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We calculate next-to-leading-order corrections to exclusive processes in the kT factorization theorem,
taking ��� ! � as an example. Partons off shell by k2

T are considered in both the quark diagrams from
full QCD and the effective diagrams for the pion wave function. The gauge dependences in the above two
sets of diagrams cancel, when deriving the kT-dependent hard kernel as their difference. The gauge
invariance of the hard kernel is then proven to all orders by induction. The light-cone singularities in the
kT-dependent pion wave function are regularized by rotating the Wilson lines away from the light cone.
This regularization introduces a factorization-scheme dependence into the hard kernel, which can be
minimized in the standard way. Both the large double logarithms ln2kT and ln2x, x being a parton
momentum fraction, arise from the loop correction to the virtual photon vertex, the former being absorbed
into the pion wave function and organized by the kT resummation and the latter absorbed into a jet
function and organized by the threshold resummation. The next-to-leading-order corrections are found to
be only a few percent for ��� ! �, if setting the factorization scale to the momentum transfer from the
virtual photon.
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I. INTRODUCTION

The kT factorization theorem [1–6], as a fundamental
tool of perturbative QCD (PQCD), has been widely applied
to inclusive and exclusive processes. It has been pointed
out that the kT factorization theorem is appropriate for
processes dominated by contributions from small parton
momentum factions x [7]. Its application to exclusive B
meson decays has led to the PQCD approach [8–12], which
is free of the singularities from the end-point regions of x
that usually appear in the collinear factorization theorem
[13–18]. Several aspects of the kT factorization theorem
have been studied. For example, a naive definition of
kT-dependent hadron wave functions, in which the coor-
dinate of a quark field is simply shifted by a transverse
distance, contains light-cone divergences [19]. Modified
definitions to remove these divergences have been pro-
posed in Refs. [19–21]. The B meson wave function
defined in the kT factorization theorem is normalizable
[20], while the B meson distribution amplitude in the col-
linear factorization theorem is not [22,23], when evolution
effects are taken into account. The Sudakov resummation
[4,8,24,25] of the large double logarithm ln2kT is essential
for improving perturbative expansion in the kT factoriza-
tion theorem [26,27].

The current application of the kT factorization theorem
to exclusive processes is made mainly at leading order
(LO) in the strong coupling constant �s [28]: The impor-
tant logarithms in hadron wave functions have been organ-
ized to all orders, but hard kernels are still evaluated at tree

level. To demonstrate that the kT factorization theorem is a
systematical tool, higher-order calculations of hard kernels
are demanded. In this paper, we shall elucidate the frame-
work for these calculations, deriving the next-to-leading-
order (NLO) hard kernel for the scattering process ��� !
� as an example. The point is that partons in both the quark
diagrams from full QCD and the effective diagrams for the
pion wave function, carrying the momentum k �
�k�; 0;kT�, are off mass shell by k2

T . The difference be-
tween the two sets of diagrams defines the hard kernel in
the kT factorization theorem, a procedure similar to the
derivation of Wilson coefficients in an effective field the-
ory. This is the way to obtain a kT-dependent hard kernel
without breaking gauge invariance, since the gauge depen-
dences cancel between the above two sets of diagrams. A
physical quantity is expressed as a convolution of a hard
kernel with model wave functions, which are determined
by methods beyond a perturbation theory, such as lattice
QCD and QCD sum rules, or extracted from experimental
data. A gauge-invariant hard kernel then leads to gauge-
invariant predictions from the kT factorization theorem.

We emphasize that the above prescription for computing
a kT-dependent gauge-invariant hard kernel has not yet
been fully recognized. Several NLO calculations, which
include the transverse momentum dependence via on shell
partons carrying k��k�;k�;kT�, k��k2

T=�2k
��, have

been performed in the literature [21,29,30]. In these cal-
culations, both quark diagrams and effective diagrams are
gauge-invariant, and so are hard kernels. However, the
considered parton momentum is not a configuration de-
scribed by the nonlocal matrix elements associated with
kT-dependent hadron wave functions, because the minus*hnli@phys.sinica.edu.tw
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component k� should have been integrated out. Another
subtlety is that the NLO hard kernel for the process ���!
� obtained in the above formalism turns out to be
kT-independent [30]. The parton transverse degrees of
freedom in the pion wave function are then integrated
out, and the formalism reduces to the collinear factoriza-
tion theorem. Moreover, we shall explain that the addi-
tional nonperturbative soft function introduced in Ref. [30]
is not necessary for the kT factorization theorem, since the
infrared logarithms can be absorbed into the pion wave
function completely.

As stated before, the light-cone singularities [19] in the
naive definition for kT-dependent hadron wave functions
must be regularized. These singularities, not present in the
quark diagrams, are not physical. If not regularized,
higher-order hard kernels, computed as the difference of
the quark diagrams and the effective diagrams, will be
divergent. In this paper, we shall adopt the modified defi-
nition, in which the Wilson lines involved in the nonlocal
matrix elements for hadron wave functions are rotated
away from the light cone. After the subtraction of the
singularities, a hard kernel depends on regularization
schemes unavoidably, which can, nevertheless, be regarded
as part of the factorization-scheme dependence. This de-
pendence, usually minimized by adhering to a fixed pre-
scription for deriving hard kernels, does not cause a
problem. The removal of the light-cone singularities from
wave functions and the gauge invariance of hard kernels
are the two essential ingredients for making physical pre-
dictions from the kT factorization theorem.

We shall demonstrate that the higher-order quark dia-
grams for ��� ! � generate two types of double loga-
rithms ln2�Q2=k2

T� and ln2x, Q2 being the large momentum
transfer squared, from the loop correction to the virtual
photon vertex. The former does not appear in the collinear
factorization theorem, but the latter does [31,32]. It is
found that the effective diagrams reproduce the same
double logarithm ln2�Q2=k2

T�, which is then absorbed into
the pion wave function and organized by kT resummation
[4,8,24,25]. The remaining double logarithm ln2x can be
absorbed into the jet function and organized by threshold
resummation [33]. Eventually, the hard kernel is free of
any double logarithm, and its perturbative expansion is
improved. It will be shown that the NLO corrections are
only a few percent for the pion transition form factor
involved in the scattering process ��� ! �, if setting the
factorization scale to the momentum transfer.

In Sec. II, we calculate the O��s� quark diagrams from
full QCD, the O��s� effective diagrams for the pion
wave function, and the O��s� jet function and then
take their difference to obtain the O��s� hard kernel for
��� ! � in the kT factorization theorem. The gauge in-
variance of the kT-dependent hard kernel is proven to all
orders in �s by induction in Sec. III. Section IV is the
conclusion.

II. O��s� kT FACTORIZATION

In this section, we set up the framework for computing
the hard kernel for the pion transition form factor in the kT
factorization theorem. The momentum P1 of the pion and
the momentum P2 of the outgoing on shell photon are
chosen as

 P1 � �P
�
1 ; 0; 0T�; P2 � �0; P

�
2 ; 0T�: (1)

The LO quark diagram, in which the antiquark �q carries the
on shell fractional momentum k � �xP�1 ; 0; 0T� and the
internal quark carries P2 � k, leads to the amplitude

 G�0��x;Q2� �
tr�6��P6 2 � k6 ���P6 1�5�

�P2 � k�
2 � �

tr�6�P6 2��P6 1�5�

xQ2 ;

(2)

with the leading spin structure P6 1�5 of the pion and Q2 	
2P1 
 P2. We have suppressed other constant factors, such
as the electric charge, the color number, and the pion decay
constant, which are irrelevant in the following discussion.

The trivial factorization of Eq. (2) reads [7]

 

G�0��x;Q2� �
Z
dx0d2k0T��0��x; x0; k0T�H

�0��x0; Q2; k0T�;

��0��x; x0; k0T� � ��x� x0���k0T�;

H�0��x;Q2; kT� � �
tr�6�P6 2��P6 1�

5�

xQ2 � k2
T

: (3)

Once we concentrate on the small x region, the treatment of
the parton kT differs from that in the collinear factorization
theorem: k2

T in the denominator of Eq. (3) is not small
compared to xQ2, and the internal quark propagator should
not be expanded into a power series in k2

T [26,34]. kT in the
numerator, being power suppressed by 1=Q, is combined
with three-parton meson wave functions to form a gauge-
invariant set of higher-twist contributions as in the col-
linear factorization theorem. This special treatment of the
parton kT characterizes the distinction between the kT and
collinear factorizations [28]. Because of the zeroth-order
wave function ��0� / ��k0T�, the LO hard kernel H�0� does
not depend on the parton transverse momentum actually.

The O��s� quark diagrams corresponding to Eq. (2)
from full QCD are displayed in Fig. 1, in which the upper
line represents the q quark. The factorization of the col-
linear divergences from these radiative corrections is re-
ferred to [7]:
 

G�1��x;Q2� �
Z
dx0d2k0T��

�1��x; x0; k0T�H
�0��x0; Q2; k0T�

���0��x; x0; k0T�H
�1��x0; Q2; k0T��; (4)

where the O��s� effective diagrams ��1� are defined by the
leading-twist quark-level wave function [7,35]
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��x; x0; k0T� �
Z dy�

2�i
d2yT
�2��2

e�ix
0P�1 y

��ik0T 
yT h0j �q�y�Wy�n�
y

� In;y;0W0�n�n6 ��5q�0�jq�P1 � k� �q�k�i; (5)

with y � �0; y�; yT� being the coordinate of the antiquark
field �q, n� � �0; 1; 0T� a null vector along P2, and jq�P1 �
k� �q�k�i the leading Fock state of the pion.

The factor Wy�n�, with n2 � 0, denotes the Wilson line
operator:

 Wy�n� � P exp
�
�ig

Z 1
0
d�n 
 A�y� �n�

�
: (6)

The two Wilson lines Wy�n� and W0�n� are connected by a
link In;y;0 at infinity in this case [7,36]. Equation (5) con-
tains additional collinear divergences from the region with
a loop momentum parallel to n�, as the Wilson line direc-
tion approaches the light cone, i.e., as n! n� [19]. It will
be shown that n2 serves as an infrared regulator for the
light-cone singularities and that the wave function depends
on the additional scale �2 	 4�n 
 P1�

2=jn2j, i.e., on the

external kinematic variable. Besides, � also depends on
the factorization scale �f , which is not shown explicitly.
Note that Eq. (5) does not reduce to the distribution am-
plitude in the collinear factorization theorem directly,
when integrated over kT , but a convolution of a hard kernel
with the distribution amplitude [37].

With one-gluon exchange, the outgoing partons from
��1�, i.e., the partons participating in the hard scattering,
carry the transverse momenta, so that H�0� in Eq. (4) de-
pends on k0T nontrivially in the first-order factorization.
Being convoluted with ��0�, the partons entering the
NLO hard kernel H�1� are still on shell. To acquire the
nontrivial kT dependence,H�1� must be convoluted with the
higher-order wave functions ��i�, i � 1: The gluon ex-
changes in ��i� render the incoming partons of H�1�, i.e.,
the incoming partons of the quark diagrams G�1� and the
effective diagrams ��1� off shell by k2

T [7]. We thus derive
H�1��x;Q2; kT� according to the formula

 

H�1��x;Q2; kT� � G�1��x;Q2; kT� �
Z
dx0d2k0T��1�

� �x; kT; x0; k0T�H
�0��x0; Q2; k0T�; (7)

where ��1��x; kT ; x0; k0T� is defined by Eq. (5) but with the �q
quark momentum k � �xP�1 ; 0;kT�. As stated in the intro-
duction, the gauge dependences of G�1� and ��1� cancel in
the above expression, such that H�1��x;Q2; kT� turns out to
be gauge-invariant.

A. Quark diagrams

The loop integrals associated with the O��s� quark
diagrams in Figs. 1(a)–1(f), where the �q quark carries
the momentum k � �xP�1 ; 0;kT� and the q quark carries
�k 	 P1 � k, are written, in the Feynman gauge, as

 G�1�a �x;Q2; kT� �
�i
2
g2CF�2�

Z d4�2�l

�2��4�2� tr
�
6�
P6 2 � k6

�P2 � k�
2 ��

�6k
�k2
�	

�6k� l6

� �k� l�2
�	P6 1�5

�
1

l2
; (8)

 G�1�b �x;Q
2; kT� �

�i
2
g2CF�

2�
Z d4�2�l

�2��4�2� tr
�
�	

k6 � l6

�k� l�2
�	

k6

k2 6�
P6 2 � k6

�P2 � k�2
��P6 1�5

�
1

l2
; (9)

 G�1�c �x;Q2; kT� � �ig2CF�2�
Z d4�2�l

�2��4�2� tr
�
6�
P6 2 � k

�P2 � k�
2 �

	 P6 2 � k6 � l6

�P2 � k� l�
2 �	

P6 2 � k6

�P2 � k�
2 ��P6 1�5

�
1

l2
; (10)

 G�1�d �x;Q
2; kT� � �ig2CF�2�

Z d4�2�l

�2��4�2� tr
�
6�
P6 2 � k6

�P2 � k�
2 �

	 P6 2 � k6 � l6

�P2 � k� l�
2 ��

�6k� l6

� �k� l�2
�	P6 1�5

�
1

l2
; (11)

 G�1�e �x;Q2; kT� � ig2CF�
2�
Z d4�2�l

�2��4�2� tr
�
�	

k6 � l6

�k� l�2
6�
P6 2 � k6 � l6

�P2 � k� l�2
�	

P6 2 � k6

�P2 � k�2
��P6 1�5

�
1

l2
; (12)

FIG. 1. O��s� quark diagrams for ��� ! � with � represent-
ing the virtual photon vertex.
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 G�1�f �x;Q
2; kT� � ig2CF�2�

Z d4�2�l

�2��4�2� tr
�
�	

k6 � l6

�k� l�2
6�
P6 2 � k6 � l6

�P2 � k� l�2
��

�6k� l6

� �k� l�2
�	P6 1�5

�
1

l2
: (13)

The coefficients 1=2 in Eqs. (8) and (9) arise from the
definition of the self-energy corrections to external parti-
cles. CF is a color factor, and � is the renormalization
scale.

We work in the dimensional reduction [38] to simplify
the calculation and to avoid the ambiguity from handling
�5 in arbitrary dimensions. The results for the self-energy
corrections are
 

G�1�a �x;Q2; kT� � �
�s
8�

CF

�
1

�
� ln

4��2

k2
Te

�E
� 2

�

�H�0��x;Q2; kT�; (14)

 

G�1�b �x;Q
2; kT� � �

�s
8�

CF

�
1

�
� ln

4��2

k2
Te

�E
� 2

�

�H�0��x;Q2; kT�; (15)

 

G�1�c �x;Q2; kT� � �
�s
4�

CF

�
1

�
� ln

4��2e��E

xQ2 � k2
T

� 2
�

�H�0��x;Q2; kT�; (16)

where 1=� denotes the ultraviolet pole, and �E is the Euler
constant. Since the external partons are off shell by k2

T , the
collinear divergences in Figs. 1(a) and 1(b) are represented
by the infrared logarithms lnk2

T in Eqs. (14) and (15),
respectively. The internal quark in Fig. 1(c) is off shell
by the invariant mass squared xQ2 � k2

T , which then re-
places the argument k2

T in the infrared logarithm.
In the small x region, we drop terms suppressed by

powers of x or k2
T=Q

2. The loop correction to the virtual
photon vertex gives
 

G�1�d �x;Q
2; kT� �

�s
4�

CF

�
1

�
� ln

4��2

k2
Te

�E
� 2 ln

Q2

k2
T

� ln
Q2

xQ2 � k2
T

� 2 ln
Q2

xQ2 � k2
T

� ln
Q2

k2
T

�
2�2

3
�

3

2

�
H�0��x;Q2; kT�: (17)

At small x, the q quark in Fig. 1(d) is energetic, implying
the existence of the collinear logarithmic enhancement
ln�Q2=k2

T�, and the internal quark is close to mass shell,
implying the soft enhancement ln�Q2=�xQ2 � k2

T��. Their
overlap then leads to the double logarithm ln�Q2=k2

T��
ln�Q2=�xQ2 � k2

T�� in Eq. (17). In the region with x
O�1�, the internal quark becomes off shell by O�Q2�, the
soft enhancement disappears as ln�Q2=�xQ2 � k2

T�� 
O�1�, and the double logarithm reduces to a single loga-
rithm. The result of G�1�d clearly exhibits the transition of

the double logarithm in the small x region to the single
logarithm in the large x region.

The above double logarithm deserves more discussion,
which can be reexpressed as

 � 2 ln
Q2

k2
T

ln
Q2

xQ2 � k2
T

� �ln2 Q
2

k2
T

� ln2 Q2

xQ2 � k2
T

� ln2 xQ
2 � k2

T

k2
T

: (18)

The first term is known as the Sudakov logarithm [4,24],
which will be absorbed into the pion wave function as
stated before. The Sudakov effect from resumming this
double logarithm suppresses the contribution from the
small kT region, i.e., the region with a large impact pa-
rameter [5]. The second term exists even in the collinear
factorization theorem without taking into account kT
[31,39], ln�Q2=�xQ2 � k2

T��  ln2x, which cannot be fac-
torized into the pion wave function. This threshold loga-
rithm is important at small x, where the internal quark
approaches mass shell. Hence, a jet function has been
introduced to absorb ln2x, and its resummation effect
suppresses contributions from the small x region [33].
The third term, being of O�1�, does not require an all-order
organization.

The loop correction to the outgoing on shell photon
vertex is written as
 

G�1�e �x;Q2; kT� �
�s
4�

CF

�
1

�
� ln

4��2

k2
Te

�E
� ln

xQ2 � k2
T

k2
T

�
3

2

�

�H�0��x;Q2; kT�; (19)

which does not contain a double logarithm for the follow-
ing reason. In the large x region the internal quark is off
shell by O�Q2�, and the soft enhancement disappears. In
the small x region, the �q quark becomes soft, and the
associated collinear enhancement is diminished by the
limited phase space for the loop momentum. Therefore,
there is a lack of overlap of the collinear and soft enhance-
ments, and only the O�1� single logarithm exists.

Finally, the evaluation of the box diagram in Fig. 1(f) is
simple, giving a power-suppressed contribution at small x.
In the region with xO�1�, i.e., k� O�Q�, the internal
quark in Fig. 1(f) is off shell by 1=�P2 
 �k� l��  1=Q2

for either a collinear loop momentum l� O�Q� or an
ultraviolet loop momentum l� O�Q�, the same as
1=�P2 
 k�  1=Q2 in the LO amplitude. Namely, the ra-
diative correction from the box diagram does not change
the LO power-law behavior, and its contribution is finite. In
the region with small xO���, � being a hadronic scale,
the LO amplitude scales like 1=�P2 
 k�  1=�Q��, while
the internal quark in Fig. 1(f) remains off shell by 1=�P2 
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�k� l��  1=Q2 for either collinear or ultraviolet l. Thus,
the contribution from the box diagram becomes power
suppressed and negligible, and we have G�1�f �x;Q

2; kT� �
0 at the leading power. The above observation is consistent
with the corresponding NLO analysis in the collinear
factorization theorem [31], which indicates the vanishing
of the box-diagram contribution in the small x region
explicitly.

The sum of the radiative corrections from the quark
diagrams in Figs. 1(a)–1(f) gives
 

G�1��x;Q2; kT� �
Xf
i�a

G�1�i �x;Q
2; kT�

� �
�s
4�

CF

�
2 ln

Q2

k2
T

ln
Q2

xQ2 � k2
T

� 3 ln
Q2

k2
T

� 1�
2�2

3

�
H�0��x;Q2; kT�: (20)

It is observed that all of the ultraviolet poles cancel and the
� dependence disappears completely, a consequence of the
conservation of the current that defines the pion transition
form factor. It will be demonstrated in the next subsection
that the effective diagrams for the pion wave function
generate the same infrared logarithms lnk2

T .

B. Effective diagrams

We first explain the appearance of the nonphysical light-
cone divergences in the naive definition for kT-dependent
hadron wave functions. To factor out the collinear gluons
in Figs. 1(d) and 1(e), the following approximation for the
product of the two internal quark propagators has been
employed [35]:

 

2P	2
�P2�k�2�P2�k� l�2

�
n	�
n� 
 l

�
�

1

xQ2�k2
T

�
1

�x� l�=P�1 �Q
2�jkT� lT j2

�
;

(21)

where 2P	2 comes from the contraction of P6 2 and �	 in the
numerators of Eqs. (11) and (12). The factor n	�=n� 
 l is
exactly the Feynman rule associated with the Wilson line
along the light cone, which is necessary for the gauge
invariance of the nonlocal matrix element in the pion
wave function. The first (second) term in the above split-
ting corresponds to the case without (with) the loop mo-
mentum l flowing through the hard scattering. It is easy to
see that the right-hand side of Eq. (21) is well-defined in
the n� 
 l � l� ! 0 limit, if the transverse momenta k2

T
and jkT � lTj2 are dropped. That is, collinear factorization
can be made gauge-invariant and free of the light-cone
singularities. However, singularities from l� ! 0 are de-
veloped when the transverse momenta are included, im-
plying that the factorization of collinear gluons should be

performed more carefully in the kT factorization theorem.
This is the reason the naive definition is modified into
Eq. (5) with the nonlightlike vector n, which makes finite
n 
 l as l� ! 0.

The explicit expressions for the O��s� effective dia-
grams displayed in Figs. 2(a)–2(g) are written, following
Eq. (5), as
 

��1�a �x; kT; x0; k0T� � �
i
8
g2CF�

2�
f

Z d4�2�l

�2��4�2�

� tr
�
�5n6 �

�6k
�k2
�	

�6k� l6

� �k� l�2
�	n6 ��5

�

�
1

l2
��x� x0���kT � k0T�; (22)

 

��1�b �x; kT; x0; k0T� � �
i
8
g2CF�

2�
f

Z d4�2�l

�2��4�2�

� tr
�
�	

k6 � l6

�k� l�2
�	

k6

k2 �5n6 �n6 �5

�

�
1

l2
��x� x0���kT � k0T�; (23)

 

��1�c �x;kT ;x0; k0T� �
i
4
g2CF�2�

f

Z d4�2�l

�2��4�2�

�

�
�	

k6 � l6

�k� l�2
�5n6 �

�6k� l6

� �k� l�2
�	n6 ��5

�

�
1

l2
�
�
x� x0 �

l�

P�1

�
��kT �k0T � lT�;

(24)

 

��1�d �x; kT; x0; k0T� � �
i
4
g2CF�2�

f

Z d4�2�l

�2��4�2�

� tr
�
�5n6 �

�6k� l6

� �k� l�2
�	n6 ��5

�

�
1

l2
n	

n 
 l
��x� x0���kT � k0T�; (25)

(a) (b) (c)

(d) (e) (f ) (g)

FIG. 2. O��s� effective diagrams for the pion wave function.
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��1�e �x; kT ; x0; k0T� �
i
4
g2CF�

2�
f

Z d4�2�l

�2��4�2�

� tr
�
�5n6 �

�6k� l6

� �k� l�2
�	n6 ��5

�
1

l2
n	

n 
 l

� �
�
x� x0 �

l�

P�1

�
��kT � k0T � lT�;

(26)

 

��1�f �x; kT ; x0; k0T� �
i
4
g2CF�

2�
f

Z d4�2�l

�2��4�2�

� tr
�
�	

k6 � l6

�k� l�2
�5n6 �n6 ��5

�
1

l2
n	

n 
 l

� ��x� x0���kT � k0T�; (27)

 

��1�g �x; kT ; x0; k0T� � �
i
4
g2CF�2�

f

Z d4�2�l

�2��4�2�

� tr
�
�	

k6 � l6

�k� l�2
�5n6 �n6 ��5

�
1

l2
n	

n 
 l

� �
�
x� x0 �

l�

P�1

�
��kT � k0T � lT�;

(28)

where n� � �1; 0; 0T� is a null vector along the pion mo-
mentum P1, and the arguments �f and �2 of ��1� are not
exhibited for brevity. Note that the zeroth-order wave
function is given by ��0� � ��x� x0���kT � k0T� here.

We compute the convolution of ��1� with the LO hard
kernel H�0� in Eq. (3) over the integration variables x0 and
k0T , denoted by � below:

 ��1�i �H
�0� 	

Z
dx0d2k0T��1�i �x; kT ; x0; k0T�H

�0��x0; Q2; k0T�:

(29)

The self-energy corrections in Figs. 2(a) and 2(b) are
similar to the quark diagrams in Figs. 1(a) and 1(b),
respectively, and the results are

 ��1�a �H�0� � �
�s
8�

CF

�
1

�
� ln

4��2
f

k2
Te

�E
� 2

�
H�0��x;Q2; kT�;

(30)

 ��1�b �H
�0� � �

�s
8�

CF

�
1

�
� ln

4��2
f

k2
Te

�E
� 2

�
H�0��x;Q2; kT�:

(31)

Similarly, the contribution from the box diagram in
Fig. 2(c) is power suppressed in the small x region, and
we have ��1�c �H�0� � 0.

When evaluating Eqs. (25)–(28), the sign of the plus
component n� of the vector n is arbitrary, which could be

positive or negative (n� has a positive sign, the same as
that of P�2 ). Choosing n� < 0, i.e., n2 < 0 as in
Refs. [5,8,11,12], Fig. 2(d) leads, in the small x region, to
 

��1�d �H
�0� �

�s
4�

CF

�
1

�
� ln

4��2
f

k2
Te

�E
� ln2 �

2

k2
T

� ln
�2

k2
T

� 2�
�2

3

�
H�0��x;Q2; kT�; (32)

which reproduces the Sudakov logarithm ln2�Q2=k2
T� from

Fig. 1(d) in Eq. (18), noticing the scale �2 � jn�=n�jQ2.
The light-cone divergences are regularized in the price that
the universality of a wave function is lost, for it depends on
the external kinematic variable through �2. This problem
can be alleviated by extracting the evolution in �2 from
Eq. (5) [19], i.e., by resumming ln2��2=k2

T� in Eq. (32) into
the Sudakov factor [24,40]. The initial condition of the
evolution is universal, like a distribution amplitude in the
collinear factorization theorem. We stress that the Sudakov
resummation, accurate up to fixed loops, does not remove
the �2 dependence of a wave function completely. That is,
nonfactorizability may occur at a subleading level in the kT
factorization of the pion transition form factor.

The hard kernel associated with ��1�e , i.e., the second
term in Eq. (21), demands the physical range of l� to be
� �k� � l� � k�, which corresponds to the range of the
parton momentum fraction 1 � x0 � 0. As when comput-
ing the convolution of ��1�e with H�0�, this fact should be
taken into account. Moreover, we assume �2 Q2 by
choosing jn�j  n� to avoid creating the additional large
logarithm ln��2=Q2�. The leading-power expression for
Fig. 2(e) is then given, in the small x region, by

 ��1�e �H�0� �
�s
4�

CFln2 �
2�xQ2 � k2

T�

Q2k2
T

H�0��x;Q2; kT�;

(33)

where terms vanishing with k2
T ! 0 have been dropped. It

is found that Fig. 2(e) does not generate a large double
logarithm with �2 Q2.

It is interesting to obtain the results corresponding to
n� > 0 for Figs. 2(d) and 2(e). One simply analytically
continues Eqs. (32) and (33) into the region with n2 > 0 by
means of the principle-value prescription:

 P
�

ln2 �n 
 P1�
2

n2

�
� ln2 �n 
 P1�

2

jn2j
� �2;

P
�

ln
�n 
 P1�

2

n2

�
� ln
�n 
 P1�

2

jn2j
:

(34)

We then derive from Eq. (32)
 

��1�d �H
�0� �

�s
4�

CF

�
1

�
� ln

4��2
f

k2
Te

�E
� ln2 �

2

k2
T

� ln
�2

k2
T

� 2

�
4�2

3

�
H�0��x;Q2; kT�; (35)

SOUMITRA NANDI AND HSIANG-NAN LI PHYSICAL REVIEW D 76, 034008 (2007)

034008-6



which can be confirmed by calculating the loop integral in
Eq. (25) directly for n2 > 0. It shows that the choices n2 >
0 and n2 < 0 lead to expressions different only by a con-
stant term. Because the n-dependent double logarithms
cancel in the summation

 ���1�d ���1�e � �H�0� �
�s
4�

CF

�
1

�
� ln

4��2
f

k2
Te

�E
� 2 ln

�2

k2
T

� ln
Q2

xQ2 � k2
T

� ln2 Q2

xQ2 � k2
T

� ln
�2

k2
T

� 2�
�2

3

�
H�0��x;Q2; kT�;

(36)

���1�d ���1�e � �H�0� does not depend on the sign of n2

actually.
Applying the variable change l! �l, and the trans-

formations n! �n and k! �k, Eq. (27) becomes identical
to Eq. (25). Therefore, the result from Fig. 2(f) is the same
as that of Fig. 2(d), but with the replacement of �k � P1 by
k, i.e., � by x� . Keeping terms which do not vanish with
k2
T ! 0, we have

 

��1�f �H
�0� �

�s
4�

CF

�
1

�
� ln

4��2
f

k2
Te

�E
� ln2 x

2�2

k2
T

� ln
x2�2

k2
T

� 2�
�2

3

�
H�0��x;Q2; kT�; (37)

where the double logarithm, being large in the region of
xO�1�, attenuates with the decrease of x. It should
disappear, after combined with the contribution from
Fig. 2(g), since such a double logarithm is absent in the
corresponding quark diagram in Fig. 1(e) in any region of
x. The same variable transformation relating ��1�f to ��1�d is

not applicable to ��1�g , for the latter involves the nontrivial
convolution with H�0�. Hence, ��1�g �H�0� is expected to
have an expression different from ��1�e �H�0�. Retaining
terms which are finite as kT ! 0, Fig. 2(g) leads, in the
small x region with xQ2 � x2�2, to

 ��1�g �H�0� �
�s
4�

CFln2 x
2�2

k2
T

H�0��x;Q2; kT�: (38)

The cancellation of the double logarithms in the summa-
tion of Eqs. (37) and (38) is obvious. For a similar reason,
���1�f ���1�g � �H�0� is independent of the sign of n2.

Summing all of the above O��s� quark-level wave func-
tions, we derive

 

��1� �H�0� �
Xg
i�a

��1�i �H
�0�

�
�s
4�

CF

�
1

�
� ln

4��2
f

k2
Te

�E
� ln2 �

2

k2
T

� ln2 �
2�xQ2 � k2

T�

Q2k2
T

� ln
�2

k2
T

� ln
x2�2

k2
T

� 2�
2�2

3

�
H�0��x;Q2; kT�: (39)

In contrast to Eq. (20), which is independent of the renor-
malization scale �, the above expression depends on the
factorization scale �f . The Sudakov resummation and the
renormalization-group method can be applied to organize
the logarithms ln2��2=k2

T� and ln��2
f =k

2
T� to all orders,

respectively [8].

C. O��s� hard kernel

We renormalize Eq. (39) in the modified minimal sub-
traction scheme and then take the difference of Eqs. (20)
and (39) to obtain the O��s� hard kernel for the pion
transition form factor. It is easy to find that the hard kernels
H�1�a;b 	 G�1�a;b ���1�a;b �H

�0�, H�1�c 	 G�1�c , H�1�d 	

G�1�d � ��
�1�
d ���1�e � �H�0�, H

�1�
e 	G

�1�
e � ��

�1�
f ���1�g � �

H�0�, and H�1�f 	 G�1�f ���1�c �H�0� � 0 associated with
Figs. 1(a)–1(f) are all free of the infrared logarithms
lnk2

T as claimed before. Compared to Ref. [30], we do
not need the additional soft function S to achieve this
cancellation. The difference is that the self-energy correc-
tions to the Wilson lines have been included into the set of
effective diagrams for the pion wave function in Ref. [30].
Hence, S must be introduced to remove these artificially
included infrared divergences. We stress that the self-
energy corrections to the Wilson lines do not exist, because
such diagrams are not generated in the derivation of the
factorization theorem using the diagrammatic approach
[7]. This observation is consistent with the postulation
that the gauge fields appearing in the Wilson lines in
Eq. (6) are regarded as bare fields [19].

After subtracting the effective diagrams from the quark
diagrams, the resultant hard kernel depends on the facto-
rization scheme that defines the renormalization of
Eq. (39). The quark diagrams do not have such a scheme
dependence, as shown in Eq. (20). When making a physical
prediction from the factorization theorem, one convolutes
the hard kernel with a model for the pion wave function
(not with the effective diagrams), so that the scheme de-
pendence in the hard kernel remains. As stated in the
introduction, the scheme dependence of physical predic-
tions is usually minimized by adhering to a fixed prescrip-
tion for deriving hard kernels, which will be elucidated
below. The sum of the O��s� hard kernels is written as
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H�1��x;Q2; kT� �
Xf
i�a

H�1�i �x;Q
2; kT�

�
�s
4�

CF

�
� ln

�2
f

xQ2 � k2
T

� 2 ln
�2

Q2

� ln
Q2

xQ2 � k2
T

� ln2 Q2

xQ2 � k2
T

� 2 ln
Q2

x�2 � ln
Q2

xQ2 � k2
T

� 3
�

�H�0��x;Q2; kT�: (40)

The Sudakov logarithm ln2�Q2=k2
T� in Eq. (18) for G�1�d has

been cancelled by that in Eq. (32) for ��1�d �H
�0�, but the

threshold logarithm ln2�Q2=�xQ2 � k2
T�� remains in H�1�.

The large threshold logarithm can be absorbed into a jet
function [33], so that the perturbative expansion of the hard
kernel is further improved. At small x, a collinear enhance-
ment arises from the region with the loop momentum
parallel to the internal quark momentum P2 � k � P2.
To factorize this collinear gluon into the jet function, we
replace the q quark by the eikonal line in some direction u
[40,41], as shown in Fig. 3(a). Similarly, we choose u2 � 0
to avoid other infrared divergences, such as those from l
parallel to P1, which have been absorbed into the pion
wave function. Including the self-energy correction to the
internal quark [Fig. 3(b)], we arrive at the complete set of
diagrams for the jet function at O��s�.

Figure 3 has been evaluated in Ref. [33], focusing only
on the double-logarithm piece ln2x. Here we work out the
single-logarithm and constant pieces, too. The explicit
expression of the loop integral J�1�a associated with
Fig. 3(a) is referred to [33]. We obtain, for u2 < 0,

 J�1�a H�0� �
�s
4�

CF

�
1

�
� ln

4��2e��E

xQ2 � k2
T

� ln2 �2
u

xQ2 � k2
T

� ln
�2
u

xQ2 � k2
T

� 2�
�2

3

�
H�0��x;Q2; kT�;

(41)

with the scale �2
u � 4�u 
 P2�

2=ju2j. Figure 3(b) gives a
result identical to Eq. (16) for Fig. 1(c):

 J�1�b H
�0� � �

�s
4�

CF

�
1

�
� ln

4��2e��E

xQ2 � k2
T

� 2
�
H�0��x;Q2; kT�: (42)

Note that the sum J�1� � J�1�a � J
�1�
b is free of ultraviolet

divergences and �-independent. That is, the factorization
of the jet function does not modify the renormalization-
group behavior of the hard kernel. As expected, the jet
function is characterized by the invariant mass of the
internal quark.

Define �2 � 	Q2 and �2
u � 	uQ

2, with 	 and 	u being
constants of O�1�. The hard kernel, after subtracting the
O��s� jet function, is given by
 

�H=J��1��x;Q2;kT�	H
�1��x;Q2;kT�

�J�1��x;Q2;kT�H
�0��x;Q2;kT�

��
�s
4�
CF

�
ln

�2
f

xQ2�k2
T

�2�ln	� ln	u�

� ln
Q2

xQ2�k2
T

�2lnx3�
�2

3
� ln2	u

� ln	u�2ln	
�
H�0��x;Q2;kT�; (43)

in which the double logarithms have been completely
removed. Different values of 	 and 	u correspond to differ-
ent factorization schemes. Adopting 	 � 1, i.e., �2 � Q2

as in Ref. [5], and 	u � 1, Eq. (43) reduces to
 

�H=J��1��x;Q2; kT� � �
�s
4�

CF

�
ln

�2
f

xQ2 � k2
T

� 2 lnx� 3

�
�2

3

�
H�0��x;Q2; kT�: (44)

Employing the factorization scale �f � Q and the asymp-
totic model of the pion wave function, the same as in the
LO analysis in the kT factorization theorem [42], the NLO
corrections are found to be only 5%. That is, the NLO
corrections are not expected to affect much the LO results
for ��� ! �. Our conclusion is drawn under the specific
factorization scheme with 	 � 	u � 1. It requires an ex-
amination whether NLO corrections are also negligible
under the same scheme in other exclusive processes con-
taining pions, such as the pion form factor involved in
��� ! �.

III. GAUGE INVARIANCE

In this section, we prove the gauge invariance of the
kT-dependent hard kernel for the pion transition form
factor by induction. We first show that the kT factorization
constructed in the Feynman gauge [7,35] holds in an
arbitrary covariant gauge @ 
 A � 0 with the gauge pa-
rameter �, in which the gluon propagator is given byFIG. 3. O��s� diagrams for the jet function.
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��i=l2�N�	�l� with the tensor

 N�	�l� � g�	 � �1� ��
l�l	

l2
: (45)

It has been argued that the replacement

 g�	 !
n��l

	

n� 
 l
� g��

n��l
	

n� 
 l
(46)

for a collinear gluon propagator in the Feynman gauge
extracts collinear divergences correctly [7,35]. In the arbi-
trary covariant gauge, we just need to modify the above
replacement into

 N�	�l� !
n��l	

n� 
 l
� �1� ��

l�l	

l2
� N���l�

n��l	

n� 
 l
; (47)

and then the procedures for deriving the factorization
theorem in Refs. [7,35] follow: The Ward identity is ap-
plied to all of the contractions of l	, leading to the facto-
rization of the collinear gluon. The factor n��=n� 
 l
explains how the Wilson lines are generated in factorizing
hadron wave functions. For more details, refer to
Refs. [7,35].

The kT dependence in a hard kernel implies that the
partons entering the quark diagrams and the effective dia-
grams for the pion wave function are off shell by k2

T . The
LO hard kernel H�0��x;Q2; kT� in Eq. (3), which does not
contain a gluon, is independent of the gauge parameter �.
Beyond LO, the gauge invariance of a hard kernel is a
consequence of the gauge-dependence cancellation be-
tween the above two sets of diagrams. Assuming that the
hard kernels defined by
 

H�j��x;Q2; kT� �G�j��x;Q2; kT��
Xj
i�1

Z
dx0d2k0T

���i��x;kT ;x0; k0T�H
�j�i��x0;Q2; k0T� (48)

are gauge-invariant for j � 1; 2; 
 
 
N, we shall prove the
gauge invariance of the O��N�1

s � hard kernel
 

H�N�1��x;Q2;kT��G�N�1��x;Q2;kT��
XN�1

i�1

Z
dx0d2k0T

���i��x;kT ;x0;k0T�H
�N�1�i��x0;Q2;k0T�;

(49)

using the method proposed in Ref. [43]. Note that the
external quark spinors in the nonlocal matrix element in
Eq. (5) have absorbed half of the self-energy corrections.
Another half goes into the higher-order wave functions,
giving the coefficients 1=2 in Eqs. (22) and (23). The same
explanation applies to the appearance of 1=2 in Eqs. (8)
and (9) for theO��s� quark diagrams. To discuss the gauge
dependence, we consider the full self-energy corrections to
the quark diagrams G and to the effective diagrams �.

Applying the differential operator �d=d� to H�N�1�, it
acts only on the gluon propagators in G�N�1� and ��i� on
the right-hand side of Eq. (49), leading to

 �
d
d�

N�	 � �
l�l	

l2
� v��l�N�	 � N��l	�; (50)

with the special vertex v� � l�=�2l2�. The derivatives
�dH�N�1�i�=d� vanish due to the gauge-invariant assump-
tion associated with Eq. (48). The loop momentum l� (l	)
in Eq. (50) contracts with vertices in the diagrams of
G�N�1� and ��i�, which are then replaced by the special
vertex v�. Summing all of the quark diagrams with various
differentiated gluons and employing the Ward identity,
only those in which the special vertex is located at the
outer ends of the valence quark lines are left [35,43], as
shown in Fig. 4(a). These diagrams come from the second
terms in the following Ward identities associated with the
quark and the antiquark, respectively:

 

i��6k� l6 �

� �k� l�2
��il6 �P6 1�5 � P6 1�5 �

�6k� l6

� �k� l�2
�6kP6 1�5;

P6 1�5��il6 �
i�l6 � k6 �

�l� k�2
� P6 1�5 � P6 1�5k6

l6 � k6

�l� k�2
;

(51)

where P6 1�5 is the leading spin structure appearing in the
expressions for the quark diagrams. We have the similar
Ward identities for the effective diagrams with n6 ��5 being
substituted for P6 1�5. The first term is cancelled by one of
the two terms from the contraction of l with the adjacent
vertex. If all of the external quarks were on mass shell, i.e.,
kT � 0, the second terms also vanish due to �6kP6 1 � P6 1k6 �
0, implying �dG�N�1�=d� � 0 and �d��i�=d� � 0. That

FIG. 4. (a) Diagrams for �dG�N�1�=d�, where the bubbles
represent G�N� and the squares contain the special vertex v�.
(b) Diagrams for �d��1�=d�.
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is, the quark diagrams from full QCD and the effective
diagrams for the wave function with on shell partons are
gauge-invariant.

For the differentiated quark diagrams G�N�1� in
Fig. 4(a), the gluon emitting from the special vertex at-
taches all of the lines inside G�N�. Adopting Eq. (47) and
the procedures in Ref. [35], �dG�N�1�=d� is factorized into
the convolution of G�N� with the differentiated ��1� at
leading power in 1=Q:
 

�
d
d�

G�N�1��x;Q2; kT� �
Z
dx0d2k0T�

d
d�

��1��x; kT ; x0; k0T�

�G�N��x0; Q2; k0T�: (52)

For illustration, we display the effective diagrams for
�d��1�=d� in Fig. 4(b) explicitly. We repeat the above
steps for the differentiated wave function
��i��x; kT ; x0; k0T� and obtain
 

�
d
d�

��i��x; kT; x
00; k00T� �

Z
dx0d2k0T�

d
d�

��1��x; kT ; x0; k0T�

���i�1��x0; k0T; x00; k00T�: (53)

Combining Eqs. (52) and (53), the differentiation of the
O��N�1

s � hard kernel gives
 

�
d
d�
H�N�1��x;Q2;kT��

Z
dx0d2k0T�

d
d�

��1��x;kT ;x0;k0T�

�

�
G�N��x0;Q2;k0T�

�
XN
i�0

Z
dx00d2k00T��i��x0;k0T;x00;k00T�

�H�N�i��x00;Q2;k00T�
�
; (54)

where the term in the square brackets diminishes because
of Eq. (48) for j � N. We then prove the gauge invariance
of the O��N�1

s � hard kernel. The hard kernels and the
resultant predictions from the kT factorization theorem
are thus gauge-invariant to all orders by induction.

IV. CONCLUSION

In this paper, we have elucidated the framework for the
higher-order calculations in the kT factorization theorem,
which is appropriate for QCD processes dominated by
contributions from small momentum fractions. The point
is that partons in both the quark diagrams from full QCD
and the effective diagrams for hadron wave functions are
off mass shell by k2

T . Their difference gives the gauge-
invariant kT-dependent hard kernels, since the gauge de-
pendences cancel between the two sets of diagrams. The

gauge invariance of the hard kernels for the scattering
process ��� ! � in the kT factorization theorem has
been proven to all orders by induction. The proof can be
easily generalized to other processes. We have explained
that the light-cone divergences in a naive definition of
kT-dependent hadron wave functions are regularized by
rotating the Wilson lines away from the light cone. This
procedure introduces a regularization-scheme dependence,
which, however, can be regarded as part of the
factorization-scheme dependence and minimized by adher-
ing to a fixed prescription for deriving hard kernels. The
gauge invariance of a hard kernel and the removal of the
light-cone singularities are the two essential ingredients for
making physical predictions from the kT factorization
theorem.

We have calculated the NLO kT-dependent hard kernel
for ��� ! � in the region with a large momentum transfer
Q2 and a small momentum fraction x. We have demon-
strated that the infrared logarithms lnk2

T , reflecting the
collinear divergences, cancel between the quark diagrams
and the effective diagrams exactly. Hence, there is no need
to introduce the additional nonperturbative soft function in
the kT factorization theorem. The quark diagrams generate
the double logarithms ln2�Q2=k2

T� and ln2x from the loop
correction to the virtual photon vertex. It has been shown
that the former is absorbed into the pion wave function and
the latter into the jet function, confirming the observations
made in our previous works [8,33]. Note that the factori-
zation of the jet function does not alter the
renormalization-group behavior of the hard kernel.
Eventually, the NLO corrections in ��� ! � amount
only to 5% under a specific factorization scheme with the
factorization scale set to the momentum transfer. NLO
corrections under the same factorization scheme in other
processes, such as the pion form factor and heavy-to-light
transition form factors, will be examined elsewhere.
Finally, we mention that the off-light-cone effects from
yT � 0 have been found to be sizable in some heavy-to-
light correlators based on a QCD-sum-rule analysis re-
cently [44].
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