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We discuss properties of hypothetical scale invariant (unparticle) matter by viewing it as a tower of
massive particles. We show how peculiar properties of unparticles emerge in the limit when the mass
spacing parameter � vanishes. We explain why the unparticle cannot decay in this limit and how, for finite
�, the decays manifest themselves in a relation between the reconstructed invariant mass and vertex
displacement. We describe a model field theory in AdS5 which explicitly implements the deconstruction
procedure by truncating the extra dimension to size of order 1=�.
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I. INTRODUCTION

In a recent paper [1] Georgi suggests the consideration
of a hypothetical scale invariant, or conformal, matter very
weakly coupled to the standard model matter as a possible
component of physics above TeV scale which might begin
to show up at the LHC. A vast amount of knowledge exists
about the properties of conformal field theories, and its
applications to condensed matter problems, such as critical
phenomena, abound. However, there is little understanding
of how such a conformal sector, if it exists, would manifest
itself in particle physics experiments. Georgi terms such
matter ‘‘unparticle,’’ for its properties and signatures are
qualitatively different from those of particles. Several cu-
rious properties of unparticles have been exposed in
Ref. [1,2], including the unusual scaling of the apparent
phase space volume, the unusual missing energy spectra,
unusual interference patterns, etc. Several recent papers
have been addressing novel signatures of unparticles
[3–9].

The purpose of this paper is to clarify the notion of the
unparticle using the language familiar to a particle phys-
icist. To that end we deconstruct the unparticle and view it
as an infinite tower of particles of different masses.1 We
show how the peculiar properties of unparticles exposed in
Refs. [1,2] can be interpreted and understood in that
language.

We shall think of the unparticle as a limiting case in
which the spacing �2 of the (squared) masses in the tower
of particles goes to zero. Using this limiting procedure we
explain an apparent paradox mentioned in Ref. [2], that the
unparticle need not decay despite the presence of a finite
imaginary part in its two-point correlator. As a corollary
we find that if � is small but finite, the unparticle can
decay, and we describe peculiar signatures of such decays.

In the beginning we shall view deconstruction as a
purely mathematical device translating the properties of
the unparticle into particle physics language. In Sec. VI we
shall take a more constructive approach and describe a
model of a field theory in which the unparticle indeed
arises as a limiting procedure. Not surprisingly, the model
requires an additional space dimension, and the tower of
deconstructing particles appears naturally as a Kaluza-
Klein tower, once the extra dimension is compactified/
truncated. In order to produce an unparticle with nonin-
teger scaling dimension we use AdS5 geometry and de-
scribe the unparticle using a massive scalar field.

II. SETUP AND NOTATIONS

Following Ref. [1], let us imagine that there exists a
scale invariant sector of our world described, e.g., by some
strongly self-coupled conformal theory. Scale invariance
means that there are no (massive) particles in this sector.
Since such an unparticle sector is not seen in present
experiments, we must further assume that the coupling of
this conformal sector to the standard model particles/fields
is very weak—somewhat in the spirit of the ‘‘hidden-
valley’’ models [10]. This interaction can be described in
an effective field theory language as a (nonrenormalizable)
coupling between some standard model operator and the
unparticle operator O of scaling dimension dU. Since the
unparticle sector is self-interacting, the dimension ofO can
be nontrival (noninteger).

The correlation function of the operator is given by

 

Z
d4xeiPxh0jTO�x�Oy�0�j0i �

Z dM2

2�
�O�M2�

�
i

P2 �M2 � i"
: (1)

By scale invariance the spectral function of the operator O
must be a power of M2:

 �O�M2� � AdU�M
2�dU�2; (2)

where AdU is a normalization constant chosen by conven-
tion in Ref. [1]. Its precise form/value is not consequential

1We rely on a more generic meaning of the term ‘‘deconstruc-
tion,’’ and wish to emphasize the difference from the so far more
common specific use of this term to describe deconstruction of
five-dimensional theories by discretization of the fifth
dimension.
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for the discussion below. On the other hand,

 �O�M2� � 2�
X
�

��M2 �M2
��jh0jO�0�j�ij

2: (3)

The sum in Eq. (3) is over all relativistically normalized
states j�i (at fixed spatial momentum—i.e., no d3p� in-
tegration). The unparticle spectral function means that the
spectrum of the operator O is continuous, i.e., the sum in
Eq. (3) is in fact an integral. Let us imagine that the scale
invariance is broken in the system in a controllable way, so
that, instead of a continuous spectrum of states �, there is a
discrete tower of states with the spacing controlled by
parameter �. To simplify discussion, we shall pick a
particular spectrum

 M2
n � �2n: (4)

It is straightforward to adjust all subsequent discussion to
any other spectrum, e.g.,M2

n � �2n2, etc. We shall assume
that � is much smaller than other scales pertinent to the
problem. Let us introduce notation for the matrix element
for the nth particle:

 F2
n � jh0jO�0�j�nij

2: (5)

We can then write:

 �O�M
2� � 2�

X
n

��M2 �M2
n�F

2
n (6)

and

 

Z
d4xeiPxh0jTO�x�Oy�0�j0i �

X
n

iF2
n

P2 �M2
n � i"

: (7)

In the limit �! 0 the sum over n in Eq. (6) becomes an
integral, which must match Eq. (2). From this condition we
easily determine that Fn must be given by

 F2
n �

AdU
2�

�2�M2
n�
dU�2: (8)

The constants Fn are similar to the decay constants of
mesons in QCD. More generally,

 M2
n � �2n1=� ) F2

n �
AdU
2��

�2��M2
n�
dU�2����1�: (9)

III. PRODUCTION

Consider the example from Ref. [1] of production of
such an unparticle. Imagine the coupling of the unparticle
given by

 i
�

�dU
U

�u���1� �5�t@
�O� H:c:; (10)

where � is a dimensionless coupling and �U is the Banks-
Zaks scale in the unparticle theory. Using representation
(7) we can define the deconstructing particle field

 �n�x� � O�x�=Fn: (11)

According to (7), on the mass shell of the n’s particle this
field will be canonically normalized. Thus, the interaction
Eq. (10) becomes after deconstruction

 i
�

�dU
U

�u���1� �5�t
X
n

Fn@��n � H:c: (12)

Now it is easy to study the production of the unparticle
using the standard notions of particle physics. The kine-
matics is that of a two-body decay of a t quark. That is, for
each n the energy of the u quark is fixed to Eu � �m2

t �
M2
n�=�2mt�. The spectrum of Eu consists of a peak for each

value of n, which in the limit �! 1 merge into the
continuum distribution displayed in Ref. [1]. The decay
rate for each n is

 ��t! u� �n� �
j�j2

�2dU
U

mtE
2
u

2�
F2
n: (13)

An interval dEu corresponds to an interval of masses
dM2 � 2mtdE which contains 2mtdE=�2 states �n. Thus
we obtain

 

d�

dEu
�

2mt

�2 ��t! u� �n�

�
2mt

�2

j�j2

�2dU
U

mtE
2
u

2�

�AdU
2�

�2�M2
n�
dU�2

�
; (14)

with M2
n � m2

t � 2mtEu, in agreement with Ref. [1]. We
see that each of the deconstructing particles �n couples
weaker and weaker as �! 0, but their number in a fixed
interval of energies dEu is increasing inversely proportion-
ally to their coupling leading to finite d�=dEu in the
scaling limit �! 0.

IV. INTERFERENCE

Another example considered in Ref. [2] is the coupling
of a vector unparticle operator O� to a neutral vector or
axial lepton current, e.g., (‘ � e or �)

 cAUM
1�dU
Z

�‘���5‘O�; (15)

where, following notations in Ref. [2] we expressed the
dimensionful coupling in units of the Z boson mass MZ.
These couplings produce contributions to, e.g., e�e� !
���� amplitudes due to the virtual unparticle which
interferes with the standard model � and Z boson ampli-
tudes. In the case of the vector operator O�, which we
assume to be conserved @�O� � 0, the Eqs. (1) and (2),
etc. generalize as
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 ����q� �
Z
d4xeiqxh0jTO��x�O��0�j0i

� ��g�� � q�q�=q2�
Z dM2

2�
�O�M

2�

�
i

q2 �M2 � i"
; (16)

where again by scale invariance �O is given by Eq. (2).
Evaluating the integral over M2 one finds
 

����q� � ��g�� � q�q�=q2�
iAdU

2 sin��dU�

� ��q2 � i"�dU�2: (17)

Deconstructing the unparticle operator O� proceeds simi-
larly to the scalar operator. We introduce decay constants
Fn via

 h0jO��0�j�ni � ��Fn; (18)

where �� is the polarization of the massive vector particle
�n. Then the correlation function is given by

 ����q� � ��g�� � q�q�=q2�
X
n

iF2
n

q2 �M2
n � i"

: (19)

If we assume the same mass spectrum as in Eq. (4), the
constants Fn are again given by Eq. (8).

The contribution to the e�e� ! ���� amplitude from
the unparticle is proportional to the correlation function
(16), and following Ref. [2] we define:

 �U �
AdU

2 sin��dU�
��q2 � i"�dU�2: (20)

This amplitude interferes with the amplitude due to the
virtual Z proportional to

 �Z �
1

q2 �M2
Z � iMZ�Z

: (21)

This standard model amplitude is mostly real away from
the Z pole and is mostly imaginary near the pole. The
unusual property of the unparticle amplitude (20) pointed
out in Refs. [2,3] is that it has a nonzero imaginary part for
all q2 > 0. This allows the amplitudes �U and �Z to
interfere even at the Z pole, where the latter is imaginary.

This property follows naturally from the deconstructed
picture in which

 �U �
X
n

F2
n

q2 �M2
n � i"

: (22)

The imaginary part of the amplitude �U as a function of
q2 consists of a series of �-function peaks at q2 � M2

n:

 Im �U � �
X
n

F2
n���q2 �M2

n�: (23)

Each peak becomes lower as F2
n � �2 ! 0, but their den-

sity increases. Converting the sum over n into the integral
over M2

n we find that

 Im �U !�
F2
n

�2 � � �
AdU

2
�M2

n�
dU�2 (24)

in agreement with (20). The factor sin��dU�which cancels
in (20) never appears in the first place in (24).

Away from the Z pole, where �Z is real, the interference
term is proportional to Re�U. This is given by the sum in
(22) where particles with masses M2

n < q2 contribute with
the opposite sign from those withM2

n > q2. The case dU �
3=2 is special, as pointed out in Ref. [2]: Re�U �
cot��dU� vanishes. This has a simple meaning—at this
value of dU particles with M2

n above q2 exactly cancel
contribution of particles below q2 (for any q2). This is most
clear from the integral representation:

 Re �U � �
Z 1

0
dM2 �M

2�dU�2

q2 �M2 : (25)

That this (principal value) integral vanishes at dU � 3=2
can be seen by doing the change of variables M ! q2=M
(mass inversion) which maps the regions above and below
q2 onto each other.

V. DECAY?

We observe (8) that each deconstructing particle �n
couples with strength proportional to F2

n � �2 which van-
ishes as �! 0. Thus, in a certain sense, a true (� � 0)
unparticle, once produced, never decays. This limiting
procedure explains the apparent paradox pointed out in
Ref. [2]: the finite imaginary part (24) of the ‘‘propagator’’
of the unparticle does not mean it has a finite lifetime.

What if the unparticle sector is almost conformal with a
very small but nonzero �? The lifetime of a deconstructing
particle �n is proportional to F�2

n � ��2, and let us assume
that it is in the range that one can observe the displaced
vertex of �n decay into ordinary standard model particles.
What would the signatures of such decays be? For sim-
plicity, let us assume here no interference with standard
model amplitudes.

First of all, the invariant mass spectrum of the decay
products (e.g., lepton pairs) will not peak but will be a
monotonous distribution (we assume that � is much less
than the experimental resolution). Furthermore, the life-
time would be proportional to F�2

n , which depends on Mn
according to Eq. (8) or (9). There are of course trivial
kinematic and coupling factors, which might add an integer
power of Mn. One would therefore observe secondary
vertices whose average displacement is correlated with
the invariant mass of the products of decay.

For example, the contribution of the interaction (15) to
the decay rate of �n is (taking Fn from Eq. (8))
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���n ! ����� �
c2
AUM

2�2dU
Z

8�
F2
nMn

�
c2
AUM

2�2dU
Z AdU

16�2 �2M2dU�3
n : (26)

Thus, the lifetime 	d measured through the mean displace-
ment of a vertex (	d � ‘d=��v�), if observed, will scale
with the reconstructed invariant mass as

 	d � 1=��M3�2dU : (27)

VI. MODELING AND DECONSTRUCTING THE
UNPARTICLE USING AdS5

So far we have viewed deconstruction as an abstract
mathematical trick to cast the interaction of the unparticle
as a sum of the interactions of the particles �n. This
construction can be made more explicit by considering a
model of the unparticle based on a five-dimensional field
theory. The idea is simple: restricting the extent of the fifth
dimension to size of order 1=� will lead to the necessary
discrete spectrum of deconstructing particles �n.

For concreteness and simplicity let us focus on a scalar
unparticle as in Sec. III. The correlator (7) can be obtained
from a two-point Green’s function of a massive scalar field
��x; z�, where x is a Minkowski coordinate, while the fifth
coordinate z can be thought of either as a continuous index,
or as a fifth coordinate. We shall take the anti-de Sitter
(AdS) metric for this five-dimensional space: ds2 �

�dx�dx
� � dz2�=z2. The Lagrangian (density in

Minkowski space) reads:

 L �
Z
dz

���
g
p
	gMN@M�@N��m2

5�2
=2; (28)

where, as usual, xM � �x1; x2; x3; t; z� and g � detkgMNk,
gtt � �1. Note that the mass parameter m5 is dimension-
less, and so is the field �. The operator O can then be
defined in terms of the field � as follows:

 O�x� � lim
z!0

z�dU��x; z�: (29)

In other words, the standard model operators such as, e.g.,
@�� �u���1� �5�t� from Eq. (10) couple to the field ��x; z�
only on the boundary z! 0.

The dimension of the operator dU determines the re-
quired mass of the field (or is determined if the mass is
given) by the well-known formula:

 m2
5 � dU�dU � 4�: (30)

The following analysis of this model bears obvious
resemblance to the holographic technique described in
[11,12] and developed in many subsequent works. In
fact, our five-dimensional model could be perceived as a
dual description of some four-dimensional conformal field
theory in the sense of the AdS/CFT correspondence [13].
There is a similarity with the extra-dimensional scenarios

[14,15], but here we consider a scalar field in the bulk,
rather than gravity. Gauge fields have been also extensively
studied in AdS5 (see, e.g., [16–18] and refs. therein), as
well as massless scalar field [19–22] in a similar setup, but
different contexts. Here we shall focus on the case of the
massive scalar field which will allow a nontrivial scaling
dimension dU. With the understanding that many elements
of the following analysis can be found in the above litera-
ture, we shall, nevertheless, carry the following discussion
in a self-contained manner.

To understand and derive the relationship (30) between
the rescaling factor in Eq. (29) and the mass parameter
given by (30), let us recall that the two-point correlation
function of the field � which appears in

 hO�x�O�0�i � lim
z;z0!0

z�dU�z0��dUh��x; z���0; z0�i (31)

is the Green’s function of the linear differential operator
obtained by taking two variational derivatives of the
Lagrangian (28) with respect to �:

 	@zz
�3@z � z

�3q2 � z�5m2
5
G�q; z; z0� � ��z� z0�; (32)

where G�q; z; z0� is the Fourier transform of
h��x; z���0; z0�i with respect to x. The behavior of the
Green’s function at small z is easy to find by noticing
that the term q2 is negligible for z� q�1, and that the
Eq. (32) with q2 neglected is solved (for z � z0) by a power
ansatz G� z
, with 
�
� 4� � m2

5. Thus, on the account
of Eq. (30): G�q; z; z0� � zdU�z0�dU .2 Thus the correlator
hO�x�O�0�i in Eq. (31) is finite in the limit z, z0 ! 0, and by
dimension counting must be proportional to x�2dU , which
is what the dimension of the operator O�x� implies.

Consider now AdS space with finite extent in the z
direction (AdS slice): z 2 	0; zm
, with zm � 1=�. We
can write the representation for the Green’s function in
terms of the orthogonal set of normal modes �n:

 G�q; z; z0� �
X
n

�n�z��n�z
0�

q2 �M2
n � i"

; (33)

normalized according to

 

Z
dzz�3�2

n � 1: (34)

The modes behave as �n � zdU for small z, and the con-
stants Fn can be identified, comparing (7), (31), and (33),
as

 Fn � lim
z!0

z�dU�n�z�: (35)

This result is similar to the expression for the meson decay
constants in AdS/QCD in terms of the z! 0 asymptotics
of the normalizable modes [23,24].

2The explicit solution, which we do not need here, is
G�q;z;z0�� ��=2��zz0�2JdU�2�qz�YdU�2�qz���z

0 �z���z$ z0�.
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The distribution of massesMn can be obtained given the
specific boundary conditions at zm. Instead of relying on
the exact solution, let us note that only n� 1 modes
interest us here, since, by assumption, �� Mn. The equa-
tion for normal modes (32) can be cast into Schrödinger
form by substitution: �n � z3=2 n, and then solved in the
WKB approximation. For z� M�1

n , including the z � zm
boundary, the large n modes are  n � sin�Mnz� C1�,
where constant C1 depends on m5 (i.e., on dU), but not
on n. Thus the mass spectrum is given by Mn � �zm��1�
��n� C2�, where constant C2 is related to C1 and depends
also on the type of the boundary condition at zm (e.g.,C2 �
C1 for the Dirichlet boundary condition). Neglecting
O�1=n� terms we find quite generally M2

n ! �2n2 for n�
1, where � � �=zm. To obtain the linear spectrum as in (4)
one can modify the AdS background at large z, as it is done
in Ref. [25], instead of cutting the space off at zm.

The arguments in this section assume that the dimension
of the operator satisfies 1< dU < 2. Indeed, for the nor-
mal modes to be normalizable in the sense of Eq. (34) we
must have dU > 1. More subtly, for the Green’s function in
Eq. (32) to have the behavior zdU�z0�dU as z, z0 ! 0, the
value dU must be the smallest of the two solutions of
quadratic Eq. (30), which means dU < 2. The integer
values dU � 1, 2 are, of course, special and, although
interesting, will not be considered here.

It should be also pointed out that the condition m2
5 > 0,

violated for 1< dU < 2 according to Eq. (30), is not at all
necessary for the stability of the scalar theory in AdS space
[26,27]. One way to see this is to observe that the differ-
ential operator 	�@zz�3@z � z�5m2

5
 in Eq. (32) is positive
definite even for negative m2

5 >�4, i.e., there are no
unstable modes.

In summary, we have seen how the notion of the un-
particle can be somewhat demystified by representing it as
an infinite tower of massive particles with controllable
mass-squared spacing �2. We used such a deconstruction
technique to rederive and clarify the peculiar properties of
the unparticle pointed out in Refs. [1,2] and to show that
the pure (� � 0) unparticle cannot decay, while for small
but nonzero � the decay is possible, with a peculiar sig-
nature. Finally, we described a possible field theory real-
ization of the deconstruction procedure using a slice of
AdS5 space.
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