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loops are surprisingly large, and their omission may well explain the scaling violations observed in some
unquenched studies.
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I. INTRODUCTION

The enormous advances in parallel computing made
during the past few years, together with theoretical advan-
ces in the formulation of lattice gauge theories with fermi-
ons, have allowed lattice theorists to abandon the quenched
approximation that dominated lattice QCD simulations for
such a long time in favor of simulations using dynamical
light quarks. This important step has allowed a significant
reduction in systematic errors by removing the large and
uncontrolled errors inherent in the quenched approx-
imation.

The Fermilab Lattice, MILC and HPQCD collaborations
have an ambitious program which to date has made several
high-precision predictions from unquenched lattice QCD
simulations [1,2], including accurate determinations of the
strong coupling constant �s [3], the light and strange quark
masses [4], and the leptonic and semileptonic decays of the
D meson [5]. To do this, we rely on the Symanzik-
improved staggered-quark formalism [6], specifically the
use of the asqtad [7] action. While this approach requires
the use of the fourth root of the staggered-quark action
determinant, all of the available evidence to date is con-
sistent with the conclusion that the resulting theory is in the
same universality class as continuum QCD, as long as the
chiral limit is taken after the continuum limit [8].

Recent studies of the heavy-quark potential in full QCD
[9] have shown an apparent increase in scaling violations
compared to the quenched approximation, contrary to ex-
pectations. A possible reason for this would be that these
scaling violations arise from the mismatch between the
inclusion of sea quark effects in the simulation and the
omission of sea quark effects in the improvement coeffi-
cients in the action, which would appear to spoil the O�a2�
improvement at the level of O��sNfa2�. A systematic
study of O��sa2� effects is generally beyond the scope of
the current perturbative improvement programme.
Nevertheless, it is important to bring up-to-date the calcu-
lation by Lüscher and Weisz [10] and by Snippe [11] of the

radiative correction to the O�a2� tree-level Symanzik-
improved gluon action to include the effects of dynamical
quarks. This is important also because the Lüscher-Weisz
improvement is currently included in many unquenched
simulations [7]. Since the lattice spacing scale is set by
measurement of the heavy-quark potential, there will be an
induced O��sNfa2� artifact by omitting the corrections
due to unquenching. While such errors are generally
smaller than other systematic errors in current state-of-
the art studies, it is simple to remove them, using the result
of the perturbative matching calculations done here, and
this may prove advantageous in careful studies of different
scale setting procedures.

In this paper, we present the determination of the lowest-
order perturbative contributions from quark loops to the
Symanzik improvement coefficients of the Lüscher-Weisz
glue action. Including these contributions in future simu-
lations, as well as accounting for their influence in the
analysis of existing results, should help to eradicate the
last remaining vestiges of the quenched approximation and
any associated systematic errors from unquenched lattice
results. Some of this work has been reported in preliminary
form in [12].

II. CONCEPTS AND METHODS

First, let us briefly explain the ingredients of our
calculation.

A. On-shell improvement

The original Symanzik improvement programme
[13,14] aims to remove the discretization artifacts from
the correlation functions of the lattice theory. For gauge
theories, this has proven difficult to implement, since the
correlation functions themselves are not gauge invariant. A
way out of this difficulty is offered by the method of on-
shell improvement introduced by Lüscher and Weisz
[15,16] which aims to improve only gauge-invariant spec-
tral quantities.
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The Lüscher-Weisz action is given by [15,17]

 S �
X
x

�
c0

X
���

h1� P��i � 2c1

X
���

h1� R��i

� 4
3c2

X
�����

h1� T���i
�
; (1)

where P, R and T are the plaquette, rectangle and
‘‘twisted’’ parallelogram loops, respectively.

The requirement of obtaining the Yang-Mills action in
the continuum limit imposes the constraint

 c0 � 8c1 � 8c2 � 1; (2)

which can be used to determine c0 in terms of the other two
coefficients. This leaves us with c1 and c2 as unknown
coefficients which need to be determined in order to elimi-
nate the O�a2� lattice artifacts.

If we have two independent quantities Q1 and Q2 which
can be expanded in powers of (�a), where � is some
energy scale, as

 Qi � �Qi � wi��a�2 �O���a�4�; (3)

and which receive corrections

 �impQi � dijcj��a�
2 �O���a�4� (4)

from the improvement operators, then the O�a2� matching
condition reads

 dijcj � �wi: (5)

Since this equation is linear, we can decompose the wi into
a gluonic and a fermionic part as wi � wglue

i � Nfw
quark
i

and obtain the same decomposition for the ci; thus, espe-
cially we do not need to repeat the quenched calculation
[10,11] in order to obtain the O�Nf� contributions (how-
ever, doing so provides a useful check on the correctness of
our methods, which we have performed successfully). At
higher orders in perturbation theory, the dij and wi will
become functions of the ci in lower orders.

At the tree-level, the fermions contribute nothing to
gluonic observables, and hence the tree-level coefficients
remain unchanged compared to the quenched case [10]:

 c1 � �
1

12
; c2 � 0: (6)

B. Lattice perturbation theory

Lattice field theory is usually employed as a nonpertur-
bative regularisation; for the calculations we need to per-
form, however, we need a perturbative expansion of Lattice
QCD.

In lattice perturbation theory, the link variables U� are
expressed in terms of the gauge field A� as

 U��x� � exp�gaA��x�
1
2�̂��; (7)

which, when expanded in powers of g, leads to a perturba-
tive expansion of the lattice action, from which the pertur-
bative vertex functions can be derived.

The gauge field A� is Lie algebra-valued, and can be
decomposed as

 A��x� �
X
a

Aa��x�ta; (8)

with the ta being anti-Hermitian generators of SU�N�,
where N � 3 in the case of QCD.

As in any perturbative formulation of a gauge theory,
gauge fixing and ghost terms appear in the Fadeev-Popov
Lagrangian; here we will not have to concern ourselves
with these, since for the purpose of determining the un-
quenching effects at one loop we only need to consider
quark loops. An additional term, which we also do not need
to consider here, arises from the Haar measure on the
gauge group.

The loop integrals of continuum perturbation theory are
replaced by finite sums over the points of the reciprocal
lattice in lattice perturbation theory, or integrals over the
Brillouin zone where the lattice has infinite spatial extent.

To handle the complicated form of the vertices and
propagators in lattice perturbation theory, we employ a
number of automation methods [18–22] that are based
on the seminal work of Lüscher and Weisz [10]. Three
independent implementations by different authors have
been used in this work to ensure against programming
errors.

C. Twisted boundary conditions

We work on a four-dimensional Euclidean lattice of
length La in the x and y directions and lengths Lza, Lta
in the z and t directions, respectively, where a is the lattice
spacing and L, Lz, Lt are even integers. In the following,
we will employ twisted boundary conditions [23] in much
the same way as in [10,11]. The twisted boundary con-
ditions we use for gluons and quarks are applied to the
�x; y� directions and are given by (� � x, y)

 U��x� L�̂� � ��U��x��
�1
� ; (9)

 ��x� L�̂� � ����x���1
� ; (10)

where the quark field �sc�x� becomes a matrix in smell-
color space [24] by the introduction of a ‘‘smell’’ group
SU�Ns� with Ns � N in addition to the color group SU�N�.
We apply periodic boundary conditions in the �z; t�
directions.

These boundary conditions lead to a change in the
Fourier expansion of the fields which now reads

 A��x� �
1

NL2LzLt

X0

p

�pe
ipx ~A��p�; (11)
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 ���x� �
1

NL2LzLt

X
p

�peipx ~���x�: (12)

In the twisted �x; y� directions the sums are over

 p� � mn�; �
NL
2
< n� �

NL
2
; � � �x; y�;

(13)

where m � 2�
NL , and in the untwisted �z; t� directions the

sums are over

 p� �
2�
L�

n�; �
L�
2
< n� �

L�
2
; � � �z; t�: (14)

The modes with (nx � ny � 0 mod N) are omitted from
the sum in the case of the gluons since the gauge group is
non-Abelian, and this is signified by the prime on the
summation symbol in Eq. (11). In particular, this removes
the zero mode from the gluon spectrum and so the mass-
scale m defined above acts as a gauge-invariant infrared
regulator. The matrices �p are given by (up to an arbitrary
phase, which may be chosen for convenience)

 �p � �
�ny
x �nx

y : (15)

The momentum sums for quark loops need to be divided by
N to remove the redundant smell factor.

The twisted theory can be viewed as a two-dimensional
field theory in the infinite �z; t� plane with the modes in the
twisted directions being considered in the spirit of Kaluza-
Klein modes. Denoting n � �nx; ny�, the stable particles in
the �z; t� continuum limit of this effective theory are called
the A mesons (n � �1; 0� or n � �0; 1�) with mass m and
the B mesons (n � �1; 1�) with mass

���
2
p
m [11].

D. Small-mass expansion

To extract the O�a2� lattice artifacts, we first expand
some observable quantity Q in powers of ma at fixed mqa:

 Q�ma;mqa� � a�Q�0 �mqa� � a
�Q�
2 �mqa��ma�

2

�O��ma�4; �ma�4 log�ma��; (16)

where the coefficients in the expansion are all functions of
mqa. There is no term at O��ma�2 log�ma�� since the gluon
action is improved at tree-level to O�a2� [11]. Since we
wish to extrapolate to the chiral limit it might be thought
that we can set mqa � 0 straight away to achieve this end.
However, the correct chiral limit is mqa! 0, ma! 0,
mq=m> C, where m � 2�

NL as before and C is a constant
determined by the requirement that the appropriate Wick
rotation can be performed in order to evaluate the Feynman
integrals. If the inequality is violated this results in a pinch
singularity. It is physically sensible that the correct limit is
L! 1 before mq ! 0 since this divorces the two infrared
scales and avoids complication. This does, however, re-
quire us to consider the double expansion in mqa, ma and

carry out the extrapolation to mqa � 0 for the coefficients
in Eq. (16). We return to this issue in the next section when
we discuss choice of integration contours.

To extrapolate to the chiral limit, mqa! 0, we will fit
the coefficients in the expansion for Q in ma to their most
general expansion in mqa for small mqa.

For a�Q�0 �mqa� we have

 a�Q�0 �mqa� � b�Q�0;0 log�mqa� � a
�Q�
0;0 : (17)

Since we expect a well-defined continuum limit, a�Q�0 �mqa�
cannot contain any negative powers of mqa but, depending

on the quantity Q, it may contain logarithms; b�Q�0;0 is the
continuum anomalous dimension associated with Q which
is determined by a continuum calculation.

There can be no terms in �mqa�
2n, n > 0 since these are

obviously nonzero in the limit ma! 0, and there is no
counterterm in the gluon action that can compensate for a
scaling violation of this kind.

For a�Q�2 �mqa� we find

 

a�Q�2 �mqa� �
a�Q�2;�2

�mqa�2
� a�Q�2;0 � �a

�Q�
2;2 � b

�Q�
2;2 log�mqa��

� �mqa�
2 �O��mqa�

4�: (18)

After multiplication by �ma�2 the �mqa�
�2 contribution

gives rise to a continuum contribution to Q, and a�Q�2;�2 is
calculable in continuum perturbation theory. There can be
no term in �mqa�

�2 log�mqa� since this would be a volume-
dependent further contribution to the anomalous dimen-
sion of Q, and there can be no term in log�mqa� since the
action is tree-level O�a2� improved [13].

Depending on the choice of observable Q there may be
additional constraints on the coefficients which appear in
the expansions. We discuss these in the next section in the
context of the particular observables with which we con-
cern ourselves.

III. CALCULATIONS AND RESULTS

In this section we lay out the calculation of the un-
quenching effects to order O��sNfa2�. The numbers and
quantities given in the following are per quark flavor, and
hence need to be multiplied by Nf throughout.

A. The A meson mass

The simplest spectral quantity that can be chosen within
the framework of the twisted boundary conditions outlined
above is the (renormalized) mass of the A meson. In
agreement with Eq. (109) of [11] the one-loop correction
to the A meson mass (for A mesons with positive spin) is
given by
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 m�1�A � �Z0�k�
��1�11 �k�

2m�0�A

��������k��im�0�A ;0;m;0�
(19)

where Z0�k� � 1�O��ma�4� is the residue of the pole of
the tree-level gluon propagator at spatial momentum k,
and m�0�A is defined so that the momentum k is on-shell. We
consider the dimensionless quantitym�1�A =m. The fermionic
diagrams that contribute to this quantity are shown in
Fig. 1.

The anomalous dimension of mA is zero and so using
Eq. (17) we have

 b�mA;1�
0;0 � 0: (20)

Using physical arguments we can determine the behavior
of other coefficients. From continuum calculations we find

 a�mA;1�
2;�2 � 0: (21)

This result follows from the fact that the fermion contri-
bution at one-loop order tomA is IR finite since the fermion
has a nonzero mass and is 4D Lorentz invariant. Thus,
a�mA�

2;�2 can be constructed only from 4D Lorentz invariants
of which we have only �A � kA and k2

A, where �A is the
A-meson polarization vector. However, gauge invariance
implies �A � kA � 0 and the on-shell condition gives k2

A �
0 and so, there being no nonzero Lorentz invariant, we
deduce the result.

A much less obvious deduction is that a�mA;1�
0 �mqa� � 0,

which together with Eqs. (17) and (20) implies that
a�mA;1�

0;0 � 0. A necessary ingredient to derive this result is
the fact that the one-loop fermion contribution to mA is IR
finite in the limit m! 0 (L! 1) since the fermion mass,
mq, is nonzero. We thus expect that in this limit Lorentz
invariance will be restored, although for L finite this will
not be the case. Gauge invariance and the Ward Identity
then ensure that, in this limit, Lorentz invariance implies
that the gluon self-energy function ����k� satisfies

 ����k� � �k2g�� � k�k����k
2�: (22)

From [10,11] the one-loop contribution to mA is propor-
tional to ��������k�. In the limit L! 1 we are able to
use Eq. (22) and we find that this contribution is zero by
gauge invariance and the on-shell condition k2 � 0. In

contrast, the contribution to a�mA�
0 from internal gluon loops

is not zero by this argument; it is indeed calculated in
[10,11]. The reason is that the one-loop gluon contribution
is not IR finite in the m! 0, L! 1 limit since the IR-
regulating mass is m; the internal gluon ‘‘feels’’ the finite
boundary of the lattice in the x, y direction no matter how
large L is. Consequently, we cannot expect to use restora-
tion of Lorentz invariance to limit the form that the purely
gluonic ����k� takes, and so no deduction concerning this
coefficient can be made.

An alternative explanation for why a�mA;1�
0 � 0 also re-

lies on the restoration of Lorentz invariance in the m! 0
limit. In this limit, the action is isotropic with metric tensor
g�� � diag�1; 1; 1; 1�. However, the twisted boundary con-
ditions break Lorentz invariance and single out the twisted
x, y directions, and so we must expect that radiative cor-
rections will renormalize g�� in a way that can break
Lorentz symmetry. The mass shell condition for the
A-meson is then

 gR��k
�k� � 0; k� � �ip0; 0; m; k3�; (23)

where gR is the renormalized metric tensor. This is reinter-
preted as a renormalization of the A-meson mass m with

 mR
A �

gR11�m�
g11

m: (24)

This can also be interpreted as an anisotropy renormaliza-
tion. Since the one-loop fermion contribution is IR finite
and Lorentz symmetry is restored in the limit m! 0 we
then have that gR11�m � 0� � g11 � 1 and mA is not renor-
malized. This is not the case for the one-loop gluon con-
tribution, which is not IR finite, and so the assumption that
Lorentz symmetry is restored as m! 0 is incorrect.

For the kinematics used here this means that in the limit
m! 0, L! 1 then �11 vanishes and hence from Eq. (19)
so does m�1�A =m. This expectation is accurately verified by
our calculation: the extrapolation of m�1�A =m to m � 0 in-
deed gives zero (cf. Fig. 2).

In the chiral limit mq ! 0, the term wi that appears on

the right-hand side of Eq. (5) is a�Q�2;0 , and it is this limit and
this coefficient that we will concern ourselves with
hereafter.

The O��s�ma�2� contribution from improvement of the
action is given by [11]

 �imp
m�1�A
m
� ��c�1�1 � c

�1�
2 ��ma�

2 �O��ma�4� (25)

leading to the improvement condition

 c�1�1 � c
�1�
2 � a�mA;1�

2;0 : (26)
FIG. 1. The fermionic one-loop diagrams contributing to the A
meson mass renormalization as well as to the wave-function
renormalization for A and B mesons.
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B. The three-point coupling

An effective coupling constant � for an AAB meson
vertex is defined as

 � � g0

�����������������������������
Z�k�Z�p�Z�q�

q
ej�1;2;j�k; p; q�; (27)

where we have factored out a twist factor of
i
N Tr�	�k;�p
�q� from both sides, and the momenta and
polarizations of the incoming particles are

 k � �iE�k�;k�; k � �0; m; ir�

p � ��iE�p�;p�; p � �m; 0; ir�

q � �0;q�; q � ��m;�m;�2ir�

e � �0; 1;�1; 0�:

(28)

Here r > 0 is defined such that E�q� � 0. This coupling is
a spectral quantity since it can be related to the scattering
amplitude of A mesons [16]. We expand Eq. (27) pertur-
batively to one-loop order and find in agreement with
Eq. (137) of [11]:
 

��1�

m
� �1� 1

24m
2�

��1�

m
�

4

k0

d
dk0

��1�11 �k�
��������k0�iE�k�

� �1� 1
12m

2�
d2

dq2
0

�eiej��1�ij �q��
��������q0�0

�O�m4�: (29)

The fermionic diagrams contributing to the irreducible
three-point function ��1� are shown in Fig. 3. Using
Eq. (17) and the known anomalous dimension of the cou-
pling constant we have

 b��;1�0;0 � �
Nf
3�2 g

2: (30)

Unlike the argument for a�mA;1�
2;�2 � 0 above, a continuum

calculation gives

 a��;1�2;�2 � �
Nf

120�2 g
2: (31)

In this case there are nonzero Lorentz invariants for the
three-point function such as �A � kB etc. and so we expect
this coefficient to be nonzero.

The improvement contribution to � is [11]

 �imp
�1

m
� 4�9c�1�1 � 7c�1�2 ��ma�

2 �O��ma�4� (32)

leading to the improvement condition

 4�9c�1�1 � 7c�1�2 � � �a
��;1�
2;0 : (33)

Tests of our calculation are that the fit for a��;1�0;0 must give
the correct anomalous dimension stated in Eq. (30), and
that our fits reproduce the continuum result a��;1�2;�2 �

�g2=120�. Both are accurately verified (cf. Figs. 4 and 5).

C. Choice of integration contours

The external lines of the diagrams are on their respective
mass shells but with complex three-momentum k in which
the third component, k3, has been continued to an imagi-
nary value parametrized by the variable r as shown in
Eq. (28); in the Euclidean formulation k0 is also imaginary.
In evaluating the loop integrals that are not pure tadpoles,
care must be taken to ensure that the amplitudes calculated
are the correct analytic continuations in r from the
Minkowski space on-shell amplitudes defined with real
three-momenta to the ones in Eq. (28).

The situation is complicated by the presence of two mass
scales m, mq. The integrals are evaluated after performing
a Wick rotation in k0, taking care to avoid contour crossing
of any poles that move as r is continued from r � 0 to r �
m=

���
2
p

. We find that mq=m must be chosen larger than a

FIG. 3. The fermionic one-loop diagrams contributing to the
three-point function.FIG. 2. A plot of the fermionic contributions to the one-loop A

meson self-energy m�1�A =m against �ma�2. The vanishing of
m�1�A =m in the infinite-volume limit can be seen clearly.
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minimum value, dependent on the graph being considered,
to avoid any contour being pinched. The outcome is that
after the Wick rotation in k0, the (Euclidean) integration
contour for either k0 or, in one case, k3 must be shifted by
an imaginary constant.

We find it sufficient that for the calculation of m�1�A and
ZA�k� we impose mq > m=2 and for ��1� and ZB�q� that
mq >m=

���
2
p

.

D. Extracting the coefficients

To extract the improvement coefficients from our dia-
grammatic calculations, we compute the diagrams for a
number of different values of both L and mq with Nf � 1,

N � 3. At each value ofmq, we then perform a fit in ma of
the form given in Eq. (16) to extract the coefficients
a�Q;1�n �mqa�, n � 0, 2. The results of these fits are given
in Table I.

To facilitate our fits, we make use of the prior physical
knowledge we have: In the case of m�1�A , we have a�mA;1�

0 �
0 because of gauge invariance.

Performing a fit of the form (17) and (18), respectively,
on these coefficients, we get the required coefficients of the
O�a2� lattice artifacts in the chiral limit to be

 a�mA;1�
2;0 � 0:003 61�1� (34)

 a��;1�2;0 � �0:140�1� (35)

These coefficients are to be identified with the wi of
Eq. (5).

Here, again, we have facilitated our fits by making use of
our prior knowledge: For m�1�A , a�mA;1�

2;�2 vanishes, and for

��1�, we have two known continuum contributions: b��;1�0;0 �

�1=3�2 is the one-loop coefficient of the �-function and
a��;1�2;�2 � �1=120�2 is the continuum coefficient of the
infrared divergence m2=m2

q.

Solving Eqs. (26) and (33) for c�1�i , our results can be
summarized as

 c�1�1 � �0:025 218�4� � 0:004 86�13�Nf; (36)

 c�1�2 � �0:004 418�4� � 0:001 26�13�Nf; (37)

where the quenched (Nf � 0) results are taken from [11].

IV. CONCLUSIONS

Repeating the analysis of [17] and using their notation
we express the radiatively corrected action of Eq. (1) as
[15,17]

TABLE I. The coefficients from the fits of m�1�A and ��1�=m
against ma.

mqa a�mA;1�
2 a��;1�0 a��;1�2

0.15 0.003 675 2(7) 0.074 56(1) �0:178�6�
0.2 0.003 701(1) 0.064 816 1(5) �0:1617�4�
0.3 0.003 730 711(1) 0.051 090(2) �0:1498�9�
0.4 0.003 729 96(4) 0.041 433 2(1) �0:144 98�6�
0.5 0.003 696 507(2) 0.034 085 72(2) �0:140 933�7�
0.6 0.003 632 867 1(4) 0.028 272 563(9) �0:136 776�2�
0.7 0.003 543 542 9(3) 0.023 575 013(4) �0:132 222�1�
0.8 0.003 433 769 0(4) 0.019 733 513(1) �0:127 22�3�
0.9 0.003 308 797 1(2) — —
1.0 0.003 173 470 0(3) — —
1.2 0.002 888 2(3) 0.009 976(2) �0:1044�1�

FIG. 5. A plot of a��;1�2 against mqa with the analytical con-
tinuum result for the infrared divergence shown for comparison.

FIG. 4. A plot of a��;1�0 against mqa which shows the agreement
between the numerical lattice results and the known anomalous
dimension.

HAO, VON HIPPEL, HORGAN, MASON, AND TROTTIER PHYSICAL REVIEW D 76, 034507 (2007)

034507-6



 S	U
 �
X2

i�0

�iSi	U
: (38)

Then
 

�1 � �
�0

20u2
0

�
1�

�
12�

5
c�1�0 � 48�c�1�1 � 2u�1�0

�
�s

�
;

�2 �
12��0

5u2
0

c�1�2 �s: (39)

The quenched radiative contributions have been analyzed
in [17] and so we may write
 

�1 � �
�0

20u2
0

�
1� 0:4805�s �

�
12�

5
c�1�0;f � 48�c�1�1;f

�
�s

�
;

�2 � �
�0

u2
0

�
0:033�s �

12�
5
c�1�2;f�s

�
; (40)

where now all the one-loop coefficients c�1�i;f contain only
quark loop contributions.

Plugging in the numbers obtained in this work we find

 �1 � �
�0

20u2
0

	1� 0:4805�s � 0:3637�14�Nf�s
;

�2 � �
�0

u2
0

�0:033�s � 0:009�1�Nf�s�:

(41)

With Nf � 3 the shift from the quenched values is surpris-
ingly large, and may have a significant impact; especially,
it may explain the increased scaling violations seen in
some unquenched simulations.
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