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Overlap fermions have an exact chiral symmetry on the lattice and are thus an appropriate tool for
investigating the chiral and topological structure of the QCD vacuum. We study various chiral and
topological aspects of quenched gauge field configurations. This includes the localization and chiral
properties of the eigenmodes, the local structure of the ultraviolet-filtered field strength tensor, as well as
the structure of topological charge fluctuations. We conclude that the vacuum has a multifractal structure.
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I. INTRODUCTION

Overlap fermions [1,2] possess an exact chiral symmetry
on the lattice [3] and realize the Atiyah-Singer index
theorem at finite cutoff [4]. Furthermore, they lend them-
selves to a local definition of the topological charge density
[5]. Altogether, this makes overlap fermions a powerful
tool for investigating the chiral and topological structure of
the QCD vacuum. In this paper we shall address the
vacuum of the quenched theory at zero temperature.
Preliminary results have been published in [6–9]. In a
forthcoming paper we shall extend the investigation to
dynamical QCD at zero and finite temperature. The first
results obtained for full QCD in the vicinity of the chiral
phase transition have been reported in [10].

It is known for some time [11,12] that the long-distance
properties of QCD are well described by the low-lying
eigenmodes of the overlap operator. The question of low-
mode dominance has been raised earlier in Refs. [13,14].
In Fig. 1 we compare the full pion propagator with the
truncated one spanned only by the 40 lowest eigenmodes.

We see that both propagators tend to each other at
distances * 0:5 fm. A suitable truncation of the overlap
operator thus acts as an infrared filter, which allows us to
separate the truly nonperturbative degrees of freedom of
the QCD vacuum from the ultraviolet noise. This is in
accord with conventional wisdom, namely, that chiral
symmetry breaking is encoded in the low-lying modes of
the Dirac operator and that both chiral symmetry breaking
and confinement have the same dynamical origin. To make
this more precise, the vacuum structure, seen changing
with an increasing number of fermionic modes, is the
general theme of this paper. Thus, we shall come back

also to the early saturation of the pion propagator in more
detail later in this paper.

Earlier lattice investigations of QCD vacuum structure
as reviewed in Refs. [15–17] partly relied on gauge fixing
and subsequent projection onto appropriate subgroups of
color SU�3�. The topics under discussion there are mainly
related to the confinement of heavy quarks. In contrast,
with the gauge invariant overlap approach, we come closer
to the confinement issue of light quarks. As a particular
advantage, it establishes a direct link between topological
excitations and light quark propagation, which was missing
so far. After all, we believe that light fermions are a major
element of the low-energy effective action of QCD [18].
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FIG. 1 (color online). The full pion propagator compared with
the truncated pion propagator constructed as an all-to-all corre-
lator summing over the 40 lowest modes only with a quark mass
am
2� � 0:01 [see Eq. (12)]. This calculation uses 250 configura-

tions on the 163 � 32 lattice generated at � � 8:45.

PHYSICAL REVIEW D 76, 034506 (2007)

1550-7998=2007=76(3)=034506(31) 034506-1 © 2007 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.76.034506


In the instanton model (as a prototype of other semiclas-
sically motivated models), with the almost-zero-mode
band approximation, this link is realized in a very eco-
nomic way. We summarize these models by saying that
they all are based on classical, self-dual, or anti-self-dual
solutions of the Euclidean equations of motion carrying
zero modes of definite chirality. While the vacuum fields
are formed in these models as superpositions of such
extended solutions, in the almost-zero-mode band approxi-
mation the spectrum of the lowest quark eigenstates in the
complex vacuum is analogously formed by linear combi-
nations of the corresponding zero modes. Examples are the
instanton liquid model (for a review see Ref. [19]), where
this program has been carried through, or the caloron gas
model [20], where this has still to be done. Both models are
based on gauge fields piecewise coherent over O�0:5 fm�
but with decaying field strength correlations beyond that
distance. In order to justify these models, a good many
lattice vacuum studies have been devoted to instanton and
caloron searches.

In the past, cooling [21,22], underrelaxed cooling [23],
restricted improved cooling [24], and other smoothing
techniques including inverse blocking [25–27], renormal-
ization group cycling [28], finally rationalized as smearing
[29], have been used for this purpose. Since these methods
contain a bias towards classical solutions, the results have
been taken with certain reservations. In particular, the
number density of lumps (‘‘instantons and anti-
instantons’’) was strongly influenced by systematical ef-
fects [30]. Only recently, when valence overlap fermions
have become a viable option, did a local definition of the
topological charge density q�x� / Tr�F�� ~F��� in terms of
the overlap Dirac operator [see Eq. (18)] become practi-
cable (see, e.g., Ref. [31]). Surprisingly, for Monte Carlo
configurations this density shows a three-dimensional,
laminar, and highly singular structure which seems to
rule out the instanton and similar pictures.

Easier accessible are mode-truncated, i.e., ultraviolet-
filtered versions of the topological charge density [see
Eq. (19)]. Still with large computational effort, such evalu-
ations of the topological charge density are now super-
seding cooling or smearing techniques. The latter
techniques were necessary to be applied in the past to the
gauge field before the topological charge density could be
calculated according to a gluonic definition (see, for ex-
ample, Ref. [32]). The number of fermionic modes (ultra-
violet filtering) now replaces the number of smearing
iterations as the control parameter of smoothness. The
overlap definition of the topological charge density, if
recast [31] into its spectral representation (19), can be
evaluated with any desired degree of ultraviolet smearing
represented by a cutoff �cut. In this paper the two aspects
(the infrared and the ultraviolet one) of the topological
structure will be described. Whereas the infrared structure
is definitely associated with chiral symmetry breaking, the

relation of the surprising divergent structure in the ultra-
violet [31,33,34] to the phenomenology of confinement, as
stressed by [35], is still hypothetical.

The all-scale topological charge density (18), contain-
ing fluctuations of all scales, from the lattice spacing a to
global structures percolating through the full lattice vol-
ume, is calculable [31] directly in terms of the overlap
operator. This does not require knowledge of its full spec-
trum and all eigenmodes. It is calculable, although compu-
tationally very demanding, as a local trace due to the form
of the Neuberger overlap Dirac operator. In contrast to this,
the ultraviolet-filtered topological charge density can be
quite easily calculated. Moreover, the eigenmodes can be
used for many applications [6–9]. In this paper, for in-
stance, we will elucidate the low-mode dominance of the
pion propagator in more detail.

In the past, self-dual objects have been searched for on
the lattice primarily by looking for coherent lumps of
topological charge [21–29] which play a prominent role
in models of vacuum structure. When the overlap-based
topological charge became calculable, these models were
heavily challenged [36,37]. Early arguments [35] against
the instanton dominance of the functional integral have
been raised again. The striking new argument against the
instanton structure was that the four-dimensional extend-
edness typical for semiclassical lumps cannot be recon-
ciled with the newly discovered three-dimensional sign-
coherent global structures [33] which are infinitely thin in
the codimension (equal to one [34]). This is the picture that
has emerged for the all-scale topological density. All that
can be said in defense of instantons, etc., is that it is
unknown how the effect of quantum fluctuations modifies
the topological charge density profile of a classical instan-
ton or caloron which is described by overlap fermions in
full agreement with the classical profile.

In this paper, concerned with fully quantum lattice con-
figurations, we will further develop this picture. It is
pointed out that the topological charge density, in regions
of higher density, possesses lower-dimensional connected
structures. In the full four-dimensional landscape we find
all substructures, from zero-dimensional peaks over one-
dimensional ridges to two-dimensional walls. They are all
nested inside the three-dimensional sign-coherent struc-
tures mentioned above. On the other hand, it will become
clear in which sense a model based on a dilute gas of (anti-)
self-dual domains can also be supported by an overlap-
fermion-based analysis. Evidently, for this an ultraviolet-
filtered version of the overlap-based field strength tensor
[38–40] is necessary, supplemented by the mode-truncated
topological charge density [31]. Both can be projected
out by a certain small number of true low-lying overlap
modes.

This latter point of view is qualitatively attractive be-
cause the low-lying fermionic modes are known to encode
the most important phenomenological properties of the

E.-M. ILGENFRITZ et al. PHYSICAL REVIEW D 76, 034506 (2007)

034506-2



QCD vacuum relevant for the physics of light hadrons. The
case for concentrating on the lowest part of the Dirac
spectrum is illustrated by the fact already mentioned
that a modest number of eigenmodes is sufficient to repro-
duce the propagator of the lightest (pseudoscalar) hadrons
[11–14] (see also Fig. 1). The lowest-mode dominance
allows for a systematic improvement of the propagator
by the so-called low-mode averaging method [41–43]. In
this and a following paper this will be investigated more
carefully.

Recently, the localization properties [6,44–48], and the
effective dimension of the lower eigenmodes, and their
local chiral properties [36,37,49,50] have received strong
interest. The results partly contradict each other.
Concerning the localization the situation has been re-
viewed in Ref. [51]. There, de Forcrand points out the
basic difference between SU�2� fields simulated with
Wilson action, when scale a dislocations have too low
action [52] to compensate for their entropy � loga�4,
and SU�3� gauge fields simulated with Lüscher-Weisz
action with dislocations suppressed. The general motiva-
tion behind this high attention for issues such as localiza-
tion and (fractal) dimensionality was the hope [53,54] that
the lowest modes are bound to certain singularities of the
gauge field that in turn would explain confinement. Here,
‘‘singular’’ is understood in a sense opposite to semiclas-
sical lumps, just in the spirit of Witten’s [35] criticism of
instantons. This is discussed from a more recent point of
view in Refs. [55,56]. Uncorrelated instantons, indeed, are
found unrelated to confinement. It should be mentioned in
passing, however, that other semiclassical configurations
with nontrivial asymptotic holonomy can be related to
confinement, as was recently demonstrated in Ref. [20].

Another source of inspiration was the hypothetical anal-
ogy drawn between the finite-temperature chiral transition
to the Anderson transition (metal-insulator transition) [57–
59] in condensed-matter physics. As a precursor of the
chiral symmetry restoring transition, before the spectral
gap opens, the spectrum in the gap region is expected to
become critical, exposing both spectral criticality and
multifractality of modes. We will come back to these
aspects in a forthcoming publication dealing with finite-
temperature full QCD. In the present case of quenched
QCD the whole low-lying spectrum seems to be critical
and multifractal.

This paper is organized as follows. In Sec. II the basic
tools and settings of the quenched simulation and for
handling the eigenmodes of the overlap operator are ex-
plained. In Sec. III the properties of individual modes are
discussed. This begins with the distribution of the topo-
logical charges Q (given by the number and chirality of
zero modes) and the spectral density of nonzero modes.
From the latter, the chiral condensate is extracted by fitting
our finite-volume data to quenched chiral perturbation
theory [60]. Then the localization behavior, the dimension-

ality, and the local chiral properties [chirality X�x�] of
individual modes are discussed. In Sec. IV we describe
our experience with the topological charge density defined
[5] through the overlap Dirac operator and its ultraviolet-
filtered (mode-truncated) variant. The existence of a three-
dimensional, singular, and sign-coherent global structure
revealed by the all-scale topological charge density, first
pointed out in Ref. [33], is confirmed and described in
more detail. The negativity of the two-point function of the
topological charge density [6,61] is found to be realized for
the all-scale topological charge density for high enough �,
i.e., at lattice spacing a & 0:1 fm. In the same Sec. IV we
also discuss the topological structure in terms of what we
call q clusters. The multiplicity, size, distance, and the
percolation behavior of q clusters is compared for various
levels of ultraviolet filtering (�cut) and for the all-scale
topological charge density. With an appropriate �cut the
q-cluster structure of the mode-truncated density q�cut

�x�
can be made to agree with the R-cluster structure defined
later in Sec. V. Finally, estimating the fractal dimension of
q clusters related to the all-scale topological charge density
at various threshold values qcut, we find that the three-
dimensional structure of sign-coherent topological charge
is supplemented by nested, lower-dimensional substruc-
tures at higher density jq�x�j. Obviously these features
have no analog for the mode-truncated topological charge
density. In Sec. V an ultraviolet filtering technique for the
field strength tensor is introduced. It was inspired by a
similar work by Gattringer [38]. The representation of the
field strength tensor in terms of the overlap Dirac operator
was later discussed by Liu et al. [39,40]. An infrared field
strength can be obtained that allows one to assign at each
point in space-time the degree R�x� of self-duality or anti-
self-duality. Connected clusters (called R clusters) are
found such that in the interior (anti-)self-duality is approxi-
mately satisfied. These clusters start to percolate and form
a dilute network if slight deviations from (anti-)self-duality
are tolerated. Thus, locally perfectly self-dual and anti-
self-dual vacuum fields are embedded in a vacuum that is
globally neither self-dual nor anti-self-dual. In Sec. VI we
summarize our findings and discuss from this point of view
the saturation of the pion propagator. We draw conclusions
and point out routes for further research.

II. BASIC TOOLS

A. Lattice ensembles

Topological studies using the Wilson one-plaquette
gauge field action suffer from dislocations [62] and should
be treated with caution. For this paper the Lüscher-Weisz
gauge field action [63] is used which is known to suppress
dislocations and to greatly reduce the number of unphys-
ical zero modes of the Wilson-Dirac operator. The
Lüscher-Weisz gauge field action is given by
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 S�U� � �
X

plaquette

1

3
Re Tr�1�Uplaquette�

	 �R
X

rectangle

1

3
Re Tr�1�Urectangle�

	 �P
X

parallelogram

1

3
Re Tr�1�Uparallelogram� (1)

in terms of the standard plaquette, the planar rectangle, and
the parallelogram loop terms. The latter are closed along
the diagonally opposite parallel links on the surface of a 3D
cube.

The coefficients �R and �P are taken from tadpole
improved perturbation theory [64–67]

 �R � �
�

20u2
0

�1	 0:4805��; (2)

 �P � �
�

u2
0

0:033 25�; (3)

where

 u0 �

�
1

3
hRe TrUplaquettei

�
1=4
; � � �

log�u4
0�

3:068 39
: (4)

The couplings �R and �P have been self-consistently
determined through the calculation of the average pla-
quette in Ref. [68] for a set of � values. We can write � �
c0�6=g

2�, �R � c1�6=g
2�, and �P � c2�6=g

2�, with c0 	
8c1 	 8c2 � 1, which fixes the relation between � and the
bare coupling g2.

To investigate the volume dependence of our data we
have simulated at three different volumes at fixed coupling
� � 8:45. To explore the a dependence of the results also a
123 � 24 lattice at � � 8:10 has been employed with
approximately the same physical volume as the 163 � 32
lattice at � � 8:45. Finally, a large ensemble of rather
coarse configurations on a 163 � 32 lattice at � � 8:00
became available in the QCDSF Collaboration. A first
physics analysis on this basis has been presented in
Ref. [43]. The physical volume of this ensemble almost
equals the biggest physical volume studied on 243 � 48 at
� � 8:45.

In Table I the statistics of lattices used in our investiga-
tion is listed. The lattice spacing for � � 8:00 and � �
8:45 was determined in [43], where we used the pion decay
constant of f� � 92:4 MeV to set the scale. The value of
the lattice spacing at � � 8:10 is interpolated by fitting our
measured pion decay constants at � � 8:00 and � � 8:45
to Eq. (6) of [68].

It is in this scale that the spatial linear extent aLs of the
lattices, the 4D volumes V, and the topological suscepti-
bilities �top are obtained. The topological susceptibilities
will be discussed in Sec. III A.

B. Implementation of Neuberger overlap fermions

Overlap fermions [1,2] have an exact chiral symmetry
on the lattice [3] and provide the cleanest known theoreti-
cal description of lattice fermions. Their implementation of
chiral symmetry and the possibility to exactly define the
index theorem on the lattice at finite lattice spacing allow
one to investigate the relationship of topological properties
of gauge fields and the dynamics of fermions. A further
advantage of overlap fermions, in contrast to Wilson fer-
mions, is that they are automatically O�a� improved [69].

The massless Neuberger overlap operator is defined by

 D�0� �
�
a

�
1	

DW���������������
DyWDW

q
�
; DW � M�

�
a
; (5)

where we use the Wilson-Dirac operator DW as input. M is
Wilson’s hopping term with r � 1. The negative mass
parameter � is chosen to be 1.4, which represents a rea-
sonable compromise between the physical requirement of
good locality properties [43,70] of the overlap operator and
a performance requirement demanding a small condition
number of H2

W , where HW � 	5DW is the Hermitian
Wilson-Dirac operator. In Fig. 2 the effective range of
D�0�, represented by the decay of

 F�r� � hhmax
x
jD�0; x; y�kjx�yj�riyiU; (6)

with respect to the Euclidean distance

 jxj �
�X4

��1

x2
�

�
1=2
; (7)

TABLE I. Details of the quenched ensembles used in this study: couplings �, lattice spacings
a determined from the pion decay constant, lattice sizes (Ls and Lt), physical lattice sizes (aLs
and the volume V), topological susceptibilities �top, the statistics of configurations, and available
overlap-fermion modes.

� a [fm] L3
s � Lt aLs [fm] V [fm4] �top # of config. # of modes

8.45 0.105(2) 123 � 24 1.3 5 �167�3� MeV�4 437 O�50�
8.45 0.105(2) 163 � 32 1.7 16 �169�3� MeV�4 400 O�150�
8.45 0.105(2) 243 � 48 2.5 81 �168�4� MeV�4 250 O�150�
8.10 0.142(2) 123 � 24 1.7 15 �171�1� MeV�4 251 O�150�
8.00 0.157(3) 163 � 32 2.5 74 �172�4� MeV�4 2156 O�170�
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is shown, as obtained on a 163 � 32 lattice at � � 8:45 for
� � 1:4,

Asymptotically, F�r� / exp���r=a�, where � depends
on � (and a priori also on the roughness of the configura-
tions, i.e., �). It turns out, however, that the fitted slope
� � 1:11�1� is practically independent of �. Thus, the
overlap Dirac operator is not ultralocal. It has a range
that shrinks together with the lattice spacing towards the
continuum limit. This is sufficient for any Dirac operatorD
to be called local.

To compute the sign function

 sgn �DW� �
DW���������������
DyWDW

q 
 	5sgn�HW�; HW � 	5DW;

(8)

we write

 sgn �HW� �
XN
i�1

sgn��i��i�
y
i 	 P

N
?sgn�HW�: (9)

The first part is exactly handled in the subspace of eigen-
vectors�i ofHW ; the rest acting in the orthogonal subspace
is approximated by a minmax polynomial [71] satisfying

 

��������Pminmax�x� �
1���
x
p

��������<
 for �2
N	1 < x<�2

max; (10)

such that

 sgn �HW� �
XN
i

sgn��i��i�
y
i 	 P

N
?HWPminmax�H

2
W�:

(11)

The lowest N � O�50� eigenvalues �i of HW and the
corresponding eigenvectors �i have to be computed. The
degree of the polynomial Pminmax depends on 
 and is
proportional to the condition number � � �2

max=�2
N	1 of

H2
W in the orthogonal subspace spanned by the modes
f�ij�1� P

N
?��i � 0g. For configurations generated with

the Lüscher-Weisz action, the condition number of HW is
essentially smaller in comparison with the Wilson action
and only slightly depends on �.
D�0� as described above is a massless Dirac operator.

The massive overlap Dirac operator is easily obtained from
the massless one, as [69]

 D�m� �
�
1�

am
2�

�
D�0� 	m: (12)

Later on, in our spectral analysis we use the improved
massless Neuberger operator [72,73]:

 Dimp�0� �
�
1�

a
2�
D�0�

�
�1
D�0�: (13)

The resulting eigenvalues �imp of Dimp�0� are the stereo-
graphical projection of the eigenvalues �N ofD�0� from the
Ginsparg-Wilson circle to the imaginary axis. The nonzero
eigenvalues appear in pairs �imp 
 �i�. In terms of these
imaginary parts �, the spectral density and the character-
istic properties of the eigenmodes are discussed. Also any
mode cutoff �cut refers to this �.

Finally, the improved massive overlap Dirac operator
[43], which is used, for example, for the pion propagator in
this paper, is

 Dimp�m� � Dimp�0� 	m: (14)

C. Eigenmodes of the Neuberger operator

In principle, the emerging Neuberger overlap operator
D�0� could have n� plus n	 exact zero modes, D�0� n �
0, with n� (n	) being the number of modes with negative
(positive) chirality 	5 n � � n (	5 n � 	 n). The in-
dex of D�0� agrees with the topological charge Q � n� �
n	. In practice, however, there are always only negative or
positive chirality eigenmodes for a given lattice configu-
ration. The nonzero eigenvalues �N and their nonchiral
eigenvectors with D�0� �N � �N �N appear in complex
conjugate pairs �N and ��N and satisfyP
x� 

y
�N
�x�; 	5 �N �x�� � 0.

Locally, the eigenmodes  � of the Neuberger operator
can be characterized by the scalar density

 p��x� � j ��x�j
2 �

X
�;c

 � c �
� �x� � c

� �x�;

X
x

p��x� � 1;
(15)

where � and c denote spinor and color indices,
respectively.

Besides the scalar density, another important density
needed is the pseudoscalar density

0 5 10 15 20
r/a

1

F(
r)

1 x 10-8

1 x 10-4

FIG. 2 (color online). The effective range function F�r� as a
function of r=a on the 163 � 32 lattice at � � 8:45 for � � 1:4,
together with an exponential fit.

EXPLORING THE STRUCTURE OF THE QUENCHED QCD . . . PHYSICAL REVIEW D 76, 034506 (2007)

034506-5



 

p�5�x� �
X
�;�0;c

 � c �
� �x�	� �0

5  �
0 c

� �x�;

X
x

p�5�x� � �1 or 0; (16)

for chiral or nonchiral modes, respectively. While the zero
modes are globally chiral, the nonchiral nonzero modes
may still have a local chirality

 p���x� �
X
�;c

 � c �
� �x�P� �0

�  �
0 c

� �x�; (17)

with the projectors P� � �1� 	5�=2 onto positive and
negative chirality.

D. Overlap definition of the all-scale and the
mode-truncated topological densities

As for any 	5-Hermitian Dirac operator satisfying the
Ginsparg-Wilson relation, the topological charge density
for the Neuberger operator D�0� can be expressed as [4]:

 q�x� � �tr
�
	5

�
1�

a
2
D�0; x; x�

��
; Q �

X
x

q�x�;

(18)

where the trace tr is taken over color and spinor indices.
To compute the topological charge density, we use two

different approaches [31,33]. In the first approach, the trace
of the overlap operator is directly evaluated according to
Eq. (18). This is computationally very demanding and is
therefore performed on only 53 (5) configurations in the
case of a 123 � 24 (163 � 32) lattice at � � 8:45. The all-
scale density q�x� computed in this way includes charge
fluctuations at all scales. For this density, interesting an-
isotropic, global structures have been detected and dis-
cussed by Horvath et al. [34]. In this paper we will give
more details on the multifractal properties of q�x�.

The second technique involves the computation of the
topological charge density based only on the low-lying
modes of the overlap Dirac operator. This approach is a
gauge invariant filtering that leaves the lattice configura-
tion unchanged (as well as the effective lattice spacing as
the physical scale). Using the spectral representation of the
Dirac operator, the truncated eigenmode expansion of the
topological charge density reads

 q�cut
�x� � �

X
j�j<�cut

�
1�

�
2

�
p�5�x�; (19)

with p�5�x� defined in Eq. (16). Truncating the expansion
at �cut acts like an ultraviolet filter by removing the short-
distance fluctuations from q�x�. We will study in more
detail how the properties of this density depend on the
choice of �cut. With a suitable cutoff the clusters of this
density will coincide with the R clusters of (anti-)self-dual
domains to be introduced in Sec. V C. Note that the total

topological charge Q �
P
xq�cut

�x� is not affected by the
choice of �cut, the level of truncation.

E. Cluster analysis

In this paper we will describe the properties of different
densities in terms of their cluster properties. This is the
appropriate place to describe the cluster algorithm in gen-
eral terms. As an example we discuss this for the topologi-
cal charge density q�x�.

(1) The cluster analysis first requires tagging the lattice
sites that will form the clusters. In the present case
these are all sites with jq�x�j> qcut.

(2) Next these tagged sites are assigned to a set of link-
connected clusters. Two sites x and y are said to be
link-connected if they are immediate neighbors on
the lattice connected by a link x � y� �̂. Two link-
connected and tagged sites x and y then belong to
the same cluster unless q�x� and q�y� have opposite
sign. Obviously, the latter veto is ineffective in the
case of a positive density such as the scalar density
of eigenmodes.

(3) Cluster percolation is defined by the cluster corre-
lation function which is given as the following
ensemble average:

 f�r� �

P
x;y
h
P
c

�c�x��c�y�i
�r� jx� yj�

P
x;y

�r� jx� yj�

; (20)

where �c�x� is the characteristic function of a clus-
ter c, i.e., �c�x� � 1 if x 2 c and �c�x� � 0 other-
wise. In the definition (20) r is the Euclidean
distance. If rmax is the largest distance possible on
the periodic lattice, we call the value f�rmax� ‘‘con-
nectivity.’’ The onset of percolation is defined as the
value of the cluster-defining quantity, i.e., of the
cutoff qcut � qperc, such that the connectivity
f�rmax� � 0 for qcut < qperc.

(4) An important quantity describing the system of
clusters is the Euclidean distance between two clus-
ters, for example, the two biggest clusters. The
distance d�c; c0� between two clusters labeled c
and c0 can be defined as the maximum over sites x 2
c of the minimal Euclidean distance between x and
any site y 2 c0:

 d�c; c0� � max
x2c
�min
y2c0
�jx� yj��: (21)

(5) Other quantities describing the system of clusters in
a given configuration are the fraction of occupied
volume, the fraction of the largest cluster to the total
occupied volume, the size and charge distributions
of clusters, and the total multiplicity of clusters.
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We will use this terminology when we discuss qualita-
tive features of certain densities.

F. Random walkers

For the characterization of a q cluster with respect to its
fractal dimension, we use the random walker method
briefly described below. We consider a collection of inde-
pendent random walkers starting from the maximum qmax

of the topological charge density inside a cluster among a
collection of clusters defined by a cutoff qcut. Depending
on the ratio qcut=qmax, the cluster is more or less extended.
The cluster determines where the random walkers are
permitted to go. The random walk is defined by the con-
dition that at each time step �! �	 1 the walker is
required to jump with equal probability to one of the
neighboring sites that also belong to the cluster. If
qcut=qmax is large, the cluster is small, such that the random
walk soon arrives at a stationary regime. If qcut=qmax is
smaller, the cluster is extended in one or more directions,
the number of which one wants to explore. The fractal
dimension d� which is open for the random walkers will
then be reflected by the return probability to the starting
point

 P�~0; �� � �2�����d
�=2�; (22)

following a powerlike decay with the number � of time
steps. This can be defined for one cluster or as an average
over all clusters.

Also the distribution of all walkers in one cluster at a
given time step can be useful to characterize the shape of
the cluster. This method is applicable to fractal clusters of
any kind, for example, also those of the scalar density of
the individual fermionic modes.

III. SPECTRAL RESULTS BASED ON THE
LOWEST O�150� EIGENMODES

A. The Ginsparg-Wilson circle and the topological
charge from the index of D�0�

Using the above construction of the Neuberger overlap
operator, we perform its diagonalization by a variant of the
implicitly restarted Arnoldi algorithm. Mostly an amount
of O�150� eigenvalues and eigenvectors per configuration
has been computed and stored. The complex-valued eigen-
values �N are located on the Ginsparg-Wilson circle of
radius � around the point ��; 0� in the complex plane. This
is shown in Fig. 3.

In Figs. 4(a)–4(e) the distribution of topological charge
Q � n� � n	 over the various ensembles is shown as
determined from the number and chirality of zero modes
of the lattice configurations. As has been said, we have
never found zero modes with different chirality simulta-
neously in the same configuration.

From the distribution of topological charges shown in
Fig. 4 the topological susceptibilities

 �top �
hQ2i

V
(23)

have been evaluated. They are also given in Table I. It is
remarkable that all physical lattice sizes realized with � �
8:45 are big enough to get the topological susceptibility
equal within error bars. At the same time, the topological
susceptibilities of the coarser lattices are only slightly
larger, in accordance with the fact that other quantities
are found to scale well with � [43]. The topological
susceptibilities at � � 8:1 and � � 8:0 are equal to each
other within error bars although the physical volumes
differ by a factor of five. All results are smaller than the
topological susceptibility of quenched SU�3� gauge theory
reported in Ref. [74] to be �191� 5 MeV�4. This value was
given using fK � 160�2� MeV to set the scale.

B. Spectral density of nonzero modes

The spontaneous breaking of chiral symmetry by the
dynamical creation of a nonvanishing chiral condensate
h ���i is related to the spectral density ���� of nonzero
modes of the Dirac operator near zero by the Banks-Casher
relation [75] h ���i � ����0�.

The spectral density of the continuous modes at finite
volume is formally given by

 ���; V� �
1

V

�X
��


��� ���
�
; (24)

where the sum extends only over positive (nonzero) values

-1.5
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-0.5
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 0.5

 1

 1.5

 0  1  2  3

Im

Re

unimproved
improved

-0.2

 0

 0.2

-0.05  0.05

FIG. 3 (color online). The Ginsparg-Wilson circle and the
analyzed part of the unimproved and improved spectra for a Q �
3 configuration on the 163 � 32 lattice generated at � � 8:45.
The inset shows the lowest part of the spectrum magnified. The
zero eigenvalue is threefold degenerate.
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of �� � Im�imp of the eigenvalues of the improved massless
overlap operator Dimp�0�. The average h
 
 
i is taken over
the ensemble of gauge field configurations.

In the finite volume and for small eigenvalues the spec-
tral density can be computed from the chiral low-energy
effective theory. For � < ET , ET being the Thouless energy
ET � f2

�=�
����
V
p

, the low-energy effective partition func-
tion is dominated by the zero-momentum modes, and the
zero-momentum approximation of the chiral low-energy
effective theory is equivalent to chiral random matrix
theory.

In random matrix theory the spectral density is given as

 ���; V� � �eff

X
Q

w�Q��Q��effV��; (25)

where �eff is an effective value of the chiral condensate
and

 �Q�x� �
x
2
�J2
jQj�x� � JjQj	1�x�JjQj�1�x�� (26)

is the microscopic spectral density [76] in the sector of
fixed topological charge Q, expressed in terms of Bessel
functions Jn�x�.

We take the weights w�Q� of the sectors of topological
chargeQ [normalized to

P
Qw�Q� � 1] from our measured

charge distributions presented in Fig. 4. To take into ac-
count the effects of higher orders in chiral perturbation
theory we also add a term a1�	 a2�2 to the fitting formula
(25).
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FIG. 4 (color online). The normalized distributions of topological charge Q, in subfigures ordered according to descending �, for
(a) 123 � 24 at � � 8:45, (b) 163 � 32 at � � 8:45, (c) 243 � 48 at � � 8:45, (d) 123 � 24 at � � 8:10, and (e) 163 � 32 at � �
8:00. Note that the physical volumes corresponding to (b) and (d) are roughly equal and similarly for (c) and (e).
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The spectral densities for the three different volumes
available at the same � � 8:45, and the coarser ensembles
of� � 8:10 (123 � 24) and� � 8:00 (163 � 32), together
with our fits are presented in Fig. 5.

In the region of small eigenvalues (� < 100 MeV) one
can see a strong volume dependence of the spectral density.
This is in agreement with predictions from quenched chiral
perturbation theory, where it has been shown [60] that the
effective value of the chiral condensate �eff used in (25)
diverges logarithmically as the volume is sent to infinity.

C. Localization and fractal dimension of the
eigenmodes

In this paper, we concentrate on the details of localiza-
tion and fractal dimension of the overlap eigenmodes.
Later on, in Sec. IV, similar aspects will be discussed for
the topological density as derived from the overlap
operator.

A useful measure to quantify the localization of eigen-
modes [44,47] is the inverse participation ratio (IPR)

 I��� � L3
sLtI2��� 
 L3

sLt
X
x

p��x�
2; (27)

with a scalar density p��x� that is normalized for all
eigenfunctions to

P
xp��x� � 1. While one would have

I � L3
sLt if the scalar density would have support only

on one lattice point, the IPR decreases as the density
becomes more delocalized, reaching I � 1 when the scalar
density is maximally spread over all lattice sites. For the
independent Gaussian distributed  � c�x� at each site (sub-
ject to an overall normalization) the density is not maxi-
mally spread but still delocalized. This case corresponds to
I � �=2.

The zero modes, which do not contribute to the chiral
condensate, are always highly localized compared to the
bulk of nonzero modes. But it turns out that the lowest
nonzero modes may be localized as well. In Fig. 6, in a
series of subsequent time slices, the scalar densities of the
lowest [Fig. 6(a)] and of the highest analyzed nonzero
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FIG. 6 (color online). The scalar density of two typical nonzero eigenmodes of the overlap operator, shown in two-dimensional
profile for a series of subsequent time slices of a Q � 0 configuration on the 163 � 32 lattice generated at � � 8:45. (a) shows the first
nonzero mode and (b) the highest (144th) analyzed mode.

β = 8 .00 163 × 32
β = 8 .10 123 × 24
β = 8 .45 243 × 48
β = 8 .45 163 × 32
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FIG. 5 (color online). The spectral densities a3���; V� at � �
8:45 for the three lattice sizes under study (123 � 24, 163 � 32,
and 243 � 48) and the spectral densities at � � 8:1 and � � 8; 0
for lattice sizes (123 � 24 and 163 � 32), together with fits using
random matrix theory predictions.
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modes [Fig. 6(b)] are shown for one Q � 0 configuration1

of the 163 � 32 ensemble generated at � � 8:45. The
lowest nonzero mode is clearly localized in a few time
slices. But the scalar density of the highest analyzed mode
is also slightly inhomogeneous.

We study now more systematically the values of the IPR
that occur in various parts of the spectrum. Also the zero
modes are included in this discussion. In Fig. 7 histograms
are shown with respect to the IPR for the complete set of all
analyzed eigenmodes on the considered configurations for
the five lattice ensembles, separately in bins of �. One can
see again that the zero and lower modes are remarkably
more localized, whereas the bulk of the higher modes is
delocalized.

In Fig. 8 the IPR averaged over bins with a bin width
�� � 50 MeV and for the zero modes (which are consid-

ered separately) is plotted. The average IPR shows a de-
pendence on Ls and on the lattice spacing a for zero modes
and nonzero modes only in the range � < 150 MeV (for
the first three bins). Beyond that interval the average IPR is
practically independent of Ls and a. There one finds hIi �
2:0. It would be difficult to define an exact ‘‘mobility
edge’’ through the localization. A proper definition would
require one to tell the minimal number of modes above
which the pion starts propagating.2

The volume and a dependence for the zero modes and
the first three bins of nonzero modes allow some conclu-
sions concerning the (fractal) dimension and the special
localization properties of these modes. In view of a gen-
eralization of the IPR that will be made in a next step, we
denote the effective dimension of an eigenmode based on
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FIG. 7 (color online). Normalized histograms of IPRs as functions of �, in subfigures ordered according to descending �:
(a) 123 � 24 at � � 8:45, (b) 163 � 32 at � � 8:45, (c) 243 � 48 at � � 8:45, (d) 123 � 24 at � � 8:10, and (e) 163 � 32 at � �
8:00, for zero modes and nonzero modes in � bins with width 100 MeV.

1This configuration serves as an example for many other
structural observations in this paper.

2Although leading to a quantitatively wrong propagator, we
will see that even the zero mode contribution alone would allow
the pion to propagate.
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the usual IPR as d��2� [to remind us of the second moment
of the scalar density p�x�]. From the volume dependence of
the average usual IPR, following hIi / �V=a4�1�d

��2�=4

[44], one gets this dimension as an upper effective dimen-
sion. Similarly, the lattice spacing a dependence can be
described by hIi � b0 	 b1a

d��2��4. From the first bin in
Fig. 8 it is clearly seen that the IPR grows with the physical
volume V at fixed a and with a�1 at fixed physical volume
V. We fit the zero modes and the lowest nonzero modes in a
couple of bins with a width �� � 50 MeV. The results of
the fit are presented in the uppermost curve in Fig. 9. For
the zero modes an effective dimension of d��2� � 2:2�1�
and for the first interval of nonzero modes with � �
50 MeV an effective dimension d��2� � 3:3�1� is found.

Gubarev et al. [46,47] came to somewhat different con-
clusions guided by the a dependence of the usual IPR hIi �
VI2 in pure SU�2� Yang-Mills theory, simulated with the
Wilson action. Their fits for the a dependence of the IPR,
with d��2� restricted to integers, gave the lowest �2 per

degree of freedom for the choice d��2� � 1 for the zero
modes and choosing d��2� � 0 for the lowest nonzero
modes. This discrepancy is most probably to blame to
the Wilson action used to create the quenched configura-
tions resulting in the proliferation of dislocations [52]. Our
results concerning the usual IPR are similar to the findings
of Aubin et al. [44].

While the usual IPR of the low modes strongly depends
on V and a, and hence the modes are localized with an
effective dimension between d��2� � 2 and 3, the IPR of
the bulk of higher modes is independent of V and a. That
means that these modes almost freely extend throughout
d��2� & d � 4 dimensions. We will see, by studying the
percolation behavior, that also the higher modes are not
like simple plane waves but experience a kind of soft
localization. At this place it might be helpful to present
in Table II the average number of nonzero modes below
some frequently used cutoff values �cut.

3

In the theory of the metal-insulator transition, tools for a
quantitative description of critical level statistics are given,
and the multifractal properties of the eigenfunctions are in
the focus of interest. For this purpose, the notion of IPR has
been generalized [77,78] to

 Ip��� �

P
x;n
j �n�x�j

2p�
��� �n�

P
n

�
��� �n�
; (28)

with a free parameter p and a window function �
���
�n� � 1=
 for j�� �nj � 
=2 and vanishing elsewhere.
Depending on whether the metal phase, the insulator
phase, or the critical region is met, this quantity would
scale in a different way with the volume of the specimen
(see Table III; for results see Fig. 9).

For the ‘‘metallic’’ phase, d is the embedding dimension
of the system, in our case d � 4. For the critical region the
effective dimension becomes d��p�< d. In this sense, all

FIG. 9 (color online). The fractal dimension d��p� obtained
from fits of the volume dependence of the averages of the
generalized Ip, presented for zero modes and for nonzero modes
in � bins of width 50 MeV for the three ensembles with different
volume and common � � 8:45.

FIG. 8 (color online). The average IPR for zero modes and for
nonzero modes in � bins of width 50 MeV for the five ensem-
bles.

TABLE II. The average number of nonzero modes (NZM)
below various spectral cutoffs for two ensembles used in this
study. The cutoffs are given both in MeV and in 1=a.

� Lattice size a�cut �cut Average # of NZM

8.45 163 � 32 0.1064 200 MeV 13.1(2)
0.2128 400 MeV 36.2(2)
0.3374 634 MeV 92.3(2)

8.10 123 � 24 0.14 200 MeV 11.0(2)
0.28 400 MeV 28.1(2)
0.42 600 MeV 59.3(2)
0.56 800 MeV 117.3(4)

3In the following the cutoff values 200, 400, 600, and
800 MeV on the 123 � 24 lattice at � � 8:1 should be consid-
ered as approximate values. Using the interpolated value for the
lattice spacing at � � 8:1, the exact values are 195, 389, 584,
and 778 MeV, respectively.
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eigenstates with � < 200 MeV definitely belong to a
‘‘critical region.’’ From the standard IPR I � L3

sLtI2 (p �
2) we have concluded that the dimension of the zero modes
is close to 2. In the next bins of 50 MeV each, the dimen-
sion quickly exceeds three, before finally approaching four.

For the critical region and up to � � 400 MeV we
present now the results for the higher order p fractal
dimensions d��p�, which allows us to recognize a varying
type of localization at various levels (heights) of the scalar
density p�x�. Notice the decrease of the multifractal di-
mension with increasing p, resulting from the fact that Ip
explores regions of higher scalar density. For p � 4, for
example, one sees generally a reduced dimension com-
pared to p � 2, interpolating between ‘‘filamentary’’
[d��4� � 1 for zero modes] and ‘‘surfacelike’’ [d��4� � 2
for the next two bins with � < 100 MeV], becoming
d��4� � 3:5 at higher �. This indicates that the regions of
higher scalar density are geometrically distinct from those
regions where an eigenmode is present only with a tail of
the scalar density. For p � 20–30 the analyzed fractal
dimension does not grow anymore. The envelope tells us
that, with respect to the maxima of the scalar density, zero
modes and nonzero modes up to � � 100 MeV are all
characterized by a less than one-dimensional localization
(i.e., isolated peaks), whereas in the following spectral
region two-dimensional or three-dimensional localization
prevails for the regions of highest scalar density (cf. Fig. 6).
In contrast to this, the standard IPR based on I2 alone
cannot resolve these details and would describe the modes
in the spectral region � > 100 MeV as four-dimensional.

It is tempting to conjecture a pinning down of the low-
dimensional low-lying modes to specific confining objects
(vortices, monopoles, close-by meron pairs, etc.) and a
relation to the localization of topological charge (see
Sec. IV in this context). It is important to recognize that
the difference between the zero modes and the lowest (say,
10) nonzero modes is less pronounced than it seems in the
result of binning. In marked contrast to this, the highest
analyzed nonzero modes are really qualitatively different.
This could already be concluded from Fig. 6.

We show in Fig. 10(a) the result of a cluster analysis4 of
170 configurations on the 163 � 32 lattice generated at
� � 8:45. The average is over the zero modes in this
subensemble, the 1st, the 10th, the 30th, etc., up to the
(arbitrarily chosen) 120th nonzero mode. We analyze the

average cluster composition as a function of the cutoff
scalar density pcut=pmax [relative to the maximum of the
scalar density of the respective mode pmax � maxxp��x�].
In this type of cluster analysis one attempts to decompose
the set of lattice points with p��x� � pcut into one or more
connected clusters, each enclosing secondary maxima of
p��x�. For the highest analyzed mode, beginning at pcut �
0:9pmax, rapidly further maxima become visible, and the
number of separate clusters grows to � 20 at pcut �
0:35pmax. In contrast to this, the typical zero mode only
slowly develops up to � 5 maxima at pcut � 0:1pmax.
From the zero mode to the highest analyzed mode there
seem to exist several centers that ‘‘attract’’ the mode, but
the mechanism might be different. The lowest modes
might be pinned down to some lumps of topological charge
(á la Diakonov and Petrov [79]), whereas the localization
of the highest (analyzed) modes might be the result of
Anderson-like localization in the random gauge field
background.

The lowest ten nonzero modes are very similar to the
typical zero mode. The zero modes percolate, i.e., extend
over the full lattice, only at a height below pcut �
0:25pmax.

The highest analyzed nonzero mode percolates at pcut �
0:4pmax (with the maximal scalar density being smaller, of
course). This can be seen in Fig. 10(b). The difference in
the percolation behavior can be concluded also from the
missing norm [80],

 R�pcut� � 1�
X

fxjp�x��pcutg

p�x�; (29)

as a function of pcut=pmax that is shown in Fig. 10(c). Here
the similarity between the zero modes and the first 10 non-
zero modes is similarly clear.

At each height level of p� the effective shape of the
leading cluster of the respective mode can be explored by
the random walk method described in Sec. II F. In the
present context one studies how the return probability of
the walkers to the maximum of p��x� decreases with an
increasing number � of steps. A fit of the power law
decrease (22) provides the effective dimensions d� shown
in Fig. 10(d). We notice that the average dimension aver-
aged over the 10 lowest modes continuously rises from
d� � 0 to d� � 3:5. It becomes three-dimensional at the
same pcut=pmax when the missing norm begins the final
steep drop from 80% to 0%. As for the 120th nonzero
mode, the effective dimension d� rises more steeply and
reaches d� � 3 at higher pcut=pmax when the missing norm

TABLE III. Volume scaling of generalized IPR’s according to the metal-insulator transition
analogy.

Ip��� / L�d�p�1� Metallic Electrons propagate freely
Ip��� / L

�d��p��p�1� Critical Electrons propagate along low-dimensional structures
Ip��� � const Insulator Electrons do not propagate

4The cluster analysis with respect to some observable was
introduced in Sec. II E.
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is already dropped to 60%. For a survey of dimensionalities
of overlap eigenmodes see Tables VII and VIII in the
appendix.

D. Chiral properties of the nonzero modes

In this section we characterize the different parts of the
low-lying spectrum of nonzero modes by the distribution
of sites over the local chirality. Later on, the local chirality
of the lowest modes is shown to be locally correlated to the
topological density.

In a given lattice point x, one might be interested in the
intensity ratio

 r��x� �
p�	�x�
p���x�

(30)

of the two chiral projections for a given mode  �. For the
chiral zero modes this ratio is 1 or 0 everywhere. For the
nonchiral, nonzero modes it is some function of x. It is
useful to relate r��x� to [50]

 X��x� �
4

�
arctan�

�����������
r��x�

q
� � 1 2 ��1;	1�: (31)

It will be seen that relatively low-lying modes have regions
where the local chirality carries information about the
(anti-)self-dual character of the background field, to be
precise, where 0:5< jX�x�j< 1.

In Figs. 11 and 12 normalized histograms with respect to
the local chirality X�x� are shown for theQ � 0 subsample
(containing 37 configurations) of the 163 � 32 lattices
generated at � � 8:45 with the lattice sites selected ac-
cording to the scalar density p�x�. The left figures show the
10 different X histograms for the lowest 20 individual
nonzero modes (the pair with � and �� gives rise to the
same histogram), whereas the right figures show the histo-
grams where all nonzero modes belonging to a � bin (with
a bin size 100 MeV) are contributing to 8 histograms
covering the spectral range up to 800 MeV. The different
rows show different cuts applied restricting the lattice sites
x to those with p��x� � pcut. The cuts are chosen such to
represent 1%, 6.25%, 12.5%, and 50% of all lattice sites.

For zero modes (not included here) the histograms
would be 
 functions at X � �1 or X � 1 independent
of any cut with respect to the scalar density. Although
being nonchiral when integrated over space-time, the first

FIG. 10 (color online). Cluster analysis of some individual eigenmodes as listed in the legend box, averaged over 170 configurations
on 163 � 32 generated at � � 8:45. The pcut=pmax dependence is shown of (a) the total number of separate clusters at the height pcut,
(b) the connectivity as a signal for the percolation of the mode, (c) the missing norm of the mode, and (d) the effective dimension of the
mode at height pcut determined by the return probability (22) of random walkers.
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FIG. 12 (color online). The same as Fig. 11 but with less exclusive cuts with respect to the scalar density. Upper row: with a cut for
12.5. Lower row: With a cut for 50% of the sites with biggest p�x�.
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FIG. 11 (color online). Normalized histograms of the local chirality in the Q � 0 subsample (consisting of 37 configurations) of the
163 � 32 lattices generated at � � 8:45. Left: For the lowest ten pairs (with positive and negative �) averaged over the subsample.
Right: For all modes from the subsample, averaged over � bins of width 100 MeV. Upper row: With a cut for 1% of the sites with
biggest scalar density p�x�. Lower row: With a cut for 6.25% of the sites with biggest p�x�.
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nonzero modes locally may have a considerable degree of
chirality (peaking in X somewhere between 0.75 and 0.9)
for the leading 1% or 6% of the lattice sites with the highest
scalar density. It turns out that with a higher, more restric-
tive cut the degree of local chirality can be enhanced. A
similarly stronger effect can be seen towards the lower
modes. That means that the 5–10 maxima of the scalar
density of the lowest nonzero modes are localized in a
space-time region where the local chirality is strongly
correlated to the topological charge density of the gluonic
background. The highest modes, as we have found, have
O�20� local maxima. In contrast to the lower modes, the
histogram of local chirality for the higher ones is domi-
nated by a broad bump of low chirality X�x� distributed
around zero for all cuts in p�x�. This means that the
maxima (localization) of the highest modes are not the
result of pinning down at spots of topological charge
density; rather, they are the result of waves scattering on
a random gauge field background.

One can see that the eigenmodes with eigenvalues up to
200 MeV show an enhancement of local chirality around
X � ��0:5 . . . 0:75� as long as one focuses on the 6% of
the lattice points with the strongest scalar density. If 50%
of the lattice sites are included in the analysis, only the first
two pairs of nonzero eigenmodes still show some enhance-
ment of local chirality around X � �0:75.

We will later (at the end of Sec. IV E) consider the
correlation function between the topological charge in
the gluonic background and the local chirality X�x� of
individual nonzero modes. The result establishes that
they are interrelated over some distance in space-time.

IV. TOPOLOGICAL CHARGE DENSITY FROM
THE OVERLAP OPERATOR

A. Two-point function of the all-scale and the mode-
truncated densities

The topological charge density of the gluonic field
seems to play a deciding role for the localization of the
lowest modes. In this section we are studying the properties
of the overlap definition of the topological density accord-
ing to Eqs. (18) and (19). The striking difference between
the all-scale topological charge density and the mode-
truncated one can be illuminated studying the point-to-
point correlator of the topological density. Formally, the
definition of the two-point function is the same for q�x� and
q�cut
�x�:

 

Cqq�r� �

P
x;y
hq�x�q�y�i
�r� jx� yj�

P
x;y

�r� jx� yj�

� 0 for r> 0: (32)

Reflection positivity, i.e., the pseudoscalar nature of q�x�
together with positivity of the metric in Hilbert space,
demands that the topological charge density correlator is
negative for all distances: Cqq�r� � 0 for r > 0. Of course,

the vacuum expectation value hq�x�q�y�imust be a function
only of the distance r � jx� yj � 0, due to Euclidean
rotational invariance.

While the topological charge correlator Cqq�r� in the
continuum should be negative for a nonvanishing distance,
the topological susceptibility, which is the integral over the
correlator �t �

R
dxhq�0�q�x�i, must be positive. To solve

the apparent contradiction, formally divergent contact
counterterms of the form Cqq�x� ! Cqq�x� 	 c1
�x� 	
c2�
�x� 	 c3�2
�x� have to be introduced in the contin-
uum theory [81].

Since overlap fermions are not ultralocal, the fermion
action cannot be strictly reflection positive. Because the
overlap operator D�0� has a finite range in space-time (see
Fig. 2) practically independent of �, we expect that the
correlator Cqq�r� will have a positive core with a fixed
width in lattice units. The negative tail beyond the core
radius corresponds to the above mentioned theoretical
requirement. This has been discussed recently in Ref. [61].

For the correlator of the mode-truncated density q�cut
�x�

one would expect that this structure is smoothed out and
that below some �cut the corresponding two-point function
will be positive at all distances. In Fig. 13 we show the
correlator of the mode-truncated topological charge den-
sity for various �cut for the 123 � 24 lattice configurations
generated at � � 8:10. In Fig. 13(a) they are compared
with the correlation function of the all-scale topological
density measured on 53 configurations. In Fig. 13(b) we
show the correlator only for different mode-truncated den-
sities, however, magnified, in the region of r where they
start to develop a negative tail for a sufficiently high cutoff.
This happens at R � 6a for �cut � 800 MeV, at R � 7a
for �cut � 600 MeV, and at R � 9a for �cut � 400 MeV.
As long as it was positive, this correlator would be inter-
preted in terms of the number density and the convoluted
profile of effective topological charge clusters. It is inter-
esting that higher resolution in the present case (similarly
to doing less smearing [82] or doing restricted cooling
[24,83]) results in effectively attractive correlations be-
tween opposite sign topological charge clusters not only
in full QCD but also in quenched gauge fields as empha-
sized in Ref. [82]. Since the total topological charge does
not depend on �cut, the growing negative tail must be
compensated in the susceptibility

P
xCqq�jxj� by a growing

positive core with increasing �cut.
In order to demonstrate how the correlation function of

the all-scale topological charge density varies with the
lattice spacing we compare in Fig. 14 the correlator for
123 � 24 lattices at � � 8:10 (53 configurations) with the
correlator measured on 163 � 32 lattices at � � 8:45 (only
5 configurations) [6] and 163 � 32 lattices at � � 8:6
(2 configurations). An extrapolation of the function a���
to the highest � gives a�� � 8:6� � 0:096�1�. The vol-
umes of the first two lattices are approximately equal. The
required negativity of the correlator develops only for a
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sufficiently fine lattice. The much bigger number of clus-
ters at higher values jq�x�j � 0:25qmax (see Sec. IV C)
seems to be necessary to achieve this. Thus, the cluster
multiplicity of the all-scale topological density simply
reflects the size of the lattice in lattice units.

B. Two-dimensional profile seen with varying resolution

As a vacuum expectation value, the point-to-point cor-
relation function obviously has to be rotational invariant.
Individual lattice configurations, however, are richer in
structure and necessarily have a locally anisotropic struc-
ture. This results from lower-dimensional structures
present in the configurations that locally break rotational
invariance.

As an example, a snapshot with four levels of resolution
is presented in Fig. 15 of the same two-dimensional section
through the typical configuration, already considered in
Figs. 6 and 24, of the ensemble of 163 � 32 lattices at � �
8:45. The respective resolution can be inferred from the
corresponding �cut. The two-dimensional section is peri-
odically doubled in the two directions such that the one-

dimensional structure (apparently one ‘‘ridge’’ per elemen-
tary cell in this two-dimensional world) can be recognized.
In particular, this ridge is clearly visible at �cut � 200 and
400 MeV, being already less clearly visible at �cut �
634 MeV. At a resolution of 400 MeV and higher, also
single peaks (a 0-dimensional structure in this two-
dimensional world) on top of the ridges become visible.
Describing the landscape from the perspective of the peaks
of density in Fig. 15(c), the next-higher dimensional struc-
tures (‘‘ridges’’) are features becoming discernible only at
a lower height of the density. In a cluster analysis, with qcut

chosen too large, one might miss the ridge, catching only
the peaks. Varying qcut the dimension revealed by the
cluster analysis will be very reminiscent of the multifractal
dimensions of the individual fermionic modes. Compared
to these visible features of the three different mode-
truncated densities, the cut through the all-scale topologi-
cal density is seemingly completely random. Nonetheless,
structure can be discovered in the ‘‘full’’ density, too,
simultaneously taking all four dimensions into account
through the cluster algorithm, as we shall see next.
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FIG. 13 (color online). The topological charge density correlator for the 123 � 24 lattice configurations at � � 8:10. (a) The
correlator of the mode-truncated density q�cut

�x� for various �cut compared with the correlator of the all-scale density q�x�, measured
only on 53 configurations. (b) magnifies the region in r where the mode-truncated correlators become negative for sufficiently large
�cut.

(a) (b)

FIG. 14 (color online). Comparison of the topological charge density correlator based on the all-scale density q�x� for the 123 � 24
lattice at � � 8:10 (53 configurations) with the same correlator for the 163 � 32 lattice at � � 8:45 (only 5 configurations) and
� � 8:60 (2 configurations). (b) magnifies the region in r where the correlator becomes stronger negative when one gets closer to the
continuum limit.
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C. Cluster analysis of the all-scale topological charge
density

In order to make the structural analysis more quantita-
tive, the cluster analysis as described in Sec. II E is per-
formed. Let us begin with the all-scale topological charge
density. The structure is changing with the threshold value
qcut, as the reference value for qcut serves the maximum of
the topological density in each configuration qmax. Thus,
we take 0< qcut=qmax < 1 as the running parameter. We
remark that qmax for the mode-truncated density is weakly
changing with �cut (around 0.005 in lattice units). For the
all-scale topological density qmax is a few times larger (see
Table IV).

In Fig. 16 the qcut=qmax dependences of the cluster
multiplicity, of the relative size of the largest cluster with
respect to all clusters, of the distance between the two
biggest clusters, and of the connectivity are presented.
This is shown for two ensembles of practically the same
volume 123 � 24 at � � 8:10 and 163 � 32 at � � 8:45
and, in order to study the � dependence alone, for a few

configurations of the same size 163 � 32 in lattice units but
with a finer lattice spacing at � � 8:60.

The most striking difference between the first two cases
with almost equal physical volume is the roughly 4 times
larger multiplicity of clusters that is reached on the finer
lattice. In both lattices percolation [nonvanishing connec-
tivity f�rmax�] sets in close to where the multiplicity
reaches its maximum. The percolation threshold qperc is
practically independent of the lattice spacing. The perco-
lation finally ends with qcut ! 0 with only two, globally
extended clusters of opposite sign of topological charge.
With decreasing qcut=qmax, but still above the percolation
threshold at qcut=qmax � 0:2, the number of clusters in-
creases strongly with a decreasing cut, in particular, on the
fine lattice. Since the number and size of all clusters
increase, the relative size of the biggest cluster decreases.
This trend is reversed beyond the percolation threshold
where the relative size of the largest cluster rapidly reaches
50%, practically independent of the lattice spacing. The
distance between the two biggest clusters shown in

TABLE IV. The ensemble averages of qmaxa
4 for the mode-truncated topological charge density (for various �cut) and for the all-

scale density for two lattice ensembles.

�cut 200 MeV 400 MeV 600 MeV 634 MeV 800 MeV All scales

� � 8:10 123 � 24 5:04�14� 10�3 6:45�14� 10�3 7:66�15� 10�3 8:88�14� 10�3 2:82�07� 10�2

� � 8:45 163 � 32 3:51�17� 10�3 4:45�18� 10�3 5:39�19� 10�3 1:97�06� 10�2
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FIG. 15 (color online). Two-dimensional profile through the typical Q � 0 configuration generated at � � 8:45 on a 163 � 32
lattice. The profile is periodically doubled in both directions for better visibility of extended structures. The cuts show, from (a) to (c),
the mode-truncated density for descending levels of truncation �cut � 200 MeV, �cut � 400 MeV, and �cut � 634 MeV, respectively.
The all-scale topological density is shown in (d). Note the twentyfold larger vertical scale in (d).
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Fig. 16(c) is given in lattice spacings. Before percolation
the distance is therefore only seemingly bigger on the finer
lattice. Taking the ratio a�� � 8:10�=a�� � 8:45� � 1:4
of the lattice spacings (see Table I) into account, the
average distance between the two leading clusters is ap-
proximately the same and independent of qcut=qmax all over
the nonpercolating regime. The finer the lattice, the faster
the minimal distance between the two leading clusters is
approaching the minimal distance of two lattice spacings
as soon as qcut < qperc. In the final state the two clusters are
close to each other everywhere, kept as separate clusters
only because of the different sign of q�x�. In other words,
the remaining two global clusters of opposite charge are
everywhere thin of O�a� and entangling each other. The
finite distance in lattice spacings is independent of �,
reflecting nothing else than the nonultralocality of the
overlap operator.

For the two lattices 163 � 32 with different lattice spac-
ing we find a surprising similarity in all four plots. Even the
distance between the biggest clusters coincides within
large errors due to the low statistics (5 and 2 configurations
for � � 8:45 and � � 8:60, respectively). In particular,
the cluster multiplicity seems to depend mostly on the
lattice size in lattice units.

How the whole q-cluster composition with respect to
charge and volume varies between the percolating regime
(qcut � 0:1qmax) and the nonpercolating regime (qcut �
0:3qmax) is illustrated in Fig. 17. As long as percolation
has not set in, there is a broad spectrum of cluster volumes.
The spectrum of cluster topological charges is surprisingly
similar, up to the random sign. The ranking of clusters is
according to the cluster volume, and the modulus of the
cluster charges almost follows this ranking. Thus, the
average charge density in each cluster is approximately
the same. When percolation is completed, there are only
two, oppositely charged clusters left over with approxi-
mately equal volume. This peculiar situation has been first
discovered and discussed by Horvath et al. [33].

D. Dimensionality and multifractality of the all-scale
topological charge

In this subsection a more explicit description of the
fractal dimension and the multifractal properties of this
topological density will be given. These properties are
difficult to visualize in three dimensions because of the
close packing and the huge multiplicity (at the percolation
threshold) of the corresponding q clusters.

FIG. 16 (color online). Cluster analysis of the all-scale topological density: The qcut dependence is shown of (a) the total number of
separate clusters, (b) the size of the largest cluster relative to all clusters, (c) the distance between the two largest clusters in lattice
units, and (d) the connectivity (see Sec. II C). The data are plotted for the 123 � 24 lattice configurations at � � 8:10 (53 configu-
rations, in red), for the 163 � 32 lattice configurations at � � 8:45 (only 5 configurations, in green), and for the 163 � 32 lattice
configurations at � � 8:60 (only 2 configurations, in blue) being averaged over.
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For our purpose we use the random walker method
described in Sec. II F. In Fig. 18 we show in a double-
logarithmic plot the decay of the return probability on the
123 � 24 lattice. In an open d�-dimensional space the
return probability after � steps would follow the power
law P�~0; �� � 1=�2���d

�=2. It turns out that by extending
the clusters (i.e., by chosing qcut=qmax lower and lower) the
power of decay becomes larger. The corresponding effec-
tive fractal dimensions are ranging from d� � 2:7 for low
qcut=qmax � 0, over d� � 1:5 at qcut=qmax � 0:1 and d� �
1:1 at qcut=qmax � 0:2, where the q-cluster multiplicity

reaches its maximum, to d� � 0:7 at qcut=qmax � 0:3,
where the clusters are really restricted to the immediate
neighborhood of the maxima. For a survey of dimension-
alities of clusters of the topological charge see Tables V
and VI in the appendix. Even if the values of the fractal
dimensions d� provided by the random walker algorithm
do not exactly coincide with the dimensions obtained from
other methods, the tendency of the results of the random
walk method indicates that the landscape of the all-scale
topological charge is multifractal and becomes nearly
three-dimensional only far below the percolation thresh-
old. Percolation sets in at qcut � 0:25qmax, when the effec-
tive dimension is still low as d� � 1� 1:5.

A second argument comes from a consideration of the
cumulative cluster charge. One considers a collection of q
clusters primarily defined for a given cutoff qcut=qmax. One
covers the set of clusters with a four-dimensional sphere of
radius R centered at the center xc of one particular cluster
[i.e., the maximum of jq�x�j inside the cluster c]. One sums
that part of the cluster charge that is located in the inter-
section of the cluster and the covering sphere. The relative
cumulated cluster charge is the ratio between the cumu-
lated charge to the full charge of the cluster, and it depends
on the radius R. The dependence of the relative cumulated
cluster charge on the radius R will start with some power
and finally reach unity at saturation. The observed power
behavior can give information about the fractal dimension
d� < d of a q cluster. The initial growth with R may be
parametrized as Rd

�
, where d� describes the local dimen-

sion near the cluster center and depends on the cutoff
qcut=qmax. One can see in Fig. 19 that a linear fit works
very well as long as qcut=qmax is sufficiently high such that
the clusters are isolated and do not percolate. The begin-
ning percolation is characterized by an initial growth fitted
like Qcumul � R3.

One might expect problems when R is so large that the
sphere covers many different three-dimensional branches
of a q cluster which might appear disconnected inside the
sphere but are actually globally connected (and therefore
counted in the cumulative charge according to the cluster
membership). This would happen at a very low cutoff qcut

when only the two largest clusters have survived. Only then
the cumulated charge of each of the clusters would grow
like Qcumulative � R

4 although the local dimension is
d� � 3.5

One can see in Fig. 19 that the transition from linear to
cubic behavior happens for the coarser lattice (left panel)
somewhere between qcut=qmax � 0:1 and 0.2. The actual
power behavior for the lowest shown cutoff is like
Qcumulative � R

3:1. On the finer lattice, for the higher cutoff

FIG. 17 (color online). Cluster analysis of the all-scale topo-
logical density: The fractional volume [�a� 	 �b�] and the total
charge [�c� 	 �d�] of the corresponding clusters, ranked accord-
ing to their occupied volume, is shown for two values of
qcut=qmax: in the percolated regime (left) for qcut=qmax � 0:10
and in the cluster-separated regime (right) for qcut=qmax � 0:30.
The plot represents one single configuration of the 163 � 32
lattice ensemble generated at � � 8:45.
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FIG. 18 (color online). The probability of return to the cluster
center xc for random walks, restricted to topological clusters of
the all-scale topological charge density, shown as a function of
the step number. The clusters are distinguished by different cuts
with respect to the density that they enclose. The cases
qcut=qmax � 0:4, 0.3, 0.2, 0.1, and 0.0 are considered on the
coarser lattice 122 � 24 at � � 8:10. The results of the power
fits (see the curves) are labeled by the effective dimensions d�.

5This consideration was the motivation to propose the random
walker method described in Sec. II F. The walkers are not
allowed to penetrate to or return from another branch of the
same cluster.
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qcut=qmax � 0:2 the situation is already close to the d� � 3
regime. The fitted power behavior is like Qcumulative � R2:5.
For qcut=qmax � 0:1 it is like R3:3.

For a survey of dimensionalities of the topological den-
sity (as well as of overlap eigenmodes) inferred from the
covering sphere method see Tables VI and VIII in the
appendix.

E. Cluster analysis of the mode-truncated topological
charge density

Let us now discuss the effect of mode truncation on the
cluster structure of the topological charge density. We
compare in Fig. 20 for the two ensembles 123 � 24 at ��
8:10 (left) and 163 � 32 at ��8:45 (right) with practically
equal physical volume the ensemble averages of the cluster
multiplicity, of the fractional volume filled by all clusters
(packing fraction), and of the connectivity f�rmax�. In each
panel we show this for 3 or 4 cutoffs �cut together with the
same quantity defined for the all-scale density. Notice the
different scale for the cluster multiplicity for the all-scale
density on the right of the upper panels. For the coarser
lattice presented on the left and the finer lattice presented
on the right, the tendency is the same. The maximal
number of clusters is much smaller for the mode-truncated
density than for the all-scale density. It rises with the cutoff
�cut. For a fixed cutoff �cut in MeV, it is approximately
40%–100% larger on the finer lattice than on the coarser
lattice. Thus, the cluster multiplicity defined with a fixed
ultraviolet cutoff �cut is strongly discretization dependent.
The maximum of cluster multiplicity is reached at ever
smaller qcut=qmax for the finer lattice. The packing fraction,
i.e., the fraction of volume filled by the clusters, for the all-
scale density rises faster with decreasing qcut on the finer
lattice than on the coarser. On the other side, for the mode-
truncated densities, the final rise of the packing fraction
happens almost simultaneously for qcut < 0:1qmax for all
cutoffs �cut under consideration. This means that, as long
as qcut=qmax > 0:1, the clusters remain well-separated.
These differences are washed out on the coarser lattice.

On the finer lattice the maximal cluster multiplicity (or the
percolation threshold) for the all-scale density is found at
much higher qcut=qmax value than for the mode-truncated
density including the highest investigated �cut�634 MeV.
On the coarser lattice this happens to the all-scale and the
mode-truncated densities at the same qcut=qmax.

For the finer lattice only, in Fig. 21 the relative size of the
largest cluster and the distance between the two largest
clusters is plotted in dependence on qcut=qmax. Each panel
shows this for various �cut and for the all-scale density. The
behavior for the different cutoffs �cut of mode-truncated
densities is similar. The main difference of the mode-
truncated density compared to the nontruncated (all-scale)
density is that the relative size of the largest cluster remains
relatively constant before and across the percolation
threshold although the number and size of all clusters
increases with decreasing qcut before percolation sets in.
The largest cluster is always much bigger than the other
clusters, and this effect is stronger the lower the cutoff �cut

is. It can be clearly seen that the distance d�a; b� between
the two largest clusters a and b of the mode-truncated
density does not drop rapidly to 2 lattice spacings imme-
diately after the onset of percolation. This is because these
clusters remain well-separated even at qcut=qmax < 0:1.

All of these observations point towards the conclusion
that the mode-truncated density allows one to define q
clusters of topological charge that, although they also
begin to percolate at some (relatively low) height (cutoff
qcut), remain well-separated even at this level of the den-
sity. One of the clusters is much larger than the remaining
ones. These properties they have in common with the R
clusters will be defined on the basis of the local (anti-)self-
duality R�x� in Sec. V C. Thus, these clusters allow an
interpretation close to the traditional ‘‘lumpy’’ instanton
or caloron gas picture, however, with the tendency to
coalesce into larger objects of same-sign topological
charge density (‘‘instanton clumping’’). At higher �cut an
attractive correlation between opposite charge clusters
appears.

FIG. 19 (color online). The covering sphere method (see text): (a) for the coarse lattice 123 � 24 at � � 8:10 and (b) for the fine
lattice 163 � 32 at � � 8:45. The fitted power behavior of the accumulated charge jumps from one-dimensional to three-dimensional
at some percolation threshold qcut=qmax (see text).
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FIG. 20 (color online). Comparison of the cluster structure of the mode-truncated density with three (four) cutoffs �cut with the all-
scale topological charge density. The effect of � at the same physical volume can be seen by comparing the left side (123 � 24 lattices
at � � 8:10) with the right side (163 � 32 lattices at � � 8:45). Top row: The qcut dependence of the total number of clusters [(a),(b)].
Note the different multiplicity scale on the right for clusters of the all-scale topological charge density. Middle row: The packing
fraction of all clusters together [(c),(d)]. Bottom row: The connectivity [(e),(f)].

FIG. 21 (color online). Comparison of the cluster structure of the all-scale topological charge density with the mode-truncated
density for three values of the cutoffs �cut: (a) the fractional size of the largest cluster and (b) the distance between the two largest
clusters in lattice units, both as a function of qcut=qmax. The data refer to the 163 � 32 lattice at � � 8:45 only.
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Given this cluster interpretation of the mode-truncated
topological density, we return to the question whether the
chirality Xn�x� of the nth nonzero mode is locally corre-
lated with the topological charge density. To answer this
question we consider the correlation function between the
density q�cut

�y� and the local chirality X�y� over some
distance r, CqX�r;�cut; n� defined as

 CqX�r;�cut; n� �

P
x;y
hq�cut

�x�Xn�y�i
�r� jx� yj�

P
x;y

�r� jx� yj�

: (33)

The result is shown in Fig. 22 for �cut � 100 MeV. The
local chirality that enters the correlator in the figure is
evaluated for the 2nd, the 6th, the 10th, the 30th, the
50th, etc., up to the 120th nonzero mode. We keep in
mind that this mode-restricted topological charge density
is influenced (on average) by the lowest 9 or 10 pairs of
nonzero modes. We see that the positive correlation of the
(collective) topological charge density, on one hand with
the local chirality of individual overlap modes up to the
10th mode, is on the other hand strong and ranges over up
to ten lattice spacings (similar to the distance where the
correlation function Cqq of q�cut

changes the sign). At a
larger distance the local chirality gets anticorrelated to the
mode-truncated topological charge density. Although
weaker and over shorter distance, the 30th and higher
modes are still positively correlated with the sign of the
truncated topological charge density. For these higher
modes the anticorrelation is absent at a larger distance.

V. THE INFRARED FIELD STRENGTH TENSOR

A. Basic idea

We have considered in Sec. IV the topological charge
density as represented by the overlap operator according to
Eq. (18) or (19). We have seen that the structure of the

mode-truncated topological charge density strongly de-
pends on the number of included lowest eigenmodes.
Restricting to fewer modes is tantamount to an ultraviolet
filtering applied to the topological density. Our point of
view as explained in Sec. I is that the low-lying modes
represent the physically relevant degrees of freedom for
hadronic physics. Thus, filtering should be suitable to
highlight the important structures. Here we briefly discuss
another filtering method similar to what was proposed by
Gattringer [38] and is suggested by the newly discussed
representation of the field strength tensor through the over-
lap Dirac operator [39,40]. The main purpose is to get an
ultraviolet-filtered, infrared field strength tensor. This
would allow one to assess the local degree of (anti-)self-
duality. The local self-duality or anti-self-duality of a
gauge field is an important feature in all semiclassically
motivated vacuum models, and the search for it in generic
lattice configurations may play a similar (or superior) role
compared to the search for lumps of topological charge,
which was the main strategy of access before.

The starting point is the observation that in the contin-
uum the square of the Dirac operator D, projected with the
help of a combination of 	� matrices, represents the field
strength tensor

 F���x� � �
1
4 trDirac����D

2�x��: (34)

Here trDirac is the trace taken over spinor indices. In
Ref. [38] the chirally improved Dirac operator [84] was
used to evaluate this in the simplified local form

 Fa���x� /
X
�

�2fa���x; xj��;

fa���x; xj�� � �
i
2
 � c �
� �x��� �0

�� Tac c0 
�0 c0
� �x�;

(35)

with the color generator Ta in the fundamental representa-
tion. Zero modes do not contribute to this representation of
the field strength. The ultraviolet filtering consists now in
including only a certain number of low-lying modes in this
spectral representation.

Here we explore the application of this formula to the
eigenmodes of the overlap Dirac operator D�0� and com-
pare the revealed structure with that shown by the
ultraviolet-filtered topological density. Obviously, a nor-
malization factor remains undetermined, in particular, be-
cause only a subset of low-lying modes will be included in
the filter.

In two recent papers [39,40], a representation of field
strength and action density has been discussed, in a way
analogous to Eqs. (18) and (19), which give the represen-
tation of the topological charge density directly in terms of
the overlap operator.
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FIG. 22 (color online). The correlation function between the
mode-truncated topological charge density for �cut � 100 MeV
and the local chirality of selected nonzero modes from the lowest
one to the 120th mode. The correlation function is an average
over the 37 configurations with Q � 0 on the 163 � 32 lattice
generated at � � 8:45.
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B. Local (anti-)self-duality of the infrared field strength
tensor

We now study the contribution of individual nonzero
modes to the filtered field strength tensor. The normaliza-
tion of the infrared field strength Fa���x� does not come
automatically. It could be obtained by requiring that the
infrared topological charge density

 ~q IR�x� / Tr�F���x�F���x��; (36)

with the dual field strength F�� �
1
2 
����F��, fits the

ultraviolet-filtered topological density q�x��cut
(for a suit-

able cutoff �cut). The latter can be directly derived from the
overlap operator following Eq. (19). A less elaborate nor-
malization for Q � 0 configurations could be that the total
topological charge obtained from Tr�F���x�F���x��
should reproduce the index Q of D�0� for the given
configuration.

One can define analogously the infrared action density

 ~s IR�x� / Tr�F���x�F���x�� (37)

in order to compare it with ~qIR�x�. With both infrared
densities at hand, one can ignore the quest for normaliza-
tion. It is now possible to turn the interest to the local (anti-)
self-duality based on a ratio similar to Eq. (30):

 r�x� �
~sIR�x� � ~qIR�x�
~sIR�x� 	 ~qIR�x�

: (38)

This is converted to R�x�:

 R�x� �
4

�
arctan�

���������
r�x�

p
� � 1 2 ��1;	1�; (39)

analogously to Eq. (31).
In Fig. 23 histograms are presented with respect to R�x�

applying various cuts specifying the local action density
~sIR�x�. First, sharp peaks at R � �1 are observed that
become weaker with the inclusion of more low-lying pairs
of nonzero modes. We notice that even with 10 pairs

included these peaks are still visible. They become more
pronounced again when one focuses on part of the lattice
sites applying a cut with respect to the infrared action
density ~sIR�x�.

C. Cluster analysis of self-dual and anti-self-dual
domains

Since the close neighborhood of R � �1 of these histo-
grams corresponds to lattice points where the infrared field
strength tensor is nearly (anti-)self-dual, it is interesting to
see whether they are completely disconnected or form
connected regions in space-time. We construct isosurface
plots of jR�x�j � Rcut � 1� " demonstrated in Fig. 24 for
a filter including the lowest 5 pairs of nonzero modes. The
bubbles denote regions where the infrared field strength
tensor is more (anti-)self-dual inside than outside. Dark
grey (red in color online) refers to anti-self-dual regions,
light grey (green in color online) to self-dual ones. Similar
clusters have been seen when we have plotted clusters of
the ultraviolet-filtered topological charge density.

In order to get a more quantitative characterization of the
vacuum, it is useful to perform a cluster analysis on the
basis of the quantity R�x�. In Fig. 25 we show how the
cluster composition changes with varying Rcut. When per-
colation begins close to Rcut � 0:98 the number of separate
R clusters starts to slightly decrease with decreasing Rcut.
This means that allowing more tolerance with respect to
violation of (anti-)self-duality inside the clusters leads to
the growth and coalescence of already identified clusters
rather than to the detection of further, isolated clusters. One
can see that the distance between the two largest clusters
remains relatively large (decreasing only from 12 to 7),
meaning that a lot of space-time remains unoccupied by
the almost (anti-)self-dual R clusters, even in the percolat-
ing regime signaled by the connectivity becoming
f�rmax� � 0. The unoccupied regions are regions where
the infrared field strength tensor is violating self-duality or
anti-self-duality more than the given tolerance Rcut

permits.
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FIG. 23 (color online). Normalized histograms with respect to the local (anti-)self-duality of the field strength tensor in the Q � 0
subsample consisting of 37 configurations generated on the 163 � 32 lattice at � � 8:45, (a) taken over 100% of the lattice sites, but
depending on the number of nonzero modes (2–20) included in the filter and (b) applying various cuts specifying the infrared action
density for the case of 20 eigenmodes included in the filter.
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(a) (b)

(c) (d)

FIG. 25 (color online). R-cluster analysis using a running cutoff Rcut on the basis of the filtered action density sIR and topological
charge density qIR used to define R�x�. The Rcut dependence is shown of (a) the total number of separate clusters, (b) the size of the
largest cluster relative to all clusters, (c) the distance between the two largest clusters, and (d) the connectivity (see text). The data are
averaged over the 163 � 32 lattice ensemble generated at � � 8:45.
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FIG. 24 (color online). Isosurface plots of
R�x� in the order of decreasing tolerance with
respect to deviations from perfect (anti-)self-
duality: (a) Rcut � 0:97, (b) Rcut � 0:98,
(c) Rcut � 0:99, and (d) Rcut � 0:999. The fig-
ure shows the time slice t � 6 of the typical
Q � 0 configuration on the 163 � 32 lattice
generated at � � 8:45. Dark grey (red in color
online) and light grey (green in color online)
surfaces enclose regions where anti-self-
duality or self-duality is better fulfilled than
in the rest of the volume. The filter is using the
5 lowest pairs of nonzero eigenmodes.
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It turns out again that one largest cluster exists, which is
rather large already before the onset of percolation, occu-
pying 40% of the total volume of all clusters. This R cluster
rapidly becomes the absolutely dominating one with re-
spect to the volume (more than 50%) after percolation has
set in. This fact (topological ‘‘clumping’’) remains unex-
plained in all instanton/caloron models which are based on
uncorrelated (anti-)self-dual objects of Q � �1, eventu-
ally taking the attractive correlation of opposite charge
cluster into account (that is actually seen at a higher
resolution �cut).

How the whole cluster collection changes between the
percolating (Rcut � 0:96) and the nonpercolating (Rcut �
0:99) regimes, with respect to charge volume, is illustrated
in Fig. 26 for the Q � 0 configuration already considered
in Figs. 6 and 24. In order to define the cluster charge, the
all-scale topological charge density q�x� (18) has been
summed over the sites belonging to the respective con-
nected R clusters.

FIG. 26 (color online). Results of the R-cluster analysis at
Rcut � 0:96 (left) and Rcut � 0:99 (right) concerning the relative
volume of all emerging clusters [(a),(b)] and concerning the
charge inside the clusters [(c),(d)]. The cluster charge is defined
by the all-scale topological charge density (18). The distributions
describe the same Q � 0 configuration from the 163 � 32 lattice
ensemble generated at � � 8:45 already considered in Figs. 6
and 24.
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FIG. 27 (color online). Direct comparison between the isosurface plots with respect to R [left: with Rcut � 0:99 in (a) and Rcut �
0:98 in (c)] and the isosurface plots with respect to the truncated topological density q�cut

with �cut � 200 MeV (9 pairs of nonzero
modes) [right, with qcut=qmax � 0:2 in (b) and qcut=qmax � 0:1 in (d)]. All subfigures show the same time slice t � 6 of the typical
Q � 0 configuration of the 163 � 32 ensemble at � � 8:45. The similarity is found in all time slices.
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Before percolation sets in (at Rcut � 0:99) one finds in
this particular configuration O�20� significant clusters.
Among them one cluster has an exceedingly large volume
and two have a cluster charge Qcluster � 1 or �3. Deep in
the percolation regime (at Rcut � 0:96), there are essen-
tially only two significant R clusters left over which share
the total occupied volume in the ratio 55=45. Their cluster
charges are large and must compensate each other. Even in
this state, the distance between the two clusters is still
large: d�c1; c2� � 7a.

Near the maximum multiplicity, before the percolation
sets in, for a suitable ultraviolet cutoff �cut the number of q
clusters is of the same order as the number of (anti-)self-
dual R clusters (domains) defined with a corresponding
number of modes. Moreover, it turns out that the respective
isosurface plots are closely correlated. We consider this
coincidence as an argument for the importance of locally
(anti-)self-dual infrared gauge fields as part of the vacuum
structure at a cutoff scale of 200 MeV. The correlation of
positions and sizes of both types of clusters is shown in
Fig. 27 where one time slice is visualized by means of R�x�
on the left side and of q�cut

�x�with �cut � 200 MeV (which
actually corresponds to 9 pairs of nonzero modes for this
configuration) on the right side. The same kind of similar-
ity exists in all time slices.

Summarizing, in Fig. 28 we show the various ways
to present the topological structure in a two-dimensional
section. The upper panels present the profiles of various
densities, ~qIR�x� based on the infrared field strength,
the mode-truncated density q�cut

�x�, and the all-scale
density q�x�. The lower panels show how the positive
and negative parts of R�x� restricted to the interval
0:95< jR�x�j< 1 highlight the regions of self-duality
and anti-self-duality. The plots illustrate this for the

same Q � 0 example configuration as visualized many
times.

VI. DISCUSSION AND CONCLUSIONS

We have reported on several attempts to elucidate the
structure of the (quenched) QCD vacuum using overlap
fermions as a probe. In particular, we have looked at the
localization properties of the eigenmodes and of the topo-
logical charge density which is built up by all modes.
Furthermore, we have studied the chiral properties of the
eigenmodes of the overlap Dirac operator and tried to
relate this to the topological charge density. Finally we
have searched for (anti-)self-dual domains of the
ultraviolet-filtered field strength tensor.

As a side result of this work, we have obtained the
topological susceptibility for the ensembles in use (from
the index of each configuration) and the average spectral
density. The analysis of the latter has resulted in an effec-
tive chiral condensate �eff for each lattice size. The final
analysis of this in light of quenched chiral perturbation
theory, the comparison with random matrix theory, in
particular, under the aspect of spectral correlations, will
be the subject of a separate publication. The emphasis of
the present paper was put on the chiral and topological
structural properties.

While average properties as the dimensionality of eigen-
modes (for zero modes and nonzero modes in special
intervals of eigenvalues �) could be obtained by the scaling
properties of the average inverse participation ratio (and its
generalization based on higher moments of the scalar
density) in agreement with critical spectral correlations
(not described in this paper), the space-time structure of
single modes and of the topological charge density could

4
8

12
16

4
8

12
16

0.0005
0

0.0005

4
8

12

4
8

12
16

4
8

12
16

0.0005
0

0.0005

4
8

12
4

8
12

16

4

8
12

16
0.01

0

0.01

4
8

12

)c()b()a(

4
8

12
16

4

8
12

16
0.95

1

1.05

4
8

12

4
8

12
16

4

8
12

16
0.95

1

1.05

4
8

12

)e()d(

FIG. 28 (color online). Two-dimensional section through the typical Q � 0 configuration generated at � � 8:45 on a 163 � 32
lattice. Direct comparison of (a) ~qIR�x� based on the infrared field strength tensor based on 10 nonzero modes (5 pairs), (b) the mode-
truncated density q�cut

�x� with �cut � 200 MeV (for this configuration it amounts to 9 pairs of nonzero modes), and (c) the all-scale
charge density q�x�. (d),(e) show the positive and negative parts, respectively, of the local (anti-)self-duality variable R�x�. Note the
twentyfold larger vertical scale in (c) compared to (b). The scale of (a) is freely adapted to that of (b).
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be studied by employing a cluster algorithm and, subse-
quently, a random walk algorithm. While the cluster algo-
rithm locates and separates the clusters, depending on a cut
(qcut or pcut) applied to the quantity that is being consid-
ered, the random walkers help to specify the space-time
dimension of the cluster by means of their return proba-
bility to the cluster center from which they start.

A necessary condition for a pion to be able to propagate
through a given lattice vacuum is that the scalar density of
the modes forms percolating clusters, such that any two
separate points on the lattice must be ‘‘connected’’ (in the
sense defined in Sec. II E with nonzero measure when
integrated over all configurations). Similar properties
might be established for other quantities, such as the
topological charge density.

In the specific case of the topological charge density one
finds at a low enough density only two connected clusters
of opposite charge, which are infinitely thin in the codir-
ection and form a multilayered compound that covers all
space-time. This result can hardly be reconciled with the
picture of a dilute gas of semiclassical, finite-sized, in four
dimensions coherently extended excitations (instantons or
other classical solutions). Since the topological charge
density correlator in the vacuum must be negative for all
nonzero distances [on the lattice at least beyond a distance
of O�a� set by the nonultralocal density definition in terms
of the overlap operator], this requires a local fractal di-
mension d� < 4 for the topological density. The simulta-
neous presence of infrared (long-range) and ultraviolet
[O�a�] features motivates us to call the overlap topological
density ‘‘all-scale density,’’ as long as no mode truncation
is applied. This picture is known from the work of Horvath
et al., but it does not exclude the presence of even lower-
dimensional structure inside the two clusters. Here we
complete the picture by pointing out (see Table V in the
appendix) that percolating clusters of topological charge
already appear with lower dimensions d� � 1–2 at higher
qcut � 0:25qmax.

Similar things are observed for single modes of the
overlap operator. Percolation sets in at dimensions d� �
2 and pcut � 0:20pmax for zero modes and the first few
nonzero modes, whereas higher modes percolate already at
higher pcut=pmax.

In the introduction (in Fig. 1) we have seen that the long-
distance part of the pion propagator is well saturated by the
lowest 40 eigenmodes of the overlap operator. In more
detail, Fig. 29 shows the pion correlator separately for an
increasing number of modes, from the zero modes alone up
to the additional inclusion of 40 nonzero modes.

In Fig. 30 we show the convergence to the full propa-
gator separately for various time differences t and in
Fig. 31 the effective pion mass separately for the full
propagator and different mode-truncated approximations
to it, also as a function of t. We see that the pion propagates
with approximately 70% of its physical mass even when
the quark propagator is stripped down to the zero modes.

If we wanted to define the mobility edge by the lowest
mode at which propagation sets in, we would have to
conclude that the mobility edge is at � � 0 and that the
(quenched) QCD vacuum is critical in the whole lower part
(� < 200 MeV) of the spectrum, very analogous to certain
2D or 3D disordered condensed-matter systems [85]. The
level compressibility (not described in this paper) supports
this analogy.

What changes in the vacuum picture if we would restrict
our analysis of the vacuum structure to the lowest part of
the spectrum? If the topological density is ultraviolet-
filtered by truncating its definition to the lowest modes,
the emerging picture is completely different from what we
have outlined above. The topological charge density cor-
relator would now resemble the presence of clusters of
finite extent being subject to some weak but nontrivial
intercluster correlations, increasing with the cutoff �cut.
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FIG. 30 (color online). The dependence of the pion propagator
for various t (see legend box) on the number of accumulated
nonzero modes is presented for the 163 � 32 lattice ensemble
generated at � � 8:45.
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FIG. 29 (color online). The full pion propagator compared
with the contribution of the zero modes alone and the cumulative
approximation by various numbers of nonzero modes (see
legend box) is shown in analogy to Fig. 1. For this calculation
250 configurations have been used from the 163 � 32 lattice
ensemble generated at � � 8:45.
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This picture is basically reproduced by the cluster analysis
and the random walker algorithm.

In the appendix we summarize our main results con-
cerning the dimensionality of the all-scale and of the
mode-truncated (ultraviolet-filtered) topological charge
densities (Tables V and VI) and of the scalar density of
zero modes and selected nonzero modes (Tables VII and
VIII). Here we also test the reliability of the ‘‘covering
sphere method’’ introduced in Sec. IV D that attempts to
estimate the effective dimensionality by the growth of the
integrated quantity under consideration (the topological
charge and scalar density) with the radius of a sphere
covering a cluster. Although this latter method clearly
defines a certain cutoff that separates a linear growth
from a nonlinear one in both cases, the estimated dimen-
sionalities do not coincide with the random walker method.
This shows that the density inside the clusters is very
inhomogeneous.

Concerning the all-scale topological density, it is re-
markable that at low values of the density (at the lowest
cutoff qcut defining the clusters) the dimensionality is
practically independent of the lattice cutoff a and becomes
almost equal to three. The covering sphere method finds it
to be somewhat bigger than three. At higher values of the
density smaller dimensionalities are found. There the cov-
ering sphere method gives an effective dimension equal to
one; i.e., the charge inside a cluster grows linearly with the
size. For the mode-truncated density at lowest values of the
density (at a low cutoff defining the clusters) the clusters’
dimensionality surprisingly is also close to 3. How the
infrared clusters (with a fixed �cut) start to percolate we
can describe in the following way: at high values of the
density they are well-separated and localized to zero-
dimensional balls or one-dimensional rods of finite thick-
ness, before they start to percolate at a somewhat lower
density with an effective dimension still relatively low,
d� � 1:5–2. Finally, at even lower values of the density,
they become extended in essentially three dimensions with
an a-independent thickness of O��QCD�.

A nonvanishing local chirality X��x� is assumed by
individual lower-lying nonzero modes in regions of their
preferential localization [i.e., at high scalar density p�x�].
This effect could be demonstrated to be correlated to the
ultraviolet-filtered topological density q� over a distance
comparable to the correlation length of the density itself.
Here we can say only that this ultraviolet-filtered density
results from the correlated behavior of all lowest-lying
modes. On the other hand, this type of correlation of X�
with the topological charge density is a natural conse-
quence in the instanton model where the topological
charge is simply carried by the semiclassical background
and the nonzero modes are superpositions of the (anti-)
instantons’ zero modes.

The all-scale topological density does not follow this
pattern. It deserves its name at low cutoff qcut where it
combines long-range coherence on one hand and lower-
dimensional, i.e., singular structure on the other. When the
cutoff is increased, percolation breaks down, and an in-
creasing number of isolated clusters appears with lower
and lower dimensions. In this sense the all-scale topologi-
cal density is multifractal, too. It should be noted that the
maximal number of these clusters seems to depend only on
the lattice size in lattice units. In a given physical volume it
diverges with the lattice spacing a! 0.

Applying the same methods to the scalar density of
individual modes (from zero modes up to the highest
analyzed modes) we also have found that at a very low
cutoff pcut they do not extend isotropically but show a
lower-dimensional structure. At the lowest cutoff the ef-
fective dimension ranges from two-dimensional for zero
modes and the very first nonzero modes to three-
dimensional for the modes up to the 120th nonzero
mode. This means that all of the modes that are sufficient
to saturate the pion propagator share this property of low
dimensionality. This is in agreement with the critical level
statistics (being ‘‘nonmetallic’’ following the condensed-
matter terminology).

In summary, we can state that at sufficiently low density
[q�x� or p�x�] we find consistently a dimensionality d� � 3
to characterize most considered densities. The only excep-
tions are the very lowest modes which show a two-
dimensional structure with respect to the growth of the
integrated norm. This special feature corroborates the av-
erage properties that have been concluded from the scaling
behavior of the IPR.

It is remarkable that the mode-truncated topological
charge density percolates already at a relatively low (vol-
ume) packing fraction, when its domains have a finite
extension, forming coherent clusters of finite thickness
O��CD�. This is impossible for the all-scale topological
density. This kind of clustering of the ultraviolet-filtered
topological charge is corroborated by the search for (anti-)
self-dual domains, employing the ultraviolet-filtered field
strength tensor. The latter can be defined by means of the

FIG. 31 (color online). The effective-mass plot vs. t for the
163 � 32 lattice ensemble generated at � � 8:45. This is shown
for the full pion propagator and for various numbers (see legend
box) of nonzero modes included in the approximation.
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overlap operator, too, employing filtering in the form of
truncating the spectral representation.

In conclusion, the vacuum picture exhibited by the
modes that are sufficient to build up the pion propagator
resembles a dilute liquid of separated (anti-)self-dual ex-
citations at higher cutoff qcut of the topological charge
density and a dilute, percolating network at lower cutoff.
The less-than-three-dimensional pinning down of the very
lowest modes at very high scalar density p�x� [and of the
topological density at very high values of q��x�] might be
related to singular (confining) excitations such as mono-
poles or vortices. This possibility is presently under inves-
tigation. In particular, the two-dimensional structure of the
zero modes (with pointlike peaks on top of the latter)
intriguingly suggests that they are pinned to vortex sur-
faces and vortex intersections [86]. In this sense we may
conjecture that the lowest part of the fermion spectrum is
both realizing chiral symmetry breaking and tracing the
agents of confinement. This would be close in spirit to
recent attempts in the literature to extract the dynamics of
the Polyakov loop from the spectral properties of the Dirac
operator [87–89].

It will be our next task to extend these studies to finite
temperature and full QCD in order to disclose the changes
of topological structure under the influence of dynamical
quarks and those accompanying the chiral phase transition.
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APPENDIX: TABLES OF DIMENSIONS

TABLE V. Effective dimension d� of the leading cluster of the
topological charge density based on the random walker ap-
proach. Dimensions referring to the percolating regime are
printed in bold. The data are averaged over the 123 � 24 (163 �
32) lattice ensemble at � � 8:10 (� � 8:45�.

qcut=qmax 0.00 0.10 0.20 0.30 0.40 0.50

123 � 24 all-scale 2:7�1� 1:5�1� 1:1�1� 0.7(1) 0.4(1) 0.1(1)
123 � 24 �cut � 200 MeV 3:1�1� 1:8�1� 1:5�1� 1.0(1) 0.7(1) 0.2(1)
123 � 24 �cut � 800 MeV 3:0�1� 1:8�1� 1:5�1� 1:0�1� 0.7(1) 0.2(1)
163 � 32 all-scale 2:6�2� 1:5�1� 1:1�1� 0.9(1) 0.5(1) 0.1(1)
163 � 32 �cut � 200 MeV 3:0�1� 2:1�1� 1:8�1� 1.2(1) 0.8(1) 0.3(1)
163 � 32 �cut � 634 MeV 3:0�1� 1:9�1� 1:7�1� 1.2(1) 0.7(1) 0.3(1)

TABLE VI. Effective dimension of the leading cluster of the
topological charge density based on the covering sphere method.
The data are averaged over the 123 � 24 (163 � 32) lattice
ensemble at � � 8:10 (� � 8:45�.

qcut=qmax 0.00 0.10 0.20 0.30 0.40 0.50

123 � 24 all-scale 3:3�1� 3:1�1� 1 1 1 1
123 � 24 �cut � 200 MeV 2:5�2� 1 1 1 1 1
123 � 24 �cut � 800 MeV 2:9�1� 1:8�1� 1 1 1 1
163 � 32 all-scale 3:3�1� 3:3�1� 2:5�1� 1 1 1
163 � 32 �cut � 200 MeV 1:9�1� 1 1 1 1 1
163 � 32 �cut � 634 MeV 2:3�1� 1 1 1 1 1

TABLE VII. Effective dimension d� of the leading cluster of
the scalar density based on the random walker approach. The
data are averaged over the 163 � 32 lattice ensemble generated
at � � 8:45. Dimensions referring to the percolating regime are
printed in bold.

pcut=pmax 0.00 0.10 0.20 0.30 0.40

Zero modes 3:6�2� 2:8�2� 2:0�2� 1.4(1) 1.1(1)
1st nonzero mode 3:5�1� 2:9�2� 1:9�2� 1.4(1) 1.1(1)
10th nonzero mode 3:6�2� 3:0�2� 2:2�2� 1:6�1� 1:1�1�
30th nonzero mode 3:5�1� 3:2�2� 2:6�1� 2:0�1� 1:4�1�
50th nonzero mode 3:6�2� 3:3�1� 2:8�1� 2:1�1� 1.5(1)
70th nonzero mode 3:6�2� 3:4�1� 2:9�1� 2:2�1� 1:6�1�
90th nonzero mode 3:5�2� 3:3�2� 3:0�1� 2:4�1� 1:7�1�
120th nonzero mode 3:6�2� 3:4�2� 3:1�1� 2:5�1� 1:8�1�

TABLE VIII. Effective dimension of the leading cluster of the
scalar density based on the covering sphere method. The data are
averaged over the 163 � 32 lattice ensemble generated at � �
8:45.

pcut=pmax 0.00 0.10 0.20 0.30 0.40

Zero modes 1:9�1� 1 1 1 1
1st nonzero mode 2:1�1� 1 1 1 1
10th nonzero mode 2:5�1� 1 1 1 1
30th nonzero mode 2:9�1� 2:3�1� 1 1 1
50th nonzero mode 2:9�1� 2:4�1� 1 1 1
70th nonzero mode 3:0�1� 2:7�1� 1:9�1� 1 1
90th nonzero mode 3:1�1� 2:6�1� 1:9�1� 1 1
120th nonzero mode 3:1�1� 2:9�1� 2:3�1� 1 1
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[62] M. Göckeler, A. S. Kronfeld, M. L. Laursen, G.

Schierholz, and U. J. Wiese, Phys. Lett. B 233, 192 (1989).
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