0 �K0� � �10:0� 0:6� � 10�6;

B�B� ! �0K�� � �12:8� 0:6� � 10�6:

(31)

For the semileptonic b! s‘�‘� decays, we use the world
average as [24]

 B �b! s‘�‘�� � �4:5� 1:0� � 10�6: (32)

We first calculate the unparticle contributions to the BR
and CPA of �Bd ! ����. As mentioned before, to satisfy
the indication of the experimental data on B� ! �0��,
we will require that CuL�R� � CdL�R� � CqL�R�. Besides the
scale dimension dU and the unparticle scale �U fixed to
be 1 TeV, there are three extra unknown parameters from
unparticle physics, i.e. CtL, CqL, and CqR. Since CtL is always
associated with CqL�R�, in our numerical calculations, we
will use the combined parameters of �qL � CtLC

q
L and �qR �

CtLC
q
R. In addition, we will set the available ranges for the

variables to be j�qL�R�j< 0:5. In terms of Eqs. (15) and (17),
the numerical values of the BR and CPA for �Bd ! ����

versus the scale dimension dU are presented in Fig. 5.
Because the BR is input, the calculated values are all
within 1� errors. Recently, BABAR [33] and Belle [34]
have reported the CPA measurements of

CHUAN-HUNG CHEN AND CHAO-QIANG GENG PHYSICAL REVIEW D 76, 036007 (2007)

036007-6



 

ACP� �Bd ! ����� � �0:21� 0:09� 0:02� �BABAR�;

ACP� �Bd ! ����� � �0:55� 0:08� 0:05� �Belle�;

(33)

with the average value being

 A CP� �Bd ! ����� � 0:38� 0:18: (34)

According to our results in Fig. 5(b), we see that, without
any QCD phases, the unparticle-mediated FCNC with the
peculiar CP-conserved phase induced by the penguin dia-
gram could make the CPA of �Bd ! ���� as large as 20%.
Clearly, with more and more data accumulated at the B

factories, it is worth exploring whether the unparticle phase
is the dominant source for dictating the CPA of �B!
����.

With the same set of parameters in B! ��, we now
study the decays of B! �K. According to the formulas of
the decay amplitudes introduced in Eqs. (20)–(23), the
values of BRs through unparticle-mediated diagrams are
presented in Fig. 6, where the band in each figure denotes
the world average with 1� errors. It is interesting to see that
unparticle physics could make the BRs of B! �K con-
sistent with data within 1� world averages. We note that
the data of B� �Bd ! ����� have also been included to
constrain the various unknown parameters.

Although the consistent results in the BRs have been
impressive enough, to emphasize the importance of the
magic phase in unparticle physics, one should pay attention
to the CPA. According to our previous analysis in Eqs. (20)
and (22), since the tree contributions are negligible (small)
for B� ! �� �K ( �Bd ! �0 �K0), one can easily understand
that the corresponding CPA should also be negligible
(small). Nevertheless, we have to remark that the conclu-
sions are correct only for the cases without including final
state interactions (FSIs). Note that we have to exclude the
discussions on FSIs since we can only control the short-
distance effects. Here, we adopt that the assumption of
color transparency dominates the processes in B decays
[35]. We conclude that the interesting CP violating effects
in B! �K decays are the CPAs for �Bd ! ��K� and
B� ! �0K�.

From Eqs. (21) and (23), one finds that the penguin
contributions are the same in both decays; the only differ-
ence is that there is an extra color-suppressed contribution
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FIG. 6. BRs (in units of 10�6) versus the scale dimension dU for (a) B� ! �� �K0, (b) �Bd ! �0 �K0, (c) �Bd ! �0 �K0, and
(d) B� ! �0K�, where the band in each figure stands for the world average with 1� errors.
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in B� ! �0K�. If the color-suppressed a2 term in Eq. (23)
is dropped, one expects that both modes should have the
same CPAs. Therefore, the sign of a2 will affect the CPA of
B� ! �0K�. Using the parameters fitted by the BRs of
B! �K, we present the unparticle contributions versus
the scale dimension dU in Fig. 7, where the circles
(squares) in each figure denote a2 � 0:14 ��0:14�. We
see that the sign of a2 has a significant influence on
ACP�B

� ! �0K��. According to the current world aver-
age, given by [32]
 

ACP� �Bd ! ��K�� � �0:095� 0:013;

ACP�B
� ! �0K�� � 0:047� 0:026;

(35)

it seems that somewhat different physics exists between the
two modes. Plausibly, a2 plays an important role in the
CPA for B� ! �0K�. Since our focus is on the CPA in
unparticle physics, further discussions on a2 are given
elsewhere. For detailed analysis, we refer the reader to
Ref. [27]. From our results, we see that, with the unparticle
phase, ACP�B

� ! ��K�� could be consistent with the
current data. As the results in Eq. (35) are not conclusive
yet, more precise data are needed to tell whether there is a
deviation between �Bd ! ��K� and B� ! �0K� in the
CPAs.

Finally, we study the unparticle effects on inclusive
semileptonic decays of b! s‘�‘� with ‘ � e, �. From
Eq. (27), one finds that CtL is always associated with �C‘R �
C‘R�=2 and �C‘R � C

‘
L�=2. To simplify our numerical analy-

sis, we set C‘R � C‘L or C‘R � �C
‘
L. We will redefine our

parameters to be CtLC
‘
L � CtLC

‘
R � �‘V and CtLC

‘
L �

�CtLC
‘
R � �‘A and discuss the constraints on �‘V�A�. From

Eq. (27), we know that the one-loop matrix elements from
operators Oc

1 and Oc
2 will generate a CP-conserved QCD

phase, which, in principle, could interfere with the unpar-
ticle phase. However, the interference effect between the
CP-conserved phases of the SM and unparticles is small

since the one-loop generated contributions are much
smaller than C9 ��C10 � 4.

Although b! s‘�‘� cannot be the candidate to probe
the unique unparticle phase, we can utilize the decays to
give strong constraints on the unparticle couplings to lep-
tons, i.e. �‘V�A�. In terms of Eq. (28) and the values for the
common parameters, the unparticle contributions to the
BRs of b! s‘�‘� are presented in Fig. 8, where (a)
[(b)] denotes the contributions of �‘V
A�, the horizontal
thin lines are the SM contributions, and the thick solid,
dashed, and dash-dotted lines correspond to �‘V
A� � 0:005,
0.01, and 0.05, respectively. The bands in the diagrams are
the world average with 1� errors. From the figure, we see
clearly that, with a specific value for �‘V�A�, the BR of b!
s‘�‘� is very sensitive to the scale dimension dU. To
understand the sensitivity, we need to examine the behavior
of the unparticle propagator and the unparticle couplings to
fermions. With Eqs. (2) and (5), we know that the q2

dependence in the BR will behave like

 

�
1

q2

�
q2

�2
U

�
dU�1

�
2
: (36)

It is clear that, for the three-body b! s‘�‘� decays, the
enhancement of unparticle effects is at the small invariant
mass of ‘�‘�. To be more clear, we display the differential
BRs for b! s‘�‘� as functions of s � q2=m2

b in
Figs. 9(a) and 9(b), where the solid, dashed, and dash-
dotted lines stand for dU
�‘V�A�� � 1:1 
0:005�, 1.2 [0.01],
and 1.4 [0.05], respectively. The large deviation at the
small s region could confirm our argument.

For the FBA in b! s‘�‘�, from Eq. (30), the numeri-
cal values of the unparticle contributions as functions of
the invariant mass s are shown in Figs. 9(c) and 9(d).
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0.05, respectively, while the horizontal lines are the SM contri-
butions and the bands denote the world average with 1� errors.
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Clearly, the FBA at the small s region is also sensitive to
the unparticle physics. In addition, one observes that the
nonvanished �‘V associated with CU

9 could shift the zero
point of the FBA to be lower. However, the nonvanished �‘A
associated with CU

10 cannot change the zero-crossing point.
The reason could be understood from Eq. (30), where the
zero point can only happen at CU

9 � 2C7=s � 0.

V. CONCLUSIONS

We have studied the implications of the CP conserving
phases in the unparticle propagators. We have demon-
strated that these peculiar phases have an important impact
on CP violation since they could act as the strong phases
needed to induce the direct CP asymmetry. Without in-
cluding the QCD phases, we have examined the unparticle
phase effects on the direct CP asymmetries in the exclusive

�Bd ! ���� and B! �K decays, in which FCNCs are
forbidden at tree level but induced by one-loop unparticle
penguin diagrams. We have obtained interesting and con-
sistent results comparing to the experimental data.
Moreover, we have found that the unparticle effects will
significantly enhance the differential branching ratio of
b! s‘�‘� at the small invariant mass of ‘�‘� so that
the couplings of unparticles to leptons suffer strong con-
straints. The forward-backward asymmetries for the de-
cays of b! s‘�‘� due to the unparticle effects have also
been investigated.
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