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We report a comprehensive set of results for B-meson heavy-to-light transition form factors calculated
using a truncation of, and expression for, the transition amplitudes in which all elements are motivated by
the study of Dyson-Schwinger equations in QCD. In this relativistic approach, which realizes confinement
and dynamical chiral symmetry breaking, all physical values of momentum transfer in the transition form
factors are simultaneously accessible. Our results can be useful in the analysis and correlation of the large
body of data being accumulated at extant facilities, and thereby in probing the standard model and beyond.
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I. INTRODUCTION

Transition form factors that characterize the decays of
B-mesons into light pseudoscalar and vector mesons, the
so-called heavy-to-light decays, are basic to an understand-
ing of this heavy-meson’s exclusive semileptonic and rare
radiative decays. These form factors also provide the fac-
torizable amplitudes that appear in B-meson exclusive
nonleptonic charmless decays. An understanding of all
these processes is essential to the reliable determination
of Cabibbo-Kobayashi-Maskawa (CKM) matrix elements,
and transitions mediated by electroweak and gluonic pen-
guin operators. Moreover, they should provide a means of
searching for non-standard model effects andCP violation.
Considering all these factors, it is not surprising that heavy-
light form factors are the subject of much experimental and
theoretical scrutiny, as evidenced by the discussion in
Ref. [1].

The analysis of heavy-to-light processes has two facets.
One is factorization; viz., the feature that in exclusive
decays of B-mesons there exist strong interaction effects
that do not correspond to form factors. These may be
radiative corrections to purely hadronic operators in the
weak effective Lagrangian or final state interactions be-
tween daughter hadrons [2]. The development of soft col-
linear effective-field theory (SCET) is providing a means
of simplifying that problem, yielding factorization theo-
rems which enable a systematic approximation to be de-
veloped for a given process in terms of products of soft and
hard matrix elements [3]. Analyses relevant to the pro-
cesses we consider herein may be found in Refs. [4,5]; e.g.,
B! V� decay amplitudes can be expressed in terms of a
B! V form factor evaluated at the maximum recoil point,
light-front distribution amplitudes of the heavy- and light-
mesons and hard scattering kernels that can be evaluated
perturbatively.

The second facet, once factorization for a given process
is assumed or proved, is to evaluate the hadronic transition
form factors. Naturally, they cannot be calculated in per-

turbation theory. The relevant matrix elements involve
single hadrons in the initial and final states. Hence, their
calculation requires information about the structure of both
heavy and light mesons. A variety of theoretical ap-
proaches have been applied to this problem, recent
amongst which are analyses using light-cone sum rules
[6,7], light-front quark models [8], a constituent-quark
model in a dispersion relation formulation [9], and relativ-
istic quark models—e.g., Refs. [10–14]. It is notable that
while the methods of Refs. [6–8] can only provide access
to the form factors on a domain of small timelike q2, the
entire range of physical momenta is directly accessible in
Refs. [9–14]. The latter is also true of the method em-
ployed in this article.

In the present context it is worth explaining that the
relativistic constituent-quark model introduced in
Ref. [15] has been applied to the description of B and Bc
transition form factors [11–14] using a small set of variable
parameters. The model’s starting point is an interaction
Lagrangian that describes the correlation of constituent
quarks within a meson and represents the system by a
bound-state amplitude. The so-called compositeness con-
dition [16,17] plays a key role in the consistent formulation
of the model.

In these studies the propagation of constituent quarks is
described by a free-particle Green function; i.e.,

 S�k� �
1

6k�mQ
; (1)

wherein mQ is a light or heavy constituent-quark mass. In
order to avoid unphysical thresholds in transition ampli-
tudes, it is necessary that for a meson of mass mH com-
posed of quarks Q1 and Q2, mH <mQ1

�mQ2
. This poses

problems for a description of light-vector mesons ��;K��,
heavy flavored vector mesons �D�; B��, and for P-wave and
excited charmonium states. To sidestep this, in the evalu-
ation of matrix elements Refs. [12,13] employed identical
masses for all heavy pseudoscalar and vector flavored
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mesons; viz., mB� � mB, mD� � mD, and for all P-wave
and excited charmonium states. This is probably a reliable
approximation for the heavy mesons because the corre-
sponding mass splittings are small. However, it is merely a
stopgap measure for the light-vector mesons, and one of
the motivations for this article is to remedy that situation.
We implement confinement of light quarks, in a manner
which we shall subsequently elucidate.

Models based on results obtained via QCD’s Dyson-
Schwinger equations (DSEs) have also been employed
[18–20]. These studies possess the feature that quark
propagation is described by fully dressed Schwinger func-
tions. That dressing has a material impact on light-quark
characteristics and, e.g., eliminates the threshold problem
just described in connection with Refs. [11–14]. Within
this framework, as we have shown [18–20] and shall see
again herein, Eq. (1) can nevertheless be justified for
b-quarks and to some extent also for c-quarks. Our purpose
herein is to reappraise Ref. [20] and extend that study to
cover a fuller range of rare exclusive decays. (NB. An
introduction to DSEs can be found in Ref. [21] and their
application in QCD is reviewed in Refs. [22–26].)

In Sec. II we describe the matrix elements that are the
primary subject of this article, and introduce the approxi-
mation in which they are calculated. The matrix elements
are expressed in terms of dressed-quark propagators, me-
son Bethe-Salpeter amplitudes, and interaction vertices.
These elements are explicated in Sec. III. We use forms
determined and motivated by contemporary DSE studies.
Our calculated results are reported and explained in
Sec. IV. We wrap up in Sec. V.

II. HEAVY-TO-LIGHT TRANSITIONS

Herein our primary subjects are the following matrix
elements, which can be expressed in Minkowski space via
dimensionless form factors:

 hP�p2�j �fl��bjB�p1�i � F��q
2�P� � F��q

2�q�; (2)

 

hP�p2�j �fl���q�bjB�p1�i �
i

m1 �m2
fq2P� � q�P�q�g

� FT�q2�; (3)

 hV�p2; �2�j �fl���1� �5�bjB�p1�i

�
i

m1 �m2
�y�2 f�g��PqA0�q

2� � P�P�A��q
2�

� q�P�A��q2� � i"����P�q�V�q2�g; (4)

 hV�p2; �2�j �fl���q
��1� �5�bjB�p1�i

� �y�2 f��g�� � q�q�=q
2�q�P�a0�q2� � �P�

� q�q
�P�=q

2�P�a��q
2� � i"����P

�q�g�q2�g:

(5)

(NB. The form factors defined in Eq. (5) satisfy the physi-
cal requirement a0�0� � a��0�, which ensures that no
kinematic singularity appears in the matrix element at
q2 � 0. Constraint-free form factors for this transition
were defined in Refs. [6,8].) In Eqs. (2)–(5) one has a
B-meson initial state with momentum p1 and the symbols
P, V represent a light pseudoscalar or vector meson in the
final state, �fl � �u, �d, �s, with momentum p2. We define
P � p1 � p2, q � p1 � p2, and denote by �2 the polar-
ization four-vector of the vector meson. Naturally, in
Minkowski space the mass-shell conditions are p2

1 � m2
1,

p2
2 � m2

2, and ��2p2� � 0.
For reference it is useful to relate the form factors we

have defined to those used, e.g., in Ref. [6], which are
denoted by a superscript c in the following formulae:

 F� � fc�; FT � fcT; A0 �
m1 �m2

m1 �m2
Ac1;

A� � Ac2; A� �
2m2�m1 �m2�

q2 �Ac3 � A
c
0�;

V � Vc; a0 � Tc2 ; g � Tc1 ;

a� � Tc2 �
q2

m2
1 �m

2
2

Tc3 :

(6)

We note in addition that the form factors Aci �q
2� satisfy the

constraints: Ac0�0� � Ac3�0� and

 2m2A
c
3�q

2� � �m1 �m2�A
c
1�q

2� � �m1 �m2�A
c
2�q

2�: (7)

The leading term in a systematic and symmetry preserv-
ing truncation of the DSEs yields a generalized impulse
approximation to the matrix elements expressed in
Eqs. (2)–(5), which is depicted in Fig. 1. This diagram
represents an amplitude via a single integral; i.e., [27]

FIG. 1 (color online). Diagrammatic representation of the ma-
trix elements in Eqs. (2)–(5). In the figure, the solid lines denote
dressed-quark propagators (Sec. III A); the filled ellipses, meson
Bethe-Salpeter amplitudes (Sec. III B); and the connection of the
undulating line with the dressed-quark propagator, an interaction
vertex (Sec. III C).
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A�p1; p2� � trCD

Z d4k

�2	�4
��P�V��k;�p2�Sfl�k� p2�

� �I�p2; p1�Sb�k� p1��B�k;p1�Su�k�; (8)

where the trace is over color and Dirac-spinor indices.
Equation (8) makes plain that our calculations require
information about dressed-quark propagators—S�p�, me-
son Bethe-Salpeter amplitudes—��k;P�, and interaction
vertices—�I�p; q�. In Sec. III we discuss these in turn.

In order to provide a well-constrained analysis of the
matrix elements in Eqs. (2)–(5), we calculate simulta-
neously the leptonic decay constants of all participating
mesons. This decay proceeds as depicted in the upper
diagram of Fig. 2. For pseudoscalar mesons that diagram
represents [28]

 P�f0� �
���
2
p

trCD

Z d4k

�2	�4
�5��
0��k;P�; (9)

with 
H�k;P� � Sf1
�k� w1P��H�k;P�Sf2

�k� w2P� and
w1 � w2 � 1, whereas for vector mesons,

 M1�f1� �

���
2
p

3
trCD

Z d4k

�2	�4
��
1�

� �k;P�: (10)

For the Bethe-Salpeter amplitudes appearing in these
expressions, the canonical normalization condition consis-
tent with Eqs. (2)–(5) is depicted in the lower diagram of
Fig. 2, which for pseudoscalar mesons represents the ex-
pression

 2P� �
�
@
@K�

��P;K�
�
P2��m2

0�

K�P
; (11)

 

��P;K� � trCD

Z d4k

�2	�4
��0��k;�P�Sf1

�k� w1K�

� �0��k;P�Sf2
�k� w2K�: (12)

The expression for vector mesons is analogous and is given
explicitly in Ref. [20].

III. PROPAGATORS, AMPLITUDES, AND
VERTICES

In this section we explain the dressed-quark propagators,
the meson Bethe-Salpeter amplitudes, and the dressed
vertices describing the interaction between quarks and
probes.

A. Dressed-quark propagator

For any quark flavor, the dressed-quark propagator has
the general form

 S�p� � �i� � p�V�p2� � �S�p2�

� 1=	i� � pA�p2� � B�p2�
: (13)

It is noteworthy that the mass function, M�p2� �
B�p2�=A�p2�, is independent of the renormalization point.

The propagator can be obtained from QCD’s gap equa-
tion; namely, the DSE for the dressed-fermion self-energy,
which for a given quark flavor in QCD is expressed as

 S�p��1 � Z2�i� � p�m
bm� � ��p�; (14)

 ��p� � Z1

Z �

q
g2D���p� q�

�a

2
��S�q��

a
��q; p�; (15)

where
R

�
q represents a Poincaré invariant regularization of

the integral, with � the regularization mass scale [29,30],
D���k� is the dressed-gluon propagator, ���q; p� is the
dressed-quark-gluon vertex, and mbm is the quark’s
�-dependent bare current mass. The quark-gluon vertex
and quark wave function renormalization constants,
Z1;2��

2;�2�, depend on the renormalization point, � , the
regularization mass scale, and the gauge parameter. The
gap equation, Eq. (14), is completely defined with the
implementation of a renormalization condition

 S�p��1jp2��2 � i� � p�m���; (16)

where m��� is the renormalized (running) mass:

FIG. 2 (color online). Upper diagram: pictorial representation
of a meson’s leptonic decay constant, Eqs. (9) and (10); Lower
diagram: pictorial representation of the canonical normalization
condition for a meson’s Bethe-Salpeter amplitude that is con-
sistent with the generalized impulse approximation [38],
Eqs. (11) and (12). The vertex is defined in Eq. (36). We indicate
explicitly in the diagrams our choice of momentum partitioning
when calculating the normalization and leptonic decays: w1 �
1� w2, Sec. III B 4.
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 Z2��
2;�2�mbm��� � Z4��

2;�2�m���; (17)

with Z4 the Lagrangian-mass renormalization constant. It
is important that in QCD the chiral limit is strictly and
unambiguously defined by [29,30]

 Z2��2;�2�mbm��� � 0; 8 �� �; (18)

which states that m̂ � 0, where m̂ is the renormalization-
point-invariant current-quark mass.

The gap equation has been much studied and the features
of its solution elucidated. Hereafter, we explain the manner
in which phenomenological studies can capitalize on this.

1. Light quarks

It is a long-standing prediction of DSE studies in QCD
that for light-quarks the wave function renormalization and
dressed-quark mass:

 Z�p2� � 1=A�p2�; M�p2� � B�p2�=A�p2�; (19)

respectively, receive strong momentum-dependent correc-
tions at infrared momenta [21,31,32]: Z�p2� is suppressed
and M�p2� enhanced. These features are an expression of
dynamical chiral symmetry breaking (DCSB) (and, plau-
sibly, of confinement—see below). The enhancement of
M�p2� is central to the appearance of a constituent-quark
mass scale and an existential prerequisite for Goldstone
modes. The mass function evolves with increasing p2 to
reproduce the asymptotic behavior familiar from perturba-
tive analyses, and that behavior is unambiguously evident
for p2 * 10 GeV2 [20]. These DSE predictions are con-
firmed in numerical simulations of lattice-regularized
QCD [33], and the conditions have been explored under
which pointwise agreement between DSE results and lat-
tice simulations may be obtained [34–37].

The impact of this infrared dressing on hadron phe-
nomena has long been emphasized [38] and, while numeri-
cal solutions of the quark DSE are now readily obtained,
the utility of an algebraic form for S�p� when calculations
require the evaluation of numerous integrals is self-evident.
An efficacious parametrization of S�p�, which exhibits the
features described above, has been used extensively in
hadron studies [22–24,26]. It was employed in Ref. [20]
and is expressed in an algebraic form via entire functions
[39]:
 

��S�x� � 2 �mF �2�x� �m2��

�F �b1x�F �b3x�	b0 � b2F ��x�
; (20)

 ��V�x� �
1

x� �m2 	1�F �2�x� �m2��
; (21)

with x � p2=�2, �m � m=�,

 F �x� �
1� e�x

x
; (22)

��S�x� � ��S�p2�, and ��V�x� � �2�V�p2�. The parameter

values were fixed in Ref. [20] by requiring a least-squares
fit to a wide range of light- and heavy-meson observables,
and take the values:

 

f �mf bf0 bf1 bf2 bf3
u � d 0:009 48 0:131 2:94 0:733 0:185
s 0:210 0:105 3:18 0:858 0:185

: (23)

The mass scale � � 0:566 GeV, with which value the
current-quark masses are

 mu � 5:4 MeV; ms � 119 MeV: (24)

In addition one obtains the following Euclidean
constituent-quark masses, defined as the solution of
�ME

f �
2 � Mf��M

E
f �

2�2:

 ME
u � 0:36 GeV; ME

s � 0:49 GeV: (25)

Equations (21)–(23) provide an algebraic form for S�p�
that combines the effects of confinement and DCSB with
free-particle behavior at large spacelike p2. For instance, it
is noteworthy that, motivated by DSE studies [40,41],
Eqs. (20) and (21) express the dressed-quark propagator
as an entire function. Hence S�p� does not have a Lehmann
representation, which is a sufficient condition for confine-
ment because of the associated violation of reflection
positivity. This notion may be traced from Refs. [40–43]
and is reviewed in Refs. [21–23]. Additional commentary
on this point is provided by Refs. [44,45].

As explained, e.g. in Ref. [20], one expression of DCSB
in our parametrization of S�p� is an expression for the
chiral limit vacuum quark condensate

 � h �uui� � �3 3

4	2

bu0
bu1b

u
2

ln
�2

�2
QCD

; (26)

which assumes the value (�QCD � 0:2 GeV) [38]

 � h �uui��1 GeV � �0:22 GeV�3: (27)

A detailed discussion of the vacuum quark condensate in
QCD can be found in Refs. [46,47].

2. Heavy quarks

While the impact of DCSB on light-quark propagators is
marked, that is not true for heavier quarks, as can be seen
by considering the dimensionless and renormalization-
group-invariant ratio &f :� �f=ME

f , where �f is a
constituent-quark �-term [48]. This ratio measures the
effect of explicit chiral symmetry breaking on the
dressed-quark mass function compared with the sum of
the effects of explicit and dynamical chiral symmetry
breaking. Naturally, &f must vanish for light quarks be-
cause the magnitude of their constituent mass is due pri-
marily to dynamical chiral symmetry breaking. For heavy
quarks, &f approaches one. The ratio &f, calculated using
the DSE model introduced in Ref. [49], was discussed in
Ref. [26]: &u � 0:02, &s � 0:23, &c � 0:65, &b � 0:8.
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It follows that for the c-quark it is reasonable and for the
b-quark, sensible, to employ a constituent-quark propaga-
tor; viz.,

 SQ�k� �
1

i� � k� M̂Q

; Q � c; b; (28)

where the values

 M̂ c � 1:32 GeV; M̂b � 4:65 GeV; (29)

were fixed in the same least-squares fit as the light-quark
parameters in Eq. (23) [20].

B. Bethe-Salpeter amplitudes

The meson Bethe-Salpeter amplitudes, which appear in
Fig. 1 and are consistent with the generalized impulse
approximation, are properly obtained from the improved-
ladder Bethe-Salpeter kernel, as described, for example, in
Ref. [30]. The solution of this equation requires a simul-
taneous solution of the quark DSE. However, since we have
already chosen to simplify the calculations by parametriz-
ing S�p�, we follow Ref. [20] and also employ that expe-
dient with �P�V�.

1. Light pseudoscalar mesons

Dynamical chiral symmetry breaking and the axial-
vector Ward-Takahashi identity have a big impact on the
structure and properties of light pseudoscalar mesons. In
fact, the quark-level Goldberger-Treiman relations derived
in Ref. [29] motivate and support the following efficacious
parametrization of light pseudoscalar meson Bethe-
Salpeter amplitudes:

 �P�k;P� � i�5EP�k2�; P � 	;K; (30)

 E P�k
2� �

p
2

fP
BP�k

2�; (31)

where BP :� Bujbu0!bP0 is obtained from Eqs. (13), (20),
and (21) via the replacements

 bu0 ! b	0 � 0:204 and bu0 ! bK0 � 0:319; (32)

as appropriate. We emphasize that Eq. (31) expresses the
intimate connection between the leading covariant in a
pseudoscalar meson’s Bethe-Salpeter amplitude and the
scalar piece of the dressed-quark self-energy. As usual,
the values of the parameters, Eq. (32), were fixed in the
same least-squares fit as the light-quark parameters in
Eq. (23) [20].

2. Light-vector mesons

Dyson-Schwinger equation studies of the structure and
properties of light-vector mesons are available in
Refs. [49–52]. A consideration of these studies indicates
that in connection with phenomena that are predominantly

governed by infrared mass scales, which is typically the
case for form factors on the physical domain of accessible
timelike momenta, it is reasonable to parametrize vector
meson Bethe-Salpeter amplitudes as follows:

 �V��k;p� �
1

N V

�
�� � p�

� � p

M2
V

�
’�k2�; (33)

with

 ’�k2� � exp��k2=!2
V�; (34)

namely, a function whose support is concentrated in the
infrared. Clearly, p��V��k;p� � 0. Since such phenomena
are at the heart of our study, we employ this expedient
herein. Hence we have an Ansatz that is a little different
from that used in Ref. [20]. The one parameter is a mass
scale !V , which specifies the momentum space width of
the amplitude. The normalization is calculated via the
analogues of Eqs. (11) and (12).

3. Heavy mesons

For heavy mesons we write [20]

 �H�k;p� �
1

N H
�H’H�k

2�; (35)

where �P � i�5, �V � � � �V , ’H�k2� � exp��k2=!2
H�,

and N H is fixed by Eqs. (11) and (12). In common with
Ref. [20], we assume that the width parameters are spin
independent; i.e., !B� � !B, !D� � !D, as would be the
case were heavy-quark symmetry to be realized exactly. On
the other hand, we allow full flavor dependence, since high
precision experiments related to heavy-quark systems are
becoming available. Thus we fit with !D, !Ds

, !B, !Bs
treated as independent parameters.

4. Caveat: Momentum partitioning

Manifest Poincaré covariance is a feature of the direct
application of DSEs to the calculation of hadron observ-
ables. This is illustrated, e.g., in Refs. [30,52–54], which
also emphasize that manifest covariance is only possible if
the complete and complicated structure of hadron bound-
state amplitudes is retained. That can impose numerical
costs since, e.g., the complete vector meson Bethe-Salpeter
amplitude involves eight Poincaré covariants.

Herein, we use simple one-covariant models for the
amplitudes with a goal of describing simultaneously a
wide range of phenomena. With the omission of the full
structure of amplitudes, however, comes the complication
that our results can be sensitive to the definition of the
relativistic relative momentum. Every study that fails to
retain the full structure of the Bethe-Salpeter amplitude
shares this complication.

Hence to proceed we must specify the relative momen-
tum. In common with Refs. [18–20], when a heavy-quark
line is involved, we allocate all the heavy-light-meson’s
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momentum to that heavy quark and choose the single
covariant in the heavy-light meson’s Bethe-Salpeter am-
plitude to be a function of only the light-quark momentum.
This is evident in Fig. 1.

For the light mesons, our choice is clearly depicted in
Fig. 2; viz., a quark with momentum k1 and antiquark with
momentum k2 are bound into a system with total momen-
tum p, with the relative momentum k � w2k1 � w1k2,
where w1 � w2 � 1. In Refs. [18–20], and in other phe-
nomenological DSE studies, e.g., [38,39,55], w2 � 1=2 is
usually implicit. Herein we allow w2 to vary and do not
require wud2 � wus2 .

We reemphasize that the existence of optimal values for
these parameters is a consequence of the truncations em-
ployed in setting up the bound-state model. No dependence
would exist in an ab initio study, which is possible, e.g.,
Refs. [52,56]. However, for the breadth of application
herein, an ab initio study is beyond our capacity.

C. Dressed vector vertices

The dressed-quark-photon vertex has been much
studied, with direct numerical solutions of the relevant
inhomogeneous Bethe-Salpeter equation providing valu-
able information and delivering reliable predictions of
meson form factors [52,57,58]. However, since we have
parametrized the dressed-quark propagators we follow
Ref. [38] and employ the Ball-Chiu Ansatz [59]:
 

i�f��‘1; ‘2� � i�A�‘2
1; ‘

2
2��� � �‘1 � ‘2��	

1
2i� � �‘1 � ‘2�

��A�‘2
1; ‘

2
2� � �B�‘2

1; ‘
2
2�
; (36)

where

 �F�‘
2
1; ‘

2
2� �

1
2	F�‘

2
1� � F�‘

2
2�
; (37)

 �F�‘
2
1; ‘

2
2� �

F�‘2
1� � F�‘

2
2�

‘2
1 � ‘

2
2

; (38)

with F � Af, Bf; i.e., the scalar functions in Eq. (13)
evaluated with the appropriate dressed-quark propagator.
It is critical that this Ansatz satisfies the Ward-Takahashi
identity,

 �‘1 � ‘2��i�
f
��‘1; ‘2� � S�1

f �‘1� � S�1
f �‘2�; (39)

which is a sufficient condition to guarantee current con-
servation [38], and very useful in that it is completely
determined by the dressed-quark propagators. The Ansatz
has been used fruitfully in many hadronic applications;
e.g., [38,39,55].

It is noteworthy that for heavy quarks, since from
Eq. (28) one has AQ�k2� � 1 and MQ�k

2� � M̂Q, Eq. (36)
yields

 �Q��‘1; ‘2� � ��; (40)

namely, the correct heavy-quark limit.

We capitalize on this throughout; namely, we replace
dressed vertices on heavy-quark lines by their bare form.

D. Heavy-quark symmetry limits

With algebraic parametrizations of each of the pieces
that comprise a matrix element one can obtain simple
formulae that express the heavy-quark symmetry limits
of these matrix elements. References [18–20] detail the
results of such an analysis. In particular, Sec. VI of
Ref. [20] provides a complete discussion of the heavy-
quark symmetry limits of numerous matrix elements.
Moreover, Sec. III therein describes a novel result for
pseudoscalar meson masses in the heavy-quark limit, first
described in Ref. [60].

To highlight a couple of results relevant to our present
discussion, we observe that the leptonic and semileptonic
decays of heavy mesons were considered in Ref. [18]. In
accord with heavy-quark effective theory [61], it was
shown [18] that in the heavy-quark limit the leptonic decay
constants evolve as �M̂Q�

�1=2 and the matrix elements
describing semileptonic heavy-heavy decays can be ex-
pressed in terms of a single universal function, 
. The
calculated result for this function can be written

 
�w� �
Nc

4	2 �1�2

Z 1

0
d�

1

W

Z 1
0
du’2

H�zW�
�
�S�zW�

�

�����
u
W

r
�V�zW�

�
; (41)

with �2 � 1=	mHN
2
H
, W � 1� 2��1� ���w� 1�,

zW � u� 2EH
����������
u=W

p
, and w � �vH1

� vH2
where vH �

pH=mH. Owing to the canonical normalization of the
Bethe-Salpeter amplitudes, 
�w � 1� � 1.

A determination of this function based on the B! D
transition yields [20] a numerical result that is accurately
interpolated by

 
�w� �
1

1� �2�w� 1�
; �2 � 1:98; (42)

with here w � �m2
B �m

2
D � t�=�2mBmD�. A comparison

of this result with inferences from experiment is presented
in Refs. [19,20].

In addition to reproducing the results of heavy-quark
symmetry, it is an important feature of the DSEs that one
can examine the fidelity of the formulae obtained in the
heavy-quark limit; viz., elucidate the extent to which they
are physically realized. Reference [20] provides a unified
and uniformly accurate description of a broad range of
light- and heavy-meson observables. It concludes that
corrections to the heavy-quark symmetry limit of & 30%
are encountered in b! c transitions and that these correc-
tions can be as large as a factor of 2 in c! d transitions.
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IV. CALCULATED RESULTS

A. Parameters and fitting

In the framework we have set up there are eight variable
parameters: The widths of the light-vector-meson Bethe-
Salpeter amplitudes—!�, !K� , Sec. III B 2; the widths of
the heavy-meson Bethe-Salpeter amplitudes—!D, !Ds

,
!B, !Bs , Sec. III B 3; and the light-quark momentum par-
titioning parameters—wud2 , wus2 , Sec. III B 4. All other
parameters, including the quark masses, are taken as re-
ported in Ref. [20]. We observe that in the widespread
application of this framework and variants thereupon, cal-
culations, when they can be compared with observables,
are accurate to a root-mean-square (rms) deviation of 15%.
The current application is not different in principle and
hence this value should provide a reasonable estimate of
our theoretical error.

We determine our parameters through a least-squares fit
to meson leptonic decay constants, expressions for which
are given in Eqs. (9) and (10), and illustrated in Fig. 2. The
parameter values obtained via this procedure are wud2 �
0:377, wus2 � 0:316, and, in GeV:

 

!� !K� !D !Ds
!B !Bs

0:561 0:611 1:50 1:97 1:37 1:63
: (43)

The ordering is of interest, as may be seen by defining a
matter-radius scale: ‘H � 1=!H. Apparently, ‘K� �
0:32 fm< ‘� � 0:35 fm, and the ratio of these two scales
is in accordance with the ratio of charge radii reported in
Ref. [52]. Moreover, ‘Ds

� 0:10 fm< ‘D � 0:13 fm with
a ratio 0.76, and ‘Bs � 0:12 fm< ‘B � 0:14 fm with a
ratio 0.84. Hence, the ordering within D- and B-meson
systems is consistent with intuition. However, not so in
the result that systems containing a c-quark are, by this
rudimentary measure, smaller than systems containing a
b-quark. We expect that a more sophisticated representa-
tion of heavy-quark propagators and heavy-meson Bethe-
Salpeter amplitudes will reverse this aspect of the
parametrization.

The calculated values of observables are: �! 		 cou-
pling constant g�		 � 4:62 [expt � 5:92�2�] and K� !
K	 coupling gK�K	 � 4:55 [expt � 4:67�4�], expressions
for which are provided in Ref. [20], plus the leptonic decay
constants listed in Table I. For ease of reference, we also
list in Table I the leptonic decay constants calculated in
Ref. [14]; i.e., the relativistic constituent-quark model
described in Sec. I. NB. Our calculated light-meson lep-
tonic decay constants are unchanged from Ref. [20]: f	 �
146 MeV; fK � 178 MeV—cf. expt.: 131 MeV and
161 MeV, respectively.

A comparison between our results in Table I and those
taken from elsewhere yields 
2=degree of freedom
 12
and 
2=number of observables
 4. It is notable that
omitting those entries in the table for which experimental
results are not available, we have 
2=number of

observables � 0:2. Plainly, the lattice results are providing
relevant constraints. Hence, improved reliability of such
studies would be welcome.

B. B! P�V� transitions

With all parameters fixed, we now proceed to the calcu-
lation of the B! P�V� heavy-to-light transitions depicted
in Fig. 1.

1. Technical remark

Before reporting the predictions, we offer a technical
remark. Calculation of the generalized impulse approxi-
mation to the transitions involves the numerical evaluation
of a four-dimensional integral whose integrand is the con-
volution of entire functions and functions with a simple

TABLE I. Leptonic decay constants fH (MeV) calculated us-
ing the parameter values listed in connection with Eq. (43). Data
and selected calculations are provided for comparison. The
compilation of charm meson results in Ref. [62] was useful in
our analysis.

This work Other Reference

f� 209 209(2) PDG [1]
fK� 217 217(5) PDG [1]
fD 223 222:6�16:7��2:8

�3:4 CLEO [63–65]
371�129

�117�25� BES [66]
227 RCQM [14]

fDs
281 280(12)(6) CLEO [63–65]

283(17)(4)(14) BABAR [67]
255 RCQM [14]

fDs
fD

1.26 1.26(11)(3) CLEO [63–65]
1.12 RCQM [14]

fD� 321 245�20��3
�2 LAT [68]

249 RCQM [14]
fD�s 364 272�16��3

�20 LAT [69]
266 RCQM [14]

fB 176 229�36
�31�stat��34

�37�syst� BELLE [70]
216(9)(19)(4)(6) HPQCD LAT [71]

177�17��22
�22 UKQCD LAT [72]

179�18��34
�9 LAT [68]

210.5(11.4)(5.7) Chiral Lat [73]
187 RCQM [14]

fBs 211 259(32) HPQCD LAT [71]
260(7)(26)(8)(5) LAT [74]

204�12��24
�23 UKQCD LAT [72]

204�16��36
�0 LAT [68]

218 RCQM [14]
fBs
fB

1.20 1.20(0.03)(0.01) HPQCD LAT [71]
1:15�0:02��0:04

�0:02 UKQCD LAT [72]
1:14�0:03��0:01

�0:01 LAT [68]
1.16 RCQM [14]

fB� 198 196�24��39
�2 LAT [68]

196 RCQM [14]
fB�s 235 229�20��41

�16 LAT [68]
229 RCQM [14]
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pole. The straightforward use of spherical coordinates in
the Euclidean loop integral and the choice of the B-meson
rest frame works well only for p2

1 � M2
b. When p2

1 >M2
b

one needs to shift the integration contour into the complex
plane. Since that is not easily done numerically, we employ
an alternate representation that can be used straightfor-
wardly for any p2

1. Namely, with p2
1 � �m

2
1, p2

2 � �m
2
2,

and �p1 � p2�
2 � �q2:

 

Z d4k

	2

F�k2����k� w2p2�
2����k� p2�

2�

M2
b � �k� p1�

2

�
1

	

Z 1
0
du

Z 1

0
dv

Z 	

0
d�F�z1���y2���z2�; (44)

where the new variables are

 z1 � u�
1� v
v
	M2

b � vm
2
1
; (45)

 

y2 � z1 � 2i
������
uv
p

cos�w2m2 � �1� v�w2�m
2
1 �m

2
2 � q

2�

� w2
2m

2
2; (46)

 

z2 � z1 � 2i
������
uv
p

cos�m2 � �1� v��m2
1 �m

2
2 � q

2�

�m2
2: (47)

2. Results

In Figs. 3–5 we exhibit our calculated form factors for
q2 2 	0; q2

max
, with q2
max � �mB �mP�V��

2; viz., on the
complete, relevant physical domain. It is noteworthy and
phenomenologically important that in our DSE-based ap-
proach all form factors can be calculated on the entire
domain of physically accessible momenta. Moreover, the
chiral limit is directly accessible and the consequences of
Goldstone’s theorem are manifest, so that both pseudosca-
lar and vector light-quark mesons are realistically de-
scribed. No extrapolation in any quantity is required.

Our calculated results are satisfactorily interpolated by
the simple function

 F�q2� �
F�0�

1� as� bs2 ; s � q2=m2
B: (48)

We list the values of the form factors at the maximum
recoil point, q2 � 0, and the parameters a and b in
Tables II and III. NB. Analytically,

 a0�0� � a��0� � g�0�; (49)

a result preserved by the interpolation function. We pro-

vide the interpolations so that our results may readily be
adapted as input for other analyses.

Reference [9] also provides a fit to these form factors.
While the functional form differs in some instances, one
can infer parameter values that are analogous to those in
Eq. (48). Where this can readily be done, those values are
presented for comparison in Tables II and III. As a general
rule, in comparison with ours at the maximum recoil point
the form factors calculated using the approach reviewed in
Ref. [9] are larger in magnitude but evolve more slowly.
Large differences can exist between those form factors and
ours at q2

max. It is notable that the approach reviewed in
Ref. [9] may be viewed as describing both light- and
heavy-quark propagation via Eq. (1). Resulting partly
therefrom, confinement and dynamical chiral symmetry
breaking are not veraciously expressed in that approach.

0 5 10 15 20 25
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2
, GeV

2
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-2

0

2

4

F+
F-F

T

B-pi form factors

0 5 10 15 20
q

2
, GeV

2

-3

-2

-1

0

1

2

3

F+
F-F

T

B-K form factors

FIG. 3 (color online). Our results for the form factors appear-
ing in Eqs. (2) and (3)—Top panel, B! 	; and bottom panel,
B! K: solid line F�, dot-dashed line F�, dashed line FT .
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It can be determined from Tables II and III that
 

FBK� �0�
FB	� �0�

� 1:23;
ABK0 �0�

AB	0 �0�
� 1:25;

gBK
�
�0�

gB��0�
� 1:18:

(50)

These ratios are a measure of SU�3�-flavor breaking effects
in heavy-to-light B-decays. For comparison, the ratio of the
constituent-quark masses in Eq. (25) is 1.36.

In Table IV we collect our predictions for the form
factors at the maximum recoil point and provide a com-
parison with extant results obtained within other frame-
works. The figures and tables highlight the wide range of
phenomena accessible within our approach. That is
equalled in the table by Refs. [6,8,9].

Table V provides a comparison between our approach
and those with equal breadth of application. We reiterate
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q

2
,  GeV

2
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-2

0

2
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0
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B-rho form factors
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2
,  GeV

2

-4

-2

0

2

4

A
0

A+
A-V

B-Kst form factors

FIG. 4 (color online). Our results for the form factors appear-
ing in Eq. (4)—Top panel, B! �; and bottom panel, B! K�:
solid line A0, dashed line A�, dot-dashed line A�, dotted line V.
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1
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4
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B-rho+gamma form factors
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q

2
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2

0

0.5
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2

2.5

3
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0
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g

B-Kst+gamma form factors

FIG. 5 (color online). Our results for the form factors appear-
ing in Eq. (5)—Top panel, B! ��; and bottom panel, B!
K��: solid line a0, dashed line a�, dotted line g.

TABLE II. B! 	��� transition form factors: values of the
parameters in the interpolating function, Eq. (48). Our results
are marked by an asterisk. For comparison, where available we
also give analogous values inferred from the fit of Ref. [9].

F�0� a b Source

F� 0.24 1.87 0.93 �

0.29 1.48 0.48 [9]
F� �0:24 1.97 1.04 �

FT 0.24 1.92 1.00 �

0.28 1.48 0.48 [9]
A0 0.32 1.16 0.32 �

A� 0.25 2.08 1.14 �

0.24 1.40 0.50 [9]
A� �0:32 2.27 1.38 �

V 0.32 2.21 1.30 �

0.31 1.59 0.59 [9]
a0 0.25 1.26 0.48 �

0.27 0.74 0.19 [9]
a� 0.26 2.10 1.16 �

g 0.26 2.21 1.29 �

0.27 1.60 0.60 [9]
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that a reasonable estimate of our theoretical error is 15%.
Within this latitude, no two studies are mutually inconsis-
tent. Our best estimates are closest to those of Ref. [8].
Table IV indicates that exclusive semileptonic B! V
transitions provide the best means of differentiating be-
tween these two frameworks.

V. EPILOGUE

We presented a wide-ranging analysis of B-meson ex-
clusive semileptonic and rare radiative decays using a
phenomenological framework whose elements are based

on DSE studies in QCD. Confinement and dynamical
chiral symmetry breaking are expressed within this ap-
proach. Moreover, in the present context it is a particular
feature of the method that all transition form factors are
directly calculable on the entire physical domain of acces-
sible momentum transfer. This may be contrasted with
numerical simulations of lattice-regularized QCD, which
are currently restricted to the domain of intermediate time-
like q2 (e.g., [75] q2 2 	11; 18
 GeV2) and QCD sum
rules, which are directly applicable only on the domain
of small timelike q2 (e.g., [6] q2 2 	0; 10
 GeV2).

The results presented herein represent a well-
constrained calculation. Improvement over an earlier study
[20] was made possible by: the appearance of additional
data and lattice results in the interim; and technical im-
provements in our treatment of the loop integrals. Our
results should thus prove valuable in the analysis and
correlation of the rapidly accumulating body of informa-
tion on charmless B-decays. To assist with this, we pro-
vided pointwise accurate parametrizations of our
calculated transition form factors.

While the foundation of our study is sound, based as it is
on reliable results from DSE studies in QCD, it can be
improved. Ideally, one would begin with an interaction
kernel and solve directly for every element that appears

TABLE V. Mean of the absolute value of the pairwise relative
differences between predictions listed in Table IV for those
studies that report all quantities; viz., j"j :� �1=N�

PN
i�1 j1�

cji=c
k
i j, where j and k label columns in the table and i runs over

the row number. Here the present work is denoted by ‘‘�.’’

Comparison [6]/� [8]/� [6]/[8] [9]/� [6]/[9] [8]/[9]

j"j (%) 8.2 6.3 10.2 13.2 13.7 15.1
�j"j (%) 5.8 7.0 6.5 9.4 6.8 9.6

TABLE IV. Our calculated values of B! 	, K and B! �, K� form factors at the maximum recoil point compared with the results
obtained by other authors. Based on the widespread application of our approach herein and elsewhere, we estimate that the relative
systematic uncertainty in our calculated results is 
15%. In reporting results of Ref. [7] we omit an additional uncertainty associated
with the kaon’s so-called first Gegenbauer moment, which encodes nonperturbative information about the kaon’s structure in that
framework.

This work LCSR [6] LCSR [7] LCQM [8] DQM [9] RQM [10] RCQM [11]

f�B	�0� 0.24 0:25� 0:05 0:258� 0:031 0.25 0.29 0.22 0.27
f�BK�0� 0.30 0:31� 0:04 0:331� 0:041 0.30 0.36 0.36
fTB	�0� 0.25 0:21� 0:04 0:253� 0:028 0.25 0.28
fTBK�0� 0.32 0:27� 0:04 0:358� 0:037 0.33 0.35 0.34
VB��0� 0.31 0:32� 0:10 0.30 0.31 0.30
VBK

�
�0� 0.37 0:39� 0:11 0.34 0.44

AB�1 �0� 0.24 0:24� 0:08 0.23 0.26 0.27
ABK

�

1 �0� 0.29 0:30� 0:08 0.25 0.36
AB�2 �0� 0.25 0:21� 0:09 0.22 0.24 0.28
ABK

�

2 �0� 0.30 0:26� 0:08 0.23 0.32

TB�1 �0� 0.26 0:28� 0:09 0.26 0.27
TBK

�

1 �0� 0.30 0:33� 0:10 0.29 0.39 0:24� 0:03�0:04
�0:001 [75]

TABLE III. B! K�K�� transition form factors: values of the
parameters in the interpolating function, Eq. (48). Our results are
marked by an asterisk. For comparison, where available we also
give analogous values inferred from the fit of Ref. [9].

F�0� a b Source

F� 0.29 1.85 0.96 �

0.36 1.43 0.43 [9]
F� �0:28 1.95 1.09 �

FT 0.32 1.90 1.02 �

0.35 1.43 0.43 [9]
A0 0.40 0.98 0.034 �

A� 0.30 1.92 0.97 �

0.32 1.23 0.38 [9]
A� �0:38 2.10 1.19 �

V 0.37 2.05 1.13 �

0.44 1.45 0.45 [9]
a0 0.30 1.04 0.16 �

0.39 0.72 0.62 [9]
a� 0.30 1.95 1.00 �

g 0.30 2.05 1.12 �

0.39 1.45 0.45 [9]

IVANOV, KÖRNER, KOVALENKO, AND ROBERTS PHYSICAL REVIEW D 76, 034018 (2007)

034018-10



in a systematic and symmetry preserving truncation of the
Schwinger functions contributing to all relevant transi-
tions. This program has been realized for numerous pro-
cesses involving only light mesons; with successes being,
e.g., the prediction of the electromagnetic pion form factor
[76], the calculation ofK‘3 transition form factors [77],		
scattering [78], and anomalous processes involving ground
and radially excited pseudoscalar mesons [79,80]. The
program has begun for heavy-heavy mesons, e.g.,
Refs. [52,56,81]. However, the more difficult problem of
an ab initio treatment of heavy-light systems remains
largely untouched.
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