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We present results for phase structure of lattice QCD with two degenerate flavors (Nf � 2) of Wilson
quarks at finite temperature T and small baryon chemical potential �B. Using the imaginary chemical
potential for which the fermion determinant is positive, we perform simulations at points where the ratios
of pseudoscalar meson mass to the vector meson mass m�=m� are between 0.943(3) and 0.899(4) as well
as in the quenched limit. By analytic continuation to real quark chemical potential �, we obtain the
transition temperature as a function of small �B. We attempt to determine the nature of transition at
imaginary chemical potential by histogram, Monte Carlo (MC) history, and finite size scaling. In the
infinite heavy quark limit, the transition is of first order. At intermediate values of quark mass mq
corresponding to the ratio of m�=m� in the range from 0.943(3) to 0.899(4) at a�I � 0:24, the MC
simulations show the absence of phase transition.
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I. INTRODUCTION

QCD at finite temperature and density is of fundamental
importance, both on theoretical and phenomenological
grounds. It describes relevant features of particle physics
in the early universe, the neutron stars, and the heavy ion
collisions. At high density and low temperature, some
QCD-inspired models suggest a complicated phase struc-
ture [1], and at sufficiently high temperature and small
density, QCD predicts a transition (in this paper ‘‘transi-
tion’’ refers to the change in dynamics, irrespective of the
order of the phase transition) from low temperature had-
ronic matter to high temperature quark gluon plasma
(QGP). Probing this transition is one of the main purposes
of the experiments of SPS, LHC (CERN), and RHIC
(Brookhaven). Because QCD is strongly interacting, per-
turbative methods do not apply, and the only first principles
method to investigate these transitions is by means of
lattice Monte Carlo (MC) simulation. However, lattice
MC simulation is based on importance sampling, which
cannot be directly applied to the nonzero baryon density
case because of the complex fermion determinant [2] for
SU(3) gauge theory.

Enormous efforts have been made to solve this complex
action problem. Fodor and Katz used a two-dimensional
generalization of the Glasgow reweighting method [3] to
study the phase diagram of lattice QCD with Kogut-

Susskind (KS) fermions [4]; Allton et al. [5] attempted to
improve this method by Taylor expansion of the fermionic
determinant and observables around � � 0.

The imaginary chemical potential method [6,7] has also
been employed to circumvent the ‘‘sign problem.’’ D’Elia
and Lombardo [7] applied it to investigate the phase dia-
gram of lattice QCD with four flavors of KS fermions. De
Forcrand and Philipsen studied the phase diagram of lattice
QCD with two flavors [6], three flavors, and (2� 1) flavors
[8] of KS fermions.

Monte Carlo simulation with imaginary � has a couple
of technical advantages. It is computationally simple and
allows control over the systematic error by fitting the non-
perturbative data to a Taylor series. Furthermore, it is a
good testing ground for effective QCD models: analytic
results can always be continued to imaginary � and be
compared with the numerics there. The main disadvantage
of this approach is its limitation to the range j�j=T < �=3
[6].

The KS fermion and Wilson fermion approach have
their own advantages and disadvantages. The KS fermion
formalism preserves the U(1) chiral symmetry, whereas it
does not completely solve the species doubling problem.
One staggered flavor at lattice corresponds to four flavors
in the continuum limit and in simulation the fermion
determinant is replaced by its fourth root. Such a replace-
ment is mathematically unjustified [9], and it might lead to
the locality problem in numerical simulations [10]. In
Ref. [11], it is pointed out that the fourth root of the
staggered fermion determinant has phase ambiguities
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which become acute when Re��� exceeds half of the pion
mass.

Although Wilson fermions explicitly break the chiral
symmetry which is one of the most important symmetries
of QCD, they completely solve the species doubling prob-
lem. So it is of interest to investigate QCD phase diagram
with them.

In this paper, we attempt to investigate lattice QCD with
two degenerate flavors of Wilson fermions. In Sec. II, we
define the lattice action with imaginary chemical potential
and the physical observables we calculate. Our simulation
results are presented in Sec. III followed by discussions in
Sec. IV.

II. LATTICE FORMULATION WITH IMAGINARY
CHEMICAL POTENTIAL

The partition function of the system with Nf degenerate
flavors of quarks with chemical potential on the lattice is

 Z �
Z
�dU��d � ��d �e�Sg�Sf �

Z
�dU��detM�U��Nfe�Sg ;

(1)

where Sg is the Yang-Mills action, and Sf is the quark
action with the quark chemical potential �. Here � �
�R � i�I, �R, �I 2R. For Sg, we use the standard
one-plaquette action

 Sg � �
�
6

X
p

Tr�Up �U
y
p � 2�; (2)

where � � 6=g2, and the plaquette variable Up is the
ordered product of link variables U around an elementary
plaquette. For Sf, we use the Wilson action

 Sf �
XNf
f�1

X
x;y

� f�x�Mx;y�U; �;�� f�y�; (3)

where � is the hopping parameter, related to the bare quark
mass m and lattice spacing a by � � 1=�2am� 8�. The
fermion matrix is
 

Mx;y�U;�;�� � �x;y � �
X3

j�1

��1� �j�Uj�x��x;y�ĵ

� �1� �j�U
y
j �x� ĵ��x;y�ĵ�

� ���1� �4�ea�U4�x��x;y�4̂

� �1� �4�e
�a�Uy4 �x� 4̂��x;y�4̂�: (4)

In this paper, we use as our observables the mean value
of the plaquette which we denote by P, the Polyakov loop
L, and the chiral condensate �  , we also calculate their
susceptibilities �.

The Polyakov loop L is defined as the following:

 hLi �
�

1

V

X
x

Tr
�YNt
t�1

U4�x; t�
��
; (5)

here and in the following, V is the spatial lattice volume.
The chiral condensate �  is given by [12]

 h �  i �
1

VNt

4�Nf
2

Re
�

Tr
1

My

�
: (6)

The susceptibility of Polyakov loop �L is

 �L � Vh�L� hLi�2i: (7)

The susceptibility of plaquette variable �P and the sus-
ceptibility of chiral condensate � �  are defined as

 �P � VNth�P� hPi�2i; (8)

 � �  � VNth� �  � h �  i�2i; (9)

where Nt is the number of temporal sites of the lattice.
At high temperature, QCD with massless quarks is

believed to restore the chiral symmetry which is sponta-
neously broken. This is the chiral transition and the chiral
condensate is the order parameter. However, due to the fact
that our definition of chiral condensate for Wilson fermions
is the naive definition and the Wilson fermions explicitly
breaks the chiral symmetry, the meaning of h �  i at � � �c
is not clear. One should make a subtraction to compensate
for the additive renormalization of the quark mass [13]. A
properly subtracted chiral condensate h �  i can be defined
via an axial vector Ward-Takahashi identity [14].
Nevertheless, we employ the naively defined h �  i and
the susceptibility on which we do not make a subtraction
to compensate for the influence of the Wilson term.

However, when the system is at crossover or criticality,
these physical observables will display sharp changes and
their susceptibilities will display a peak, from which we
determine the transition point.

In a finite volume, the susceptibilities are always ana-
lytic functions, even in the regime where phase transitions
occur. However, in the infinite volume limit, phase tran-
sitions reveal themselves through the divergences of the
susceptibilities, whereas for crossover, susceptibilities are
finite. The order of the transitions can be determined by the
finite size scaling of the susceptibilities. The susceptibility
at transition point �max behaves as �max / V	, with 	 the
critical exponent. If 	 � 0, the transition is just a cross-
over; if 0<	< 1, it is a second order phase transition; if
	 � 1, it is a first order phase transition, accompanied by
the double peak structure in the histogram of the observ-
able and flip-flops between the two states in the MC history
[15].

Since the effect of the Wilson term is not subtracted and
its volume dependence is nontrivial, whether the finite
volume scaling behavior of the chiral susceptibility is
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consistent with the scaling behavior described above is an
open question.

We also calculate the chiral condensate which is defined
via an axial Ward-Takahashi identity [14]; we will refer to
it as subtracted chiral condensate and denote it by h �  isub,
and this properly defined h �  isub was employed in
Refs. [16,17],

 h �  isub � 2mqaZ
X
x

h��x���0�i; (10)

where Z is the normalization coefficient, and the tree value
of it is �2��2 which is sufficient for our study. The current
quark mass mq is defined through [14,18]

 2mqh0jPj�� ~p � 0�i � �m�h0jA4j�� ~p � 0�i; (11)

where P is the pseudoscalar density � �5 , A4 is the fourth
component of the local axial vector current � �5�4 , and
j�i and j0i stand for the pion and vacuum state, respec-
tively. On the lattice at finite temperature

 2mq � m�lim
z�1

R�z�; (12)

with

 R�z� � �

h
P
x;y;t
Az�x; y; z; t���0�i

h
P
x;y;t
��x; y; z; t���0�i

: (13)

III. MC SIMULATION RESULTS

In this section, we will present our results for simulating
QCD with two degenerate flavors of Wilson fermions at
finite temperature T and imaginary chemical potential i�I.
The � algorithm [19] with a Metropolis accept/reject step
is used. To determine the pseudotransition point �c�a�I�,
we use the Ferrenberg-Swendsen reweighting method [20].
The simulations are performed on the V 	 Nt � 83 	 4
lattice at � � 0, 0.005, 0.165. The molecular dynamics
time step �
 is chosen in such a way that the acceptance

rate is approximately 80%–90% otherwise stated. There
are 20 molecular steps for each trajectory. We generate
20 000 trajectories after 5000 trajectories of warm-up. Ten
or 20 trajectories are carried out between measurements.
To determine the order of phase transition at some parame-
ters, larger lattices are also used for finite size scaling.
When calculating the quark mass mq, we perform simula-
tions on the 82 	 20	 4 lattice while keeping other pa-
rameters unchanged. We use the conjugate gradient
method to evaluate the fermion matrix inversion.

A. RW TRANSITION AT IMAGINARY CHEMICAL
POTENTIAL

In this section, we present the results of simulation for
addressing the Z�3� transition, and the simulation is per-
formed with �
 � 0:02 for which the acceptance rate is
approximately 90%–95%.

The SU(3) gauge theory with fermions at imaginary �
has periodicity with period 2�T=Nc [6,7,21]. In the high
temperature deconfined phase, there is a first order phase
transition between different Z(3) sectors, while in the low
temperature phase, the transition becomes a crossover at
some critical imaginary chemical potential values �c

I
[6,7,21],

 

�c
I

T
�

2�
Nc

�
k�

1

2

�
: (14)

The different Z(3) sectors can be distinguished from each
other by the phase of the Polyakov loop. In our case, i.e.,
Nc � 3 and Nt � 4, the first Roberge-Weiss (RW) transi-
tion to different Z(3) sectors should appear at a�I �
�=12 
 0:262. Because the system will tunnel into the
unphysical Z(3) sector above �I=T � �=3, our method
is limited up to �I=T � �=3.

Figure 1 shows the history and probability distribution
of the phase ’ of the Polyakov loop at a�I � 0:262, � �
0:165, and � � 5:260. Figure 2 shows ’=� as a function
of a�I at some different values of �. These indicate that at

FIG. 1. Histogram of ’=� at the RW transition point a�I � �=12 
 0:262, where ’ is the Polyakov loop phase.
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a�I 
 0:262, and T > TE (where � is larger than [5.245,
5.255]), there is a first order phase transition with h’i
changing between values of 0 and �2�=3.

B. DECONFINEMENT TRANSITION AT
IMAGINARY CHEMICAL POTENTIAL

In order to investigate the deconfinement transition, we
take measurements of plaquette variable P, Polyakov loop
norm jLj, chiral condensate �  and their susceptibilities
�P; �jLj; � �  , and the subtracted chiral condensate h �  isub

in the first Z(3) sector a�I < ��=3Nt� at a�I � 0:0, 0.10,
0.14, 0.18, 0.21, 0.24 at � � 0:165 by using the Ferrenberg-
Swendsen reweighting method.

The values of � at which we make simulations for the
Ferrenberg-Swendsen reweighting method and the quark
and meson �;� screening mass are presented in Table I
except for a�I � 0:10, 0.18. In order to calculate the
subtracted chiral condensate, we must know the quark
mass first. At a�I � 0:10, 0.18, the values of � at which
we make simulations are the same as those at a�I � 0:0
and we use the quark masses obtained at the four different
values of � at a�I � 0:0 and a�I � 0:21 as the quark
masses at a�I � 0:10 and a�I � 0:18, respectively. For
the quark mass differs slightly at the same � and different
a�I.

The values of the plaquette, Polyakov loop norm, chiral
condensate, and their susceptibilities are plotted in Figs. 3
and 4, respectively (we only plot them for three values of
a�I for clarity). We also display the values of the sub-
tracted chiral condensate for only three values of a�I in
Fig. 5. These observables at other a�I’s have similar
behavior as shown in Figs. 3–5.

From Figs. 3 and 5, one sees that around the same �’s,
the values of P, jLj, �  and the subtracted chiral conden-
sate h �  isub change rapidly and the value of �  is larger
than that of h �  isub at the same � and a�I. Figure 4 tells
that the locations of the peaks for �P, �jLj, � �  are con-
sistent with each other within errors. We determine the

transition points �c�a�I� from the locations of suscepti-
bility peaks; the results are listed in Table II.

In Ref. [6], it has been established in detail that because
the partition function Z as an even function of a� leads to
an even susceptibility �, and at the transition points,
@�=@� � 0, this expression implicitly defines �c�a�� as
an even function of the real chemical potential a� due to
implicit function theorem; that when the purely imaginary
chemical potential is considered, the considerations are
unchanged, so, the pseudocritical line of the transition at
imaginary chemical potential is simply the analytic con-
tinuation of the pseudocritical line at real chemical poten-
tial; hence the pseudocritical transition line at imaginary
chemical potential �c�a�I� is an even function of a�I and
can be fitted well by a polynomial of degree one in �a�I�

2

without taking into account the term of degree two in
�a�I�

2, that is to say

 �c�a�I� � c0 � c1�a�I�
2 �O�a4�4

I �: (15)

After we obtain the expression for �c�a�I� as a polyno-
mial of �a�I�

2, we continue back to the real chemical
potential and get �c�a�� as a function of a�.

We use the least squares method to fit the data in
Table II, the coefficients and �2=dof are listed in
Table III. The fitting range and the line are presented in
Fig. 6. From Fig. 6, we find that the coefficients of terms in
�a�I�

2 with higher order than one are difficult to be
determined with high precision. From Table III, we can
find that the fitting result from the chiral condensate is
better than the results from P and L, so our choice for the
pseudocritical transition line is

TABLE I. Results of the �, � meson and twice quark screen-
ing mass for Nf � 2 on 82 	 20	 4 lattice. The acceptance
rates are approximately 75%–83%, with the exception at a�I �
0:24, � � 5:24; at that point, the acceptance rate is 70%.

a�I � m�a 2mqa m�a

0.00 5.195 1.244(2) 0.4193(9) 1.354(2)
5.215 1.301(2) 0.2550(5) 1.410(1)
5.235 1.327(2) 0.1893(4) 1.437(1)
5.255 1.354(2) 0.1386(2) 1.455(1)

0.14 5.195 1.203(2) 0.4542(9) 1.298(2)
5.215 1.217(2) 0.3286(7) 1.290(2)
5.235 1.301(2) 0.2024(3) 1.328(2)
5.255 1.320(2) 0.1546(2) 1.345(2)

0.21 5.195 1.182(3) 0.461(1) 1.274(2)
5.215 1.140(2) 0.421(1) 1.228(2)
5.235 1.177(3) 0.2527(7) 1.201(2)
5.255 1.278(2) 0.1558(3) 1.237(2)

0.24 5.200 1.169(2) 0.456(1) 1.263(2)
5.220 1.117(3) 0.416(1) 1.211(2)
5.240 1.098(3) 0.338(1) 1.148(3)
5.260 1.242(3) 0.1013(2) 1.192(2)

FIG. 2. h’i=� as a function of a�I for some different values of
�.
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 �c�a�I� � 5:201�3� � 0:722�80��a�I�
2 �O�a4�4

I �:

(16)

The errors are the fit errors.
We estimate the pseudoscalar meson mass m�, the vec-

tor meson mass m�, and their ratio m�=m� at our simula-
tion points from the data in Ref. [22]. By using the standard

quark and gauge action, Bitar et al. found that at � � 0:16,
� � 5:28, am� � 1:213� 0:004, and am� � 1:287�
0:0005, at � � 0:17, � � 5:12 , am� � 1:088� 0:003,
and am� � 1:210� 0:005. Our critical � values range
from � � 5:199 to � � 5:243 at � � 0:165, so we es-
timate that at the transition points in our simulation,
am�’s are in the interval from 1:213� 0:004 to 1:088�
0:003, am�’s from 1:287� 0:0005 to 1:210� 0:005, and
the ratios of m�=m� are between 0.943(3) and 0.899(4).

FIG. 4. Susceptibilities for the plaquette, the Polyakov loop
norm, and the chiral condensate at � � 0:165.FIG. 3. Mean values of the plaquette, the Polyakov loop norm,

and the chiral condensate at � � 0:165.
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C. DECONFINEMENT TRANSITION AT REAL
CHEMICAL POTENTIAL �

Now it is trivial to get the pseudocritical line on the
��; T� plane. Because �c�a�I� is an analytic function of
a�I [6], we can analytically continue from the imaginary
chemical potential to the real one. Replacing �I by�i� in
Eq. (16), we obtain �c�a��,

 �c�a�� � c0 � c1�a��
2 �O�a4�4�

� 5:201�3� � 0:722�80��a��2 �O�a4�4�: (17)

To translate our result into a physical unit, we use the two
loop perturbative solution to the renormalization group
equation between the lattice spacing a and �:

 a�L � exp
�
�

1

12b0
��

b1

2b2
0

ln
�

1

6b0
�
��
;

b0 �
1

16�2

�
11�

2

3
Nf

�
;

b1 �

�
1

16�2

�
2
�
102�

38

3
Nf

�
:

(18)

From this and T � 1=�aNt�, we obtain

 

Tc���
Tc�0�

�
a��c�0���L

a��c�����L
(19)

by replacing a with 1=�NtTc�, it gives

 

Tc���
Tc�0�

�
exp�� 1

12b0
c0�

b1

2b2
0
ln� 1

6b0
c0��

expf� 1
12b0
�c0�c1�

�
NtTc
�2�� b1

2b2
0
ln� 1

6b0
�c0�c1�

�
NtTc
�2��g

:

(20)

By expanding the right-hand side of Eq. (20) as a series of
�2 and neglecting the higher order terms, we can obtain the
expression of Tc as a function of �2

B.

 

Tc��B�

Tc��B � 0�
� 1� 0:007 22�80�

�
�B

T

�
2
; (21)

where the baryon chemical potential �B is related to the
quark chemical potential by � � �B=Nc and the error
only reflects the error on c1. Tc��B � 0� is set by the
critical temperature for 2-flavor QCD at �B � 0.

Recently, Bernard et al. [23] studied the transition tem-
perature of 3-flavor, (2� 1)-flavor QCD, they obtained
Tc � 169�12��4� MeV or Tc � 174�11��4� MeV for
(2� 1)-flavor. Cheng et al. [24] performed a calculation
of the transition temperature of (2� 1)-flavor QCD, and
Tc � 192�7��4� MeV is their result. Karsch, Laermann,
and Peikert obtained Tc�� � 0� � 173�8� MeV in the chi-
ral limit for staggered fermions [25]. Ali Khan et al. used a
renormalization group-improved gauge action and clover-
improved Wilson quark action to investigate 2-flavor QCD

FIG. 6. Locations of the pseudocritical coupling determined
from � �  ; the line shows the fit.

FIG. 5. Mean values of the subtracted chiral condensate at � �
0:165.

TABLE III. Coefficients of Eq. (15) by fitting the data in
Table. II

c0 c1 �2=dof

�C from �P 5.200(3) 0.748(79) 0.057
�C from �L 5.201(3) 0.738(78) 0.075
�C from � �  5.201(3) 0.722(80) 0.104

TABLE II. Collection of pseudocritical transition points at
� � 0:165, determined by locating the peaks of the susceptibil-
ities.

a�I 0.00 0.10 0.14 0.18 0.21 0.24

�C from �P 5.199(5) 5.208(4) 5.215(7) 5.226(4) 5.233(3) 5.243(3)
�C from �L 5.199(5) 5.209(4) 5.215(5) 5.226(4) 5.233(3) 5.243(3)
�C from � �  5.200(5) 5.208(4) 5.218(7) 5.226(5) 5.234(4) 5.242(3)
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and they obtained Tc�� � 0� � 171�4� MeV [17]. The
result of Karsch et al. and Ali Khan et al. are consistent
with each other. If we take 173(8) MeV as Tc��B � 0�,
then the transition temperature for Nf � 2 is described by
a line illustratively plotted in Fig. 7 from which we can see
that Tc decreases with increasing �B.

The imaginary chemical potential method is valid in the
range �B=T � �, and the pseudocritical � is a polynomial
of �a�I�

2. However, the data in Fig. 6 imply that we can
only calculate the first two coefficients of the polynomial

with high precision, so the continuation from an imaginary
chemical potential to a real one is restricted in the range of
small a� and therefore Eq. (21) is valid in the range of
small �B.

D. NATURE OF PHASE TRANSITION

In order to determine the nature of the phase transition
with imaginary chemical potential, we investigate the his-
tory, histogram, and finite size scaling of MC simulation at
� � 0, 0.005, 0.165. On lattice 83 	 4, 123 	 4, 163 	 4, at
� � 0 which corresponds to the quenched limit or pure
gauge theory, we find the critical � is 5.70 by determining
the location of the peak of �jLj. The value of �c is con-
sistent with the result of Refs. [26,27]. We plot the history
and histogram of hjLji around critical �c � 5:70 in Fig. 8.
From the histogram and MC history of hjLji, we see that
near � � 5:70, there are two-state signals which are an
indication of first order phase transition.

Because at � � 0:0, quarks have no effect on the system,
and it is natural that the value of�c and the two-state signal
are the same for other values of a�I in the quenched limit.
So we conclude that at other values of a�I in the quenched
limit, the phase transition is of first order. We also make
simulations at � � 0:005 on lattice 83 	 4; the result is
presented in Fig. 9 which tells us that for very heavy
quarks, the system with imaginary chemical potential has
the feature of first order transition.

In order to estimate the lattice spacing at � � 5:70, we
use the results in Ref. [27] from which we know that at
� � 5:6925�2� with the temporal extent Nt � 4 at the

FIG. 8. Time history and histogram of the Polyakov loop at � � 0:0.

FIG. 7. Illustrative figure of transition temperature as a func-
tion of�B. The dotted lines reflect the error on c1; the error bar is
due to the uncertainty in Tc�0�.
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infinite volume,
����
�
p

a � 0:4179�24�, � is the string ten-
sion. Using

����
�
p
� 420 MeV, we estimate that the lattice

spacing a 
 0:995 GeV�1.
At � � 0:165, a�I � 0:24, the critical � is 5.242(3) or

5.243(3), and � � 5:244 is consistent with them within
errors, so at � � 5:244, we can evaluate the spatial depen-
dence of susceptibilities of the Polyakov loop norm and its
time history and histogram on lattice of spatial size of 83,
103, 123, 143, 163, 183, 203 with temporal extent Nt � 4
with acceptance rate 82%, 81%, 75%, 68%, 67%, 55%,
51%. We generate 1000 configurations except on lattice
123 	 4 where 2000 configurations are generated. We
present the spatial dependence in Fig. 10 and the time
history and histogram on lattice 83 	 4, 123 	 4, 163 	
4, and 203 	 4 in Fig. 11.

From Fig. 10 we find that the peak heights of the
Polyakov loop norm susceptibilities are approximately
the same except for spatial volume 123, 183. On lattice
123 	 4, as a comparison, we measure �jLj after the first

FIG. 11. History and histogram of the Polyakov loop norm at different spatial volume at a�I � 0:24.

FIG. 10. Peak heights of susceptibility of the Polyakov loop
norm as a function of spatial volume at a�I � 0:24.

FIG. 9. Time history and histogram of the Polyakov loop norm at � � 0:005.
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1000 configurations are produced, and we find that �jLj �
21:74�9:46�, while �jLj � 16:38�5:47� after the statistic is
doubled. We can expect that when the statistic is large
enough, the values of �jLj and their errors on lattice 123 	

4; 183 	 4 will decrease. The history and histogram of the
Polyakov loop norm plotted in Fig. 11, together with the
peak height change with spatial volume, shows that the
transition at a�I � 0:24 is a crossover.

IV. DISCUSSION

We have studied the phase diagram of lattice QCD with
the 2-flavor of Wilson fermions through the simulations
with imaginary chemical potential. In this case the parti-
tion function is periodic in the imaginary chemical poten-
tial. The different Z(3) sectors are characterized by the
phase of the Polyakov loop. The Z(3) transition which
occurs at �I=T � 2��k� 1=2�=3 is of first order in the
high temperature phase.

Our study shows that there is a first order phase tran-
sition at � � 0 which corresponds to infinite heavy quarks
or the quenched limit, and it is natural that the �c and
hence the critical temperature have no dependence on the
chemical potential based on the fact that the fermions have
no effect on the system in the quenched limit.

From the experience and literature, we expect that in
general, the lighter the quark mass, the stronger the effect
on the system the fermions have. At � � 0:165, we observe
that the values of P, jLj, �  , and subtracted chiral con-
densate h �  isub change rapidly around �c and the transi-
tion points determined from the susceptibilities of P, jLj,
�  coincide with each other within errors. The transition at
� � 0:165 which corresponds to a value of the ratio of
m�=m� in the range from 0.943(3) to 0.899(4) at an imagi-
nary chemical potential a�I � 0:240 is a crossover, as
discussed in the preceding section.

As for the transition temperature as a function of a
chemical potential, as discussed in Ref. [6], the critical
line can be well described by a linear function of �2

B. We
make a simulation at � � 0:165 and have not investigated
the quark mass dependence of our results. Our central
result is represented by Eq. (21) which is qualitatively
consistent with, yet quantitatively slightly different from
that in Ref. [6], taking errors into account. We think that it
is probably because our simulation is at a point of quark
mass larger than that in Ref. [6]. At our simulation points,
the ratio of pseudoscalar meson mass m� to vector meson
mass m� is between 0.943(3) and 0.899(4); these large
ratios mean that the quark mass is large at our simulation
points.

In the process of deriving Eq. (21), we use the 2-loop
perturbative solution to the renormalization group equation
between lattice spacing a and �. However, in our simula-
tions on lattice with Nt � 4, the values of critical � range
from 5.199 to 5.243, and the coupling is so strong that using
the 2-loop expression is not a good choice. One would need
the nonperturbative expression between a and �, but it is
not determined so far. So we have no choice but to use the
2-loop perturbative expression between a and �. It is
known qualitatively that the lattice spacing varies faster
than predicted by the 2-loop perturbative formula at strong
couplings. This will have the effect of increasing the
curvature in Eq. (21).1

Solving Eq. (21), we can obtain the T��B� as a function
of �B. We take 173(8) MeV as Tc��B � 0� and illustra-
tively plot the transition temperature Tc �MeV� versus
baryon chemical potential �B �MeV� in Fig. 7 from which
we find that the transition temperature Tc decreases slowly
with increasing�B. This behavior is in accordance with the
physical picture. With baryon density increasing, the inter-
action between quarks and gluons becomes weaker and
thus quark and gluon degrees of freedom get more easily
excited, therefore, the critical temperature decreases with
increasing baryon chemical potential. As is discussed in
Sec. III C, Eq. (21) is valid in the range of small �B.

In order to get the transition to occur for small m�=m�

and make the use of the 2-loop perturbative relation be-
tween lattice spacing a and � more reliable, lattices with
larger temporal extent Nt would be used. The investigation
of chemical potential dependence of transition temperature
in the chiral limit and quark mass dependence of transition
temperature awaits further work. Moreover, how to extract
the information about the nature of transition with real
chemical potential from the behavior with imaginary
chemical potential remains an open question.
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