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I. INTRODUCTION

We undertake the first numerical study of a four dimen-
sional asymptotically free gauge theory with dynamical
fermions transforming according to the two-index symmet-
ric representation of the gauge group. To be more precise
we consider the simplest of these theories with interesting
dynamics and phenomenological applications, i.e. a two
color gauge theory with two Dirac fermions transforming
according to the two-index symmetric representation. For
two colors the two-index symmetric coincides with the
adjoint representation and the reality of the representation
enhances the quantum flavor symmetry group to SU�4�.
Remarkably this theory coincides with the fermionic sector
of the N � 4 supersymmetric theory with two colors.

Recently it has been argued that this theory lies close to a
nontrivial infrared fixed point [1]. In this case the coupling
constant will run very slowly from the infrared to the
ultraviolet; the coupling is said to walk. By analyzing the
phase diagram as a function of the number of colors and
flavors in SU�N� gauge theories with Dirac fermions in a
given arbitrary representation of the gauge group we have
shown that this theory is minimal in the sense that it is the
theory with the smallest number of flavors (above one)
which exhibits such walking dynamics [2].

The walking dynamics is expected to be dramatically
different than in the QCD case. This is so since the pres-
ence of a nearby IR fixed point should generate an anom-
alously small mass scale and ensure that long distance
quantities are insensitive to the short distance coupling.
The physics of the fixed point theory per se is very inter-
esting and when coupled to nonconformal theories (such as
the standard model) in the way described recently by
Georgi [3] it leads to interesting experimental signatures.
This is so since the presence of a conformal symmetry
signals itself experimentally in a way that formally resem-
bles the production of a noninteger number of massless
invisible particles. The noninteger number is nothing but
the scale dimension of the operator, coming from the
underlying conformal theory, coupled weakly to the stan-
dard model operators. However, as is also stressed by
Georgi, very little is known about conformal or near-
conformal theories in four dimensions because of the

complicated nonperturbative dynamics. Our work should
be considered as a first step in this direction.

In addition, the emergence of a walking property for just
two Dirac flavors renders this theory an ideal candidate to
break the electroweak theory dynamically [1]. This exten-
sion of the standard model passes the stringent electroweak
precision constraints [4]. Moreover, it allows for a success-
ful unification of the standard model couplings [5] and
allows us to construct different types of dark matter can-
didates [6–8].

The lattice results presented in this work support the
theoretical expectations, i.e. that the present theory walks.
To arrive to this conclusion we analyze various physical
quantities on the lattice and then compare them to the ones
for a two color gauge theory with two Dirac flavors in the
fundamental representation of the gauge group. The latter
theory, as is clear from the phase diagram reviewed later, is
very far away from an infrared fixed point. Although our
simulations employ dynamical quarks the lattices we use
are small so these results should only be taken as indicative
of qualitative agreement with the theoretical expectations
and encourage one to embark on a more serious study on
larger lattices.

In the next section we review the expected phase dia-
gram as a function of flavors and colors for nonsupersym-
metric asymptotically free SU�N� gauge theories with Nf
Dirac fermions in a given representation of the gauge group
[2]. Here it is shown that the model we study in this paper is
indeed the theory with the lowest number of Dirac flavors
(above one) able to feature walking. This feature makes
this theory also an ideal candidate when used for breaking
the electroweak theory dynamically. We review the salient
features and the notation here.

We then describe the details of our lattice theory and
simulation algorithm. This is followed by a detailed de-
scription of our numerical results. We compare them to the
theory with fermions in the fundamental representation.
Our results show clear differences between the two theo-
ries—the symmetric quark theory has a behavior similar to
the fundamental quark theory at strong coupling but de-
viates substantially for weak coupling where we observe
substantially lighter hadronic masses.
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II. REVIEW OF SOME THEORETICAL AND
PHENOMENOLOGICAL ASPECTS OF HIGHER

DIMENSIONAL REPRESENTATIONS

The phase diagram of strongly coupled theories is rele-
vant both theoretically and phenomenologically. By com-
paring the dynamics of various strongly coupled theories in
different regimes we acquire a deeper understanding of
nonperturbative dynamics.

A. Conformal window

Recently we have completed the analysis of the phase
diagram of asymptotically free nonsupersymmetric gauge
theories with at least two Dirac fermions in a given arbi-
trary representation of the gauge group as a function of the
number of flavors and colors [2]. With the exceptions of a
few isolated higher dimensional representations below
nine colors (fully investigated in [2]) the main phase
diagram taken from [2] is sketched in Fig. 1. The analysis
exhausts the phase diagram for gauge theories with Dirac
fermions in arbitrary representations and it is based on the
ladder approximation presented in [9,10]. Further studies
of the conformal window and its properties can be found in
[11–13].

In the plot the shaded areas represent the conformal
windows for the fundamental representation, two-index
antisymmetric, two-index symmetric, and adjoint repre-
sentation. For each representation the upper solid curve

represents the loss of asymptotic freedom, the lower curve
the loss of chiral symmetry breaking. The dashed curves
show the existence of a Banks-Zaks fixed point [14]. Note
how consistently the various representations merge into
each other when, for a specific value ofN, they are actually
the same representation.

Remarkably the adjoint and the two-index symmetric
representation need a very low number of flavors, for an
arbitrary number of colors, to be near an infrared fixed
point. For any number of colors, in the case of the adjoint
representation and for two colors in the case of the sym-
metric representation the estimated critical lower number
of flavors above which the theory is already inside the
conformal window and hence no chiral symmetry breaking
occurs is Nc

f � 2:075 [1,2]. Since this theory walks already
for two flavors and hence has also a nontrivial chiral
dynamics it will be denoted the minimal walking theory.

The theoretical estimates of the conformal window pre-
sented above need to be tested further. The very low
number of flavors needed to reach the conformal window
makes the minimal walking theories amenable to lattice
investigations.

We also note that the theory with two colors and two
Dirac flavors in the fundamental representation is very
much below the critical number of flavors needed to de-
velop a nontrivial infrared fixed point and hence it features
QCD-like dynamics.

B. Minimal walking technicolor

New strongly interacting theories can emerge in exten-
sions of the standard model. For example, to avoid unnatu-
rally large quantum corrections to the mass squared of the
elementary Higgs one can replace it by a new strongly
coupled fermionic sector. This is the technicolor mecha-
nism [15]. The generation of the masses of the standard
model fermions requires extended technicolor interactions.
To avoid large flavor-changing neutral currents technicolor
theories possessing a sufficient amount of walking [16–20]
are needed. The simplest of such models which also passes
the electroweak precision tests (like, for example, the
experimental bounds on the oblique parameters) has fer-
mions in higher dimensional representations of the techni-
color gauge group [1,4]. We have shown in [2] that the
minimal walking theory is also the minimal walking tech-
nicolor theory. Such a theory has also a number of desir-
able features. For example, together with a minimal
modification of the SM fermionic matter content it yields
a high degree of unification, at the one loop level, of the
SM couplings [5]. Straightforward extensions of the mini-
mal walking theory able to accommodate extended techni-
color interactions can be constructed [21].

III. LATTICE THEORY

The lattice action we employ consists of the usual
Wilson plaquette term

FIG. 1 (color online). Phase diagram for theories with fermi-
ons in the: (i) fundamental representation, (ii) two-index anti-
symmetric, (iii) two-index symmetric, (iv) adjoint representation
as a function of the number of flavors and the number of colors.
The shaded areas depict the corresponding conformal windows.
The upper solid curve represents the loss of asymptotic freedom,
the lower curve the loss of chiral symmetry breaking. The dashed
curves show the existence of a Banks-Zaks fixed point. Picture
taken from [2].
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together with the Wilson action for two Dirac quarks in the
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where the symmetric links are given by
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and the matrices Sa; a � 1, 2, 3 are a basis for the sym-
metric representation
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We have simulated this theory over a range of gauge
couplings � � 1:5–3:0 and bare quark masses m ranging
from �1:0<m< 1:0 on 43 � 8 lattices using the usual
hybrid Monte Carlo (HMC) algorithm [22]. We have fo-
cused on determining the critical line mc��� needed to
approach the continuum limit and a variety of meson
masses and decay constants. Typically we generate be-
tween 400–2000 � � 1 HMC trajectories. Periodic bound-
ary conditions were used for all fields.

In tandem with these symmetric quark runs we have also
simulated the theory with fundamental quarks. This allows
us to make comparisons at identical lattice volumes and
comparable couplings and masses and helps highlight
the essential differences associated with the walking
dynamics.

IV. NUMERICAL RESULTS

A. Pion and rho mass

We estimate the hadron masses by suitable fits to corre-
sponding time sliced averaged correlation functions

 GO�t� �
X
x;y

h � �x; t��O �x; t� � �y; 0��O �y; 0�i;

where �O � �5 for the pion and �O � ��, � � 1, 2, 3 for
the rho (the latter being averaged over spatial directions
�). In practice we use point sources located at (odd, odd,
odd) lattice sites on the t � 0 time slice. Since our lattices
are so small we have simply thrown out the t � 0 data
point and fitted the remaining correlator to a simple hyper-

bolic cosine of the form aO cosh�mO�t� L=2�� to estimate
the corresponding meson mass mO.

Consider first the usual case corresponding to taking the
quarks to lie in the fundamental representation of the gauge
group. Figure 2 shows curves of the pion mass squared
(lattice units) for fundamental quarks at several values of�
as a function of the bare quark mass m � Ma. At each
coupling � we observe the usual linear variation of m2

�
with bare quark massm. We see that the pion mass attains a
minimum value for some critical quark mass mc��� which
moves towards m � 0 as � increases. This is similar to the
situation in QCD. Notice that the minimal pion mass
increases with � as a result of finite volume effects.

Contrast this behavior with the analogous curves for the
symmetric representation in Fig. 3 for the same bare cou-
plings � and over the same range of bare quark mass m.
Again, a Goldstone behavior is seen over some range of
bare quark mass with a critical quark mass mc��� that runs
towards the origin as � increases. Notice though that this
linear regime appears distorted at larger � which we
interpret to be the result of strong finite volume effects.
This is consistent with the small values for the pion mass
m� � 0:5 observed there. Indeed the minimal pion mass is
a factor of 3–4 times smaller for the symmetric pions than
pions built from fundamental quarks. The appearance of
this light scale is the first indication that the dynamics of
this theory could be quite different from QCD.
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FIG. 2 (color online). Pion mass squared vs quark mass for
fundamental quarks.
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To make this clearer notice that the meson mass in lattice
units is given in general by a pure number times a non-
perturbative lattice scale parameter �latt which is related to
the beta-function in the usual way

 �latt � �physa� e
�
R
�dg�=���g��:

This scale is small if the theory lies close to a zero of the
beta-function. Furthermore, finite size effects are governed
by the quantity �lattL. For fixed L the theory with the
smaller �latt might be expected to exhibit larger finite
size effects—as we observe for the symmetric quark
theory.

However, perhaps the most striking difference between
these symmetric plots and their fundamental cousins is the
nonmonomtonic behavior of the pion mass with increasing
�. For small� the minimal pion mass increases with� in a
way which is similar to the fundamentals. However for
�> 2 the pion mass decreases with further increases in �.
This is consistent with the existence of a beta-function (at
zero quark mass) which resembles that of QCD at strong
coupling but is small for couplings less than some charac-
teristic value. Such a beta-function corresponds to the case
of walking dynamics. Figure 4 gives a schematic picture of
the beta-function and related coupling constant evolution
for such a walking theory.

These differences are also seen in the rho meson.
Figures 5 and 6 show the rho mass (in lattice units) as a
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FIG. 3 (color online). Pion mass squared vs quark mass for
symmetric quarks.

FIG. 4. Top-left panel: QCD-like behavior of the coupling constant as a function of the momentum (running). Top-right panel:
Walking-like behavior of the coupling constant as a function of the momentum (walking). Bottom-right panel: Cartoon of the beta-
function associated to a generic walking theory.
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function of quark mass over the same range of couplings �
for both fundamental and symmetric quarks. Again a mini-
mal rho mass is seen which coincides approximately with
the minimal pion mass and moves towards the origin as �
increases. In our later analysis we have used the minimal
rho mass rather than that of the pion when trying to get an
estimate of the critical line. In the case of fundamental
quarks the observed rho mass increases monotonically
with � but again for symmetrics the minimal rho mass
shows a nonmonotonic behavior with m� initially increas-
ing and then falling as � increases. The similar behavior of
the rho mass to the pion mass for symmetric quarks lends
strong support to the walking hypothesis since the near-
conformal dynamics will suppress the mass of all hadron
states—not just the pi meson.

B. Pion decay constant

To compute the pion decay constant we have also mea-
sured the axial correlator defined by

 GA�t� �
X
x;y

h � �x; t��0�5 �x; t� � �y; 0��5 �y; 0�i: (5)

As for the hadron correlators we discard the t � 0 data
point and fit the remaining function to a hyperbolic sine
function aA sinh�m��t� L=2��. We observe that the pion
mass extracted from this fit is indeed consistent with that
derived from the pion correlator in the physical regime
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FIG. 5 (color online). Rho mass vs quark mass for fundamen-
tal quarks.
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FIG. 6 (color online). Rho mass vs quark mass for symmetric
quarks.
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FIG. 7 (color online). f� vs quark mass for fundamental
quarks.
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m>mc���. An expression for pion decay constant (in
lattice units) is then given by [23]

 

f�
Z
�

aA�������������
a�m�
p em�L=4: (6)

We do not attempt in this paper to determine the renormal-
ization constant Z and hence all results for f� are only
derived up this factor. Figure 7 shows this quantity for a
range of � and quark masses m � mc��� for the theory
with quarks in the fundamental. We see that f� increases as
the critical line is approached with f� taking on a maximal
value there before falling rapidly to zero in the phase with
m<mc���. The value of f� along the critical line falls as
� is increased and the lattice spacing reduced. Equivalent
data for symmetric quarks is shown in Fig. 8. Notice that
the maximal value of f� is about twice that found for
fundamentals (where both are measured in lattice units)
but otherwise the picture is qualitatively similar.
Presumably the fact that f� is larger rather than smaller
for symmetric quarks as compared to fundamentals, con-
trary to naive expectations, could be related to the differing
renormalization constants Z in the two cases.

C. Scaling

To examine the continuum limit in greater detail it is
useful to examine dimensionless quantities as we scan in �
andm. Thus we have examined the ratio f�

m�
which is plotted

in Figs. 9 and 10 over the same range of couplings and
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FIG. 9 (color online). f�
m�

vs quark mass for fundamental
quarks.
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FIG. 8 (color online). f� vs quark mass for symmetric quarks.
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FIG. 10 (color online). f�
m�

vs quark mass for symmetric quarks.
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masses. For both types of representations we see that f�
m�

increases as the quark mass is tuned towards the critical
line. Furthermore there is evidence that for large enough
quark mass the curves for different bare coupling � lie on
top of one another—this was not true for the bare f�.
Notice also that the values of f�m�

for the two representations

are much closer in this region of parameter space.
To extract continuum physics we should look for scal-

ing—dimensionless quantities should become indepen-
dent of coupling along the critical line as �! 1. We
see some evidence for this away from the critical line
where the sets of curves for different bare coupling � lie
on top of one another. This approximate collapse of the
data onto a single scaling curve at intermediate quark
masses happens for both representations of dynamical
quark.

However, if we look at the values of f�
m�

for fundamental

quarks near the critical quark mass m�mc we see that
they decrease with increasing �. This is to be attributed to
finite volume effects—as the lattice spacing decreases the
physical volume also decreases since we use a fixed lattice
volume. The rising rho mass with physical volume then
leads to a falling value for this ratio. Notice also that the f�

m�

falls below the scaling curve as m! mc. This should be
contrasted with the case of the symmetric quarks where the
situation is reversed—the value of the ratio f�

m�
increases above the scaling curve as the quark mass is tuned towards

its critical value.
Figures 11 and 12 show plots of the dimensionless ratio

of pion to rho mass for the two theories. Both show values
which decrease from unity as the critical line is ap-
proached. There is some evidence that the theory with
symmetric quarks exhibits a value of the ratio closer to
unity as the critical line is approached and that this limiting
value is rather insensitive to the bare coupling for large
�—a hint perhaps of walking dynamics.

V. SUMMARY

In this paper we report on the results of lattice simula-
tions of two color QCD coupled to two flavors of quarks in
the symmetric representation of the gauge group. These
studies are motivated by the idea that this theory lies close
to a strongly coupled conformal field theory associated to a
new IR attractive zero of the beta-function. The resultant
theory is expected to exhibit non-QCD-like dynamics and a
slow evolution of the coupling constant over some range of
scales.

To search for these effects we have simulated both the
symmetric quark model and its counterpart employing
fundamental quarks on identical lattice volumes and for
comparable couplings and quark masses. In our simula-
tions we observe several features which distinguish the
symmetric from the fundamental representation. The
most obvious of these can be seen in the hadron masses.
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FIG. 12 (color online). m�
m�

vs quark mass for symmetric quarks.
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vs quark mass for fundamental
quarks.
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While the symmetric pion and rho behave in a qualitatively
similar way to their fundamental counterparts at strong
coupling they depart from this behavior for � * 2:0. In
this regime their (lattice) masses decrease with further
increases in the bare coupling � attaining values substan-
tially smaller than those seen in the theory with fundamen-
tal quarks. This observation is consistent with the existence
of a light scale �latt attributable to walking dynamics.

However, our results can also be interpreted as evidence
that for sufficiently light symmetric quarks and large � the
two color theory has already entered a conformal phase in
which the quarks are deconfined at zero temperature. This
could explain the lack of linear scaling of m2

� with m at
large � since in such a phase chiral symmetry would be
restored. If so, it is unclear whether this is the result of
strong finite volume effects and will disappear on larger
lattices or is a genuine bulk transition occurring for some
�c. If the latter scenario turns out to be true it would imply
that the critical number of flavors needed to access the
conformal phase is smaller than the perturbative estimate
Nc
f � 2:075. Further work on larger lattices will be needed

to answer this question definitively.
In the case of fundamental quarks a much larger number

of flavors is needed to approach the conformal window.
Nevertheless, a small suppression of chiral symmetry
breaking effects was observed in [24]. More recently a
study of QCD with fundamental quarks showed evidence
for an intermediate conformal phase for 7<Nf < 17 [25].

Exploratory simulations of this model with staggered
quarks at finite temperature were conducted earlier [26].
Our results at zero temperature complement and extend
that work.

Clearly our lattices are very small and so our results
should be seen primarily as providing motivation for a
study on larger lattices. Going to larger lattices will allow
us to understand better the finite volume effects clearly
visible in this work, will allow for a more careful study of
the hadron spectrum, and should allow simulations to be
undertaken at smaller cutoff. With a larger lattice it should
also be possible to see direct evidence for walking by
measuring the running of a renormalized coupling ex-
tracted from either the static quark potential or using
Schrödinger functional techniques. This work is currently
underway.

ACKNOWLEDGMENTS

We are happy to thank L. Del Debbio, M. T. Frandsen,
and L. Giusti for helpful discussions. The work of S. C. is
supported in part by DOE Grant No. DE-FG02-
85ER40237 while F. S. is supported by the Marie Curie
Excellence Grant under Contract No. MEXT-CT-2004-
013510 as well as the Danish Research Agency. The nu-
merical work was carried out using USQCD resources at
Fermilab.

[1] F. Sannino and K. Tuominen, Phys. Rev. D 71, 051901
(2005).

[2] D. D. Dietrich and F. Sannino, Phys. Rev. D 75, 085018
(2007).

[3] H. Georgi, Phys. Rev. Lett. 98, 221601 (2007).
[4] D. D. Dietrich, F. Sannino, and K. Tuominen, Phys. Rev. D

72, 055001 (2005); 73, 037701 (2006). Note that we have
also checked that our results do not change when taking
into account the recent drop of the Top mass from the
Tevatron results. We are still within the 68% confidence
level even in the event of a 1 TeV composite Higgs mass.

[5] S. B. Gudnason, T. A. Ryttov, and F. Sannino, arXiv:hep-
ph/0612230 [Phys. Rev. D (to be published)].

[6] K. Kainulainen, K. Tuominen, and J. Virkajarvi, Phys.
Rev. D 75, 085003 (2007).

[7] C. Kouvaris, arXiv:hep-ph/0703266 [Phys. Rev. D (to be
published)].

[8] S. B. Gudnason, C. Kouvaris, and F. Sannino, Phys. Rev. D
74, 095008 (2006).

[9] T. Appelquist, K. D. Lane, and U. Mahanta, Phys. Rev.
Lett. 61, 1553 (1988).

[10] A. G. Cohen and H. Georgi, Nucl. Phys. B314, 7 (1989).
[11] T. Appelquist, J. Terning, and L. C. R. Wijewardhana,

Phys. Rev. Lett. 77, 1214 (1996).

[12] V. A. Miransky and K. Yamawaki, Phys. Rev. D 55, 5051
(1997); 56, 3768 (1997).

[13] H. Gies and J. Jaeckel, Eur. Phys. J. C 46, 433 (2006).
[14] T. Banks and A. Zaks, Nucl. Phys. B196, 189 (1982).
[15] S. Weinberg, Phys. Rev. D 19, 1277 (1979); L. Susskind,

Phys. Rev. D 20, 2619 (1979).
[16] E. Eichten and K. D. Lane, Phys. Lett. B 90, 125 (1980).
[17] B. Holdom, Phys. Rev. D 24, 1441 (1981).
[18] K. Yamawaki, M. Bando, and K. i. Matumoto, Phys. Rev.

Lett. 56, 1335 (1986).
[19] T. W. Appelquist, D. Karabali, and L. C. R. Wijewardhana,

Phys. Rev. Lett. 57, 957 (1986).
[20] K. D. Lane and E. Eichten, Phys. Lett. B 222, 274 (1989).
[21] N. Evans and F. Sannino, arXiv:hep-ph/0512080.
[22] S. Duane, A. Kennedy, B. Pendleton, and D. Roweth,

Phys. Lett. B 195, 216 (1987).
[23] G. Divitiis, R. Frezzotti, M. Guagnelli, M. Masetti, and

R. Petronzio, Phys. Lett. B 367, 279 (1996).
[24] B. Mawhinney, arXiv:hep-lat/9705030.
[25] Y. Iwasaki, K. Kanaya, S. Kaya, S. Sakai, and T. Yoshie,

Phys. Rev. D 69, 014507 (2004).
[26] J. Kogut, H. Wyld, and D. Sinclair, Phys. Rev. Lett. 54,

1980 (1985).

SIMON CATTERALL AND FRANCESCO SANNINO PHYSICAL REVIEW D 76, 034504 (2007)

034504-8


