
Pion interactions in the X�3872�

S. Fleming,1,* M. Kusunoki,1,† T. Mehen,2,3,4,‡ and U. van Kolck1,5,6,x

1Department of Physics, University of Arizona, Tucson, Arizona 85721, USA
2Department of Physics, Duke University, Durham, North Carolina 27708, USA

3Jefferson Laboratory, 12000 Jefferson Avenue, Newport News, Virginia 23606, USA
4Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

5Kernfysisch Versneller Instituut, Rijksuniversiteit Groningen, Zernikelaan 25, 9747 AA Groningen, The Netherlands
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We consider pion interactions in an effective field theory of the narrow resonance X�3872�, assuming it
is a weakly bound molecule of the charm mesons D0 �D�0 and D�0 �D0. Since the hyperfine splitting of the
D0 and D�0 is only 7 MeV greater than the neutral pion mass, pions can be produced near threshold and
are nonrelativistic. We show that pion exchange can be treated in perturbation theory and calculate the
next-to-leading-order correction to the partial decay width ��X ! D0 �D0�0�.
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I. INTRODUCTION

The idea that the recently discovered X�3872� is a
shallow molecular bound state of D�0 �D0 and �D�0D0 me-
sons is extremely attractive and has motivated numerous
calculations of X�3872� properties using effective-range
theory, for a review see Ref. [1]. Going beyond this ap-
proximation requires including effects from dynamical
pion exchange. The goal of this paper is to develop an
effective theory of nonrelativistic D mesons and pions that
can be used to compute properties of the X�3872� system-
atically at low energies. Because of the accidental nearness
of the D�-D hyperfine splitting and the pion mass, pion
exchanges are characterized by an anomalously small scale
compared to what is usually the case in nuclear physics [2].
We argue in this paper that, unlike in conventional nuclear
physics, these effects can be treated using perturbation
theory and compute the decay X ! D0 �D0�0 to next-to-
leading order (NLO) in the effective theory.

We begin by reviewing the current experimental under-
standing of the X�3872�. The X�3872� is a narrow reso-
nance discovered by the Belle Collaboration [3] in
electron-positron collisions through the decay B� !
XK� followed by the decay X ! J= ����. Its existence
has been confirmed by the CDF and D0 Collaborations
through its inclusive production in proton-antiproton colli-
sions [4,5] and by the BABAR Collaboration through the
discovery mode B� ! XK� [6]. The combined averaged
mass of the X�3872� measured by these experiments is [7]

 mX 	 3871:2� 0:5 MeV: (1)

Note that the mass of the X�3872� is quite close to the
D0 �D�0 threshold at 3871:81� 0:36 MeV [8]. The Belle

Collaboration has placed an upper limit on the width of the
X�3872� [3]:

 �X < 2:3 MeV �90% C:L:�: (2)

The X�3872� has also been observed in the decays X !
J= �����0 and X ! J= � [9]. The ratio of branching
fractions for the three- and two-pion final states is [9]

 

Br�X ! J= �����0�

Br�X ! J= �����
	 1:0� 0:4� 0:3: (3)

Since these decays are thought to proceed through J= �
for the J= ���� final state, and through J= ! for the
J= �����0 final state, the ratio in Eq. (3) indicates a
large violation of isospin invariance. A near-threshold
enhancement in D0 �D0�0 has been observed in B!
D0 �D0�0K decays [10]. This is the first evidence for the
decay X ! D0 �D0�0, though the peak of the observed
resonance in Ref. [10] is at 3875:2� 0:7�0:3

�1:6 � 0:8 MeV,
which is 2� above the world-averaged X�3872� mass. The
branching ratio for X ! D0 �D0�0 observed in Ref. [10] is
8:8�3:1
�3:6 larger than the discovery mode X ! J= ����.

The BABAR Collaboration has established Br�X !
J= �����> 0:042 at 90% C.L. [11,12]. Various upper
limits have been placed on the product of Br�B� ! XK��
and other branching fractions of the X�3872� including
D0 �D0, D�D� [13], �c1�, �c2�, J= �0�0 [14], and
J= � [15]. Upper limits have also been placed on the
partial widths for the decay of X�3872� into e�e�

[16,17] and into �� [17].
The possible JPC quantum numbers of the X�3872� have

been examined. The observation of X ! J= � establishes
C 	 �. This is consistent with the shape of the ����

invariant mass distributions [3,6,18]. Belle’s angular dis-
tribution analysis of X ! J= ���� favors JPC 	 1��

[19]. A recent CDF analysis [20] finds that J= ����

angular distributions are only consistent with JPC 	 1��

and 2��.
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The quantum numbers JPC 	 1�� arise if the X�3872�
is a C 	 �, S-wave molecular bound state of D0 �D�0 �
�D0D�0. The possibility of a shallow molecular state is

motivated by the proximity of the X�3872� to the D0 �D�0

threshold and naturally explains the large isospin violation
observed in pion decays and the dominance of theD0 �D0�0

decay mode. The narrow width and the nonobservation of
decays such as X ! �c� are highly unusual for a conven-
tional charmonium state above theD �D threshold. From the
mass in Eq. (1) and the recent measurement of theD0 mass
in Ref. [8] one infers a binding energy

 EX 	 mD �mD� �mX 	 0:6� 0:6 MeV: (4)

This favors a bound-state interpretation of the X�3872�;
however, because of the large uncertainty, the mass alone
cannot rule out a resonance or ‘‘cusp’’ near the D0 �D�0

threshold [21]. In this paper we will assume the X�3872� is
a molecular bound state, though our method can be ex-
tended to the case where the X�3872� is a shallow reso-
nance. For other interpretations, see Refs. [22–37]. A
recent review can be found in Ref. [38].

The interpretation as a DD� molecule is particularly
predictive because the small binding energy implies that
the molecule has universal properties that are determined
by the binding energy [39–44]. The small binding energy
can be further exploited through factorization formulae for
production and decay rates of the X�3872� [45,46].
Voloshin calculated the decays X ! D0 �D0�0 [39] and
X ! D0 �D0� [40] using the universal wave function of
the molecule.

The main purpose of this paper is to consider the effect
of �0 exchange on the properties of the X�3872�. Consider
the one-pion-exchange contribution to D�0 �D0 ! D0 �D�0

scattering depicted in Fig. 1. This leads to an amplitude

 

g2

2f2
�

~�� 
 ~q ~� 
 ~q

~q2 ��2 ; (5)

where g is the D-meson axial (transition) coupling, f� is
the pion decay constant, ~� and ~�� are the polarization
vectors of the incoming and outgoing D� mesons, respec-
tively, and ~q is the momentum transfer. The scale �
appearing in the propagator denominator is given by �2 	
�2 �m2

�, where � is the D�-D hyperfine splitting and m�

is the neutral pion mass. The hyperfine splitting, �, appears
in the pion propagator because the exchanged pion carries
energy q0 ’ � as well as momentum ~q. Note that � is
anomalously small, � � 45 MeV, because of the nearness
of � 	 142 MeV and m� 	 135 MeV. This suggests that
pions generate anomalously long-range effects and should
be included as explicit degrees of freedom in the descrip-
tion of the molecule, if the binding energy in Eq. (4) is not
much smaller than its upper limit.

The pion interactions in the D and D� system were
quantitatively analyzed using a one-pion-exchange poten-
tial model by Tornqvist [47], who actually predicted aD �D�

bound state (deuson) with a mass close to the observed
X�3872�. After the discovery of the X�3872�, Swanson [26]
considered a potential model that includes both a one-pion-
exchange potential and a quark-exchange potential and
found a weakly bound state in the S-wave JPC 	 1��

channel. These authors worked in the isospin limit and
used isospin-averaged pion masses and hyperfine splittings
and obtained long-range Yukawa-like potentials [47]. Note
that the effective mass term in the propagator in Eq. (5) has
the opposite sign from what one typically obtains from
meson exchange. This leads to a �0-exchange potential in
position space which is oscillatory rather than Yukawa-
like, as pointed out by Suzuki [2].

A central point of this paper is that the effect of �0

exchange can be dealt with using perturbation theory.
Naive dimensional analysis of the relative size of two-
pion- and one-pion-exchange graphs yields the ratio

 

g2MDD��

4�f2
�
�

1

20
�

1

10
; (6)

where MDD� is the reduced mass of the D and D� and we
have set g 	 0:5–0:7 [48–50]. This is in contrast with two-
nucleon systems where a similar estimate yields [51,52]

 

g2
AMNm�

8�f2
�
�

1

2
; (7)

where gA 	 1:25 is the nucleon axial coupling and MN is
the nucleon mass. A perturbative treatment of pions fails in
the 3S1 channel where iteration of the spin-tensor force
yields large corrections at next-to-next-leading order
(NNLO) [53,54]. This is in part due to the large expansion
parameter in Eq. (7) and in part due to large numerical
coefficients appearing in the NNLO calculation. The am-
plitude in Eq. (5) also gives rise to a spin-tensor force and
one may worry that the perturbative treatment of pions will
fail. However, even if large NNLO coefficients like those
found in Refs. [53,54] appear in similar diagrams for the
X�3872�, the expansion parameter in Eq. (6) is small
enough that one can reasonably expect perturbation theory
to work.

In this paper, we derive an effective field theory of the
D0 �D�0 and D�0 �D0 interacting with neutral pions near the
D0 �D�0 threshold. This theory is very similar in structure to

FIG. 1. One-pion-exchange diagram for D�0 �D0 ! D0 �D�0

scattering. The single and double lines represent the spin-0
and spin-1 D mesons, respectively. The dashed line represents
the �0.
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the Kaplan-Savage-Wise (KSW) theory ofNN interactions
in Refs. [51,52] where a leading-order (LO) contact inter-
action is summed to all orders in perturbation theory to
produce a bound state at LO and pion exchange is treated
perturbatively.1 A novel feature of the effective theory for
the X�3872� is that the hyperfine splitting of theD0 andD�0

is only 7 MeV above the �0 mass and thus the pions are
included as nonrelativistic particles. In this paper we focus
on the decay X ! D0 �D0�0. Our results are easily extended
to X ! D0 �D0�. At LO our theory reproduces Voloshin’s
calculations using effective-range theory [39,40]. We then
compute the NLO corrections to the decay width. These
include effective-range corrections as well as calculable
nonanalytic corrections from �0 exchange. We find that
nonanalytic calculable corrections from pion exchange are
negligible and the NLO correction is dominated by contact
interaction contributions.

This paper is organized as follows. In Section II, we give
the Lagrangian and discuss power counting in our theory.
In Section III, we describe our calculation of the partial
width ��X ! D0 �D0�0�. In Section IV, we summarize and
conclude. Appendix A describes how our Lagrangian is
derived by integrating out the scalesm� and � from heavy-
hadron chiral perturbation theory (HH�PT) [57–59].
Appendix B gives the results of evaluating the individual
NLO diagrams for the decay amplitude and the wave
function renormalization.

While this work was being completed, a related preprint
[60] appeared which analyzed the effects of light-meson
exchange on a bound state of heavy mesons near a three-
meson threshold. This work used a scalar-meson model
and calculated the entire line shape of the resonance to
second order in the heavy-light meson coupling. Our work
is complementary to that of Ref. [60] in that we do not use
a model but rather a Lagrangian that is directly relevant to
the X�3872� and we go to higher order in the heavy-light
meson coupling, where renormalization requires the intro-
duction of higher-derivative contact operators. On the other
hand, we do not calculate the full line shape but work at the
resonance peak where a Breit-Wigner is a suitable
approximation.

II. LAGRANGIAN AND POWER COUNTING

The mass of the X�3872� in Eq. (1) is extremely close to
the D0 �D�0 threshold. Assuming that the X�3872� is a
hadronic molecule whose constituents are a superposition
of the D0 �D�0 and D�0 �D0, the X�3872� binding energy is
given by Eq. (4). For reasons stated earlier, our calculations
assume positive binding energy and a molecular interpre-
tation of the X�3872�. The upper bound on the typical

momentum of the D and �D� in the bound state is then � �
�2MDD�EX�

1=2  48 MeV, where MDD� is the reduced
mass of the D0 and �D�0. For this binding momentum the
typical velocity of the D and D� is approximately vD ’
�EX=2MDD��

1=2 & 0:02, and both the D and D� are clearly
nonrelativistic. We will use nonrelativistic fields for the D
and D�.

The pion degrees of freedom are also treated nonrelativ-
istically. The maximum energy of the pion emitted in the
decay X ! D0 �D0�0 is

 E� 	
m2
X � 4m2

D �m
2
�

2mX
	 142 MeV; (8)

which is just 7 MeVabove the �0 mass at 134.98 MeV. The
maximum pion momentum is approximately 44 MeV,
which is comparable to both the typical D-meson momen-
tum, pD � � & 48 MeV, and the momentum scale appear-
ing in the pion-exchange graph, � ’ 45 MeV. Since the
velocity of the pions is v� 	 p�=m�  0:34, a nonrela-
tivistic treatment of the pion fields is valid. In this respect
the treatment of pions differs from ordinary chiral pertur-
bation theory or the NN theory of Refs. [51,52].

The effective Lagrangian includes the charm mesons,
the anticharm mesons, and the pion fields. We denote the
fields that annihilate theD�0, �D�0,D0, �D0, and �0 asD, �D,
D, �D, and �, respectively. To the order we are working we
will not need diagrams with charged pions and charged D
mesons so these are neglected in what follows. We con-
struct an effective Lagrangian that is relevant for low-
energy S-wave DD� scattering, where the initial and the
final states are the C 	 � superposition of D0 �D�0 and
D�0 �D0:

 jDD�i �
1���
2
p �jD0 �D�0i � jD�0 �D0i�: (9)

An interpolating field with these quantum numbers will be
used to calculate the properties of the X�3872�. We inte-
grate out all momentum scales much larger than the mo-
mentum scale set by pD � p� ��. For D mesons this
corresponds to kinetic energy & 1 MeV; for pions the
kinetic energy is & 7 MeV. The hyperfine splitting �
and m� should be treated as large compared to the typical
energy scale in the theory. We start from the Lagrangian of
HH�PT [57–59], which describes the interactions of D
and D� mesons with Goldstone bosons, and integrate out
the scales m� and � by rephasing fields to eliminate the
large components of their energy. The method is similar to
the rephasing used to remove the large mass from the
energies of the fields in heavy-quark effective theory
[61]. Details are given in Appendix A. The effective

1A pionless effective theory of shallow nuclear bound states in
which the leading nonderivative contact interaction is resummed
to all orders was first proposed in Ref. [55]. For a similar theory
of the X�3872� see Ref. [56].
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Lagrangian is
 

L 	 Dy
�
i@0 �

~r2

2mD�

�
D�Dy

�
i@0 �

~r2

2mD

�
D� �Dy

�
i@0 �

~r2

2mD�

�
�D� �Dy

�
i@0 �

~r2

2mD

�
�D� �y

�
i@0 �

~r2

2m�
� 	

�
�

�
g���
2
p
f�

1����������
2m�
p �DDy 
 ~r�� �Dy �D 
 ~r�y� � H:c:�

C0

2
� �DD�D �D�y 
 � �DD�D �D�

�
C2

16
� �DD�D �D�y 
 � �D�r

$
�2D�D�r

$
�2 �D� � H:c:�

B1���
2
p

1����������
2m�
p � �DD�D �D�y 
D �D ~r�� H:c:� 
 
 
 ; (10)

where 	 	 ��m� ’ 7 MeV. Note that �2 	
�2 �m2

� � 2m�	. We use the notation r
$
	 r� � ~r, and

‘‘
 
 
’’ in Eq. (10) denotes higher-order interactions. The
pion decay constant is f� 	 132 MeV with our choice of
normalization. Notice that, since we are only interested in a
C 	 � superposition of the D0 �D�0 and D�0 �D0 defined in
Eq. (9), contact interactions are written in terms of the
combination of fields � �DD�D �D�=

���
2
p

. Because � is a
nonrelativistic field, � annihilates and �y creates �0

quanta, so that the Lagrangian in Eq. (10) allows D0� !
D0 � �0 and D0 � �0 ! D�0 transitions and forbids
D�0 � �0 ! D0 and D0 ! D�0 � �0. Therefore in this
effective field theory the only channels that appear are
�D�0D0 � �D0D�0 and D0 �D0�0. In amplitudes with external

pions, we must multiply by
����������
2m�
p

because of the normal-
ization of the nonrelativistic pion fields. In the X�3872� !
D0 �D0�0 decay diagrams, this will cancel the factors of
1=

����������
2m�
p

in the axial coupling and in the term proportional
to B1 in Eq. (10).

Other channels can of course couple to the X�3872�. The
three-body channelsD� �D0�� andD�D��0 are above the
X�3872� by only 2:8� 0:6 MeV and 3:0� 0:6 MeV, re-
spectively. These channels can only appear as virtual in-
termediate states in X�3872� decay and self-energy graphs
that contain at least two-pion exchanges. These graphs are
NNLO and therefore do not appear at the order we are
working.2 The D��D� threshold lies 8.7 MeV above the
X�3872�, and we may integrate out these states because
they lie outside the range of the effective theory. If kept in
the theory, this intermediate state would also only appear at
NNLO. One may worry about other nearby thresholds,
especially J= � and J= ! which are only 1:4�
1:1 MeV and 8:2� 1:0 MeV, respectively, above the
X�3872�. The J= � channel has a much smaller energy
gap than the others. However, one should take into account
that the magnitude of the complex energy gap includes the
width of the �, ��=2 	 73 MeV, so the J= � channel can
be safely integrated out [46]. A higher-precision analysis
of the X�3872� may need to include these thresholds ex-
plicitly, especially if one wishes to describe the decays

X ! J= ���� and X ! J= �����0. We leave this to
future work.

Matching onto HH�PT yields the D0, D�0, and �0

kinetic terms as well as the axial D�0-D0-�0 coupling.
The coupling constant, g, is determined from data on the
decays of D� mesons. The CLEO measurements of the
D�� width yield g 	 0:59� 0:07 at tree level [48,49]. A
NLO analysis of D� decays in Ref. [62] yields g 	
0:27�0:06

�0:03. A more recent analysis [50] obtains g 	 0:61
at tree level and g 	 0:66�0:53� at NLO, where the number
outside parentheses refers to the result when virtual low-
lying even-parity charmed mesons are included in the loop
calculations and the number in parentheses refers to the
result obtained when these states are integrated out. The
uncertainty in the NLO extraction of g is estimated to be
20%. We will use g 	 0:6� 0:1 in this paper.

The remaining terms in Eq. (10) with coefficients C0,
C2, and B1 are contact interactions that are not obtained
from matching HH�PT but must also be included. They
incorporate effects that come from shorter distance scales
than the scale coming from �0 exchange. We have only
included operators needed to the order we are working. C0

and C2 mediate D0 �D�0 � �D0D�0 scattering in the C 	 �,
S-wave channel and have zero and two derivatives, respec-
tively. B1 mediates a transition between D0 �D�0 � �D0D�0

in the C 	 �, S-wave channel to a state with aD0, �D0, and
�0.

In our power counting, pD � pD� � p� ��� ��Q,
and we calculate amplitudes in an expansion in powers of
Q. Since the D0, D�0, and �0 are all nonrelativistic, ED �
ED� � E� �Q2, so the propagators of all particles are
order Q�2. Loop integrations are order Q5. The
D�0-D0-�0 axial coupling is order Q. In the exchange
diagram of Fig. 1, one can drop the energy dependence
in the pion propagator. The factors of

����������
2m�
p

from the
vertices cancel the factors of 1=�2m�� in the momentum-
dependent term in the pion propagator and combine with 	
to give 2m�	 	 �2, reproducing the expression in Eq. (5).
The pion-exchange amplitude is order Q0 as is easily seen
from Eq. (5).

Only counting powers of momentum, the Feynman rules
for the terms in the Lagrangian with coefficients C0, C2,
and B1 are naively of order Q0, Q2, and Q1, respectively.
However, with this power counting the theory is perturba-
tive and cannot produce a bound state. Instead we will treat

2This assumes that the interpolating field for the X�3872� is
/ �DD�D �D, i.e. is constructed from neutral D-meson fields
only. Since physical results should not depend on the choice of
interpolating field, we are free to make this choice.
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C0 nonperturbatively, along the lines of Refs. [51,55], and
sum diagrams withC0 to all orders. At LO, using the power
divergence subtraction (PDS) scheme one then finds [51]

 C0 	
2�
MDD�

1

���PDS
; (11)

where �PDS is the dimensional-regularization parameter.3

Taking �PDS of order Q we find C0 is order Q�1 which
justifies its resummation. In PDS, the coefficient C2 is
order Q�2 as is B1, as we shall see below. No other
short-distance operators are needed for our NLO calcula-
tion of X ! D0 �D0�0. Feynman diagrams with C2 and B1

first contribute to X ! D0 �D0�0 at NLO.
In addition to expanding in Q, we will make one more

approximation in the NLO calculation of X ! D0 �D0�0. In
many cases it greatly simplifies calculations to expand in
m�=mD � 0:07. This is an approximation we will perform
when evaluating loop diagrams. It is not systematized in
our power counting scheme.

As emphasized earlier, the perturbative character of pion
exchange depends on the smallness of the parameter ap-
pearing in Eq. (6). Our effective theory can be used even if
dimensionless parameters conspire to render pion ex-
change nonperturbative, but in this case one-pion exchange
would have to be resummed as done in theNN system [63].

III. DECAY RATE FOR X�3872� ! D0 �D0�0

Here we describe our method for calculating the width of
the X�3872� resonance. We consider the following two-
point function of interpolating fields Xi 	 �D0 �D0�i �
�D0D0�i�=

���
2
p

for the X�3872� with the spin index i:

 G�E�	ij 	
Z
d4xe�iEth0jT�Xi�x�Xj�0��j0i

	 i	ij
Z��EX�

E� EX � i�=2
� . . . ; (12)

where EX is the binding energy of the X�3872� and the

ellipsis represents terms that are less important in the
resonance region, E� EX � �. We can define a function
��E�, where �i���Ex� represents the C0-irreducible
graphs contributing to G�E�. Our definition of ��E� is
similar to the function � defined in Appendix A of
Ref. [64]. In terms of ��E�, G�E� is

 G�E� 	
�i��E�

1� C0��E�
	

�iRe��E� � Im��E�
1� C0 Re��E� � iC0 Im��E�

:

(13)

Since the real part of the denominator must vanish at E 	
�EX, we have 1� C0 Re���EX� 	 0, and expanding
about E 	 �EX we obtain for G�E�

 

G�E� 	
i�1=C0 � �E� EX�Re�0��EX�� � Im���EX�
C0�E� EX�Re�0��EX� � iC0 Im���EX�

	
i

C2
0�E� EX�Re�0��EX� � iC2

0 Im���EX�

�
i
C0
; (14)

where �0 	 d�=dE. From Eq. (14), we immediately see
that

 Z�E� 	
1

C2
0 Re�0��EX�

; � 	
2 Im���EX�
Re�0��EX�

: (15)

The function 2 Im� corresponds to the square of the decay
diagrams. The LO decay and wave function renormaliza-
tion diagrams are shown in Figs. 2 and 3, respectively. The
NLO decay diagrams are shown in Figs. 4 and 5, and
diagrams for the NLO wave function renormalization are
shown in Fig. 6.

It is interesting to compare the result of evaluating the
loop diagrams and taking the imaginary part with direct
evaluation of the decay diagrams. Consider, for example,
the evaluation of the two-loop diagram in Fig. 6(a) in
Appendix B. The result of evaluating the graph is

 

Fig: 6a 	 �i
g2

2f2
�

1

2m�

�
�PDS

2

�
8�2D Z dDq

�2��D
Z dDl
�2��D

1

q0 � EX=2� q2=�2mD� � � i�

1

�q0 � EX=2� q2=�2mD� � i�

�
1

l0 � EX=2� l2=�2mD� � � i�

1

�l0 � EX=2� l2=�2mD� � i�

�q� l�i�q� l�j
q0 � l0 � �q� l�2=�2m�� � 	� i�

: (16)

We perform the energy integrals by contour integration, taking the poles of the D-meson propagators. This yields

3The dimensional-regularization parameter is usually denoted � but we use a different symbol here to avoid confusion with the scale
appearing in pion exchange.
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: (17)

The first two propagators that come from the D� mesons clearly scale as Q�2. The last two terms in the pion propagator
denominator, ��q� l�2 ��2, scale as Q2 while the other terms scale as �m�=mD�Q2. Since m�=mD � 0:07 is compa-
rable to our expansion parameter in Eq. (6), these terms can be systematically dropped. The neglected terms come from the
pion kinetic energy, and in dropping them we are treating the pions in the potential approximation [65]. The final answer is
then

 Fig : 6a 	 �i
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8�2D Z dD�1q

�2��D�1
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l2 � �2 � i�
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	 �i
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2f2
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	ij
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�
MDD�

2�

�
2
�
��PDS � ��

2 ��2

�
1

4�̂
�

1

2
� log

�
�PDS

2�� i�

���
; (18)

where 1=�4�̂� 	 1=�4�� � �ln�� �E�=2. We have used
three-dimensional rotational invariance to replace �q�
l�i�q� l�j with �q� l�2	ij=3 and use the PDS scheme to
evaluate the remaining scalar integrals.

There is one instance when dropping m�=mD correc-
tions is not appropriate. To see this consider evaluating the
imaginary part of Fig. 6(a) by evaluating the cut diagram.
The cut runs through theD-meson and pion propagators. In
the cut diagrams, these propagators are replaced with 	
functions. For the D-meson propagators integrating over
the 	 functions is equivalent to taking the pole using
contour integration. So the cut diagram is obtained from
Eq. (17) simply by replacing the pion propagator with the
corresponding 	 function. Doing this and making the sub-
stitutions q! p �D and l! pD so that q� l	pD�p �D	
�p�, one obtains

 

g2

2f2
�
�2MDD� �

2
Z d3pDd3p �D

�2��5
j ~� 
 ~p�j

2 1

p2
D��

2

1

p2
�D��

2

�	
�
�2�p2

��
m�

MDD�
�2�

m�

mD
p2
D�

m�

mD
p2

�D

�
: (19)

This clearly reproduces the interference term in Voloshin’s
effective-range calculation of X ! D0 �D0�0 [39]. The 	
function in Eq. (19) imposes the constraint on the
phase space due to energy conservation. Dropping
m�=mD-suppressed terms in the 	 function corresponds
to neglecting the final-state D-meson’s kinetic energy and
would leave the integrals over their momentum uncon-
strained. Clearly this is not a good approximation.
Physically, it is also clear that the on-shell propagating
pion in the final state cannot be treated in the potential
approximation.

Therefore, in evaluating Im���EX� we will calculate
the decay amplitudes for the diagrams and integrate over
the physical three-body phase. In diagrams with virtual
pions, we drop the kinetic energy so the pions are poten-
tial.4 In the virtual diagrams this approximation is valid up
to O�m�=mD� corrections. Since our expansion parameter
is expected to be 0.05–0.1, making this approximation in
the virtual NLO graphs induces an error of the same size as
the NNLO correction.

The LO decay diagram is shown in Fig. 2. The D�

propagator scales as 1=Q2 and the axial coupling scales
as Q so the LO diagram is order Q�1. We show only one
diagram, but there are two channels related by
C-conjugation that are implied. It is straightforward to
evaluate these diagrams and obtain

 i
g
f�

MDD�

p2
D � �

2 ~p� 
 ~�X � �pD ! p �D�: (20)

The LO contribution to the wave function diagram is
shown in Fig. 3. The graph is O�Q� and therefore

FIG. 2. LO diagram for decay rate.
4For further discussion on the role of recoil corrections, see

Ref. [66].

S. FLEMING, M. KUSUNOKI, T. MEHEN, AND U. VAN KOLCK PHYSICAL REVIEW D 76, 034006 (2007)

034006-6



Re�0��EX� is O�Q�1�. The result of evaluating this graph
and taking the derivative is

 Re �0LO 	
M2
DD�

2��
: (21)

The LO decay diagram in Fig. 2 is O�Q�1� so the leading
contribution to Im���EX� from Fig. 2 is O�Q�2�.
Dividing by the LO wave function renormalization which
is O�Q�1� one sees that the leading contribution to the
decay rate is O�Q�1�. The result reproduces Voloshin’s
calculation of X ! D0 �D0�0 [39]:
 

d�LO

dp2
Ddp

2
�D

	
g2

32�3f2
�

2��� ~p� 
 ~�X�2
�

1

p2
D��

2�
1

p2
�D��

2

�
2
:

(22)

The NLO corrections to the decay rate are suppressed by
one power of Q. They come from graphs, shown in Figs. 4
and 5, with one additional pion exchange or one insertion
of C2 and B1. These coefficients scale as Q�2. NLO con-
tributions to the wave function renormalization are down
by one power of Q as well. These contributions are given
by the two-loop self-energy diagrams involving pion ex-
change or an insertion of C2 shown in Fig. 6.

The results for individual diagrams are given in
Appendix B. The final expression for the NLO differential
rate is
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1
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D � �

2 �
1

p2
�D � �

2

�
: (23)

The functions h1�p� and h2�p� are given in Appendix B.
The first line in Eq. (23) is a multiplicative correction to the
LO decay rate. Note that in the absence of pions

 C2��PDS� 	
2�
MDD�

r0

2

1

��PDS � ��2
; (24)

where r0 is the effective range. The term proportional to C2

in the first line of Eq. (23) reproduces the expected correc-
tion from the effective-range theory, in which the leading
correction involving r0 comes from the modification of the
normalization of the wave function:

  ER�r� 	

��������������������������
�

4��1� �r0�

s
e��r

r
: (25)

The second line in Eq. (23) is the interference between a
short-distance local coupling of the X to the D0 �D0�0 state
and the LO amplitude. Note that the coefficient of this term
scales as 1=��PDS � �� and disappears if one takes
�PDS ! 1, confirming the short-distance nature of the
contribution. The final terms are nonanalytic corrections
due to pion exchange. These contributions turn out to give
a very small (� 1%) contribution to the decay rate, so the

FIG. 3. LO diagram for calculating wave function renormal-
ization.

(a) (b)

FIG. 4. NLO diagrams for the decay rate involving pion ex-
change.

(a)
C2

(b)
B1

FIG. 5. NLO diagrams for the decay rate which involve contact
interaction.
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NLO correction is entirely dominated by the contact inter-
action contributions.

We will parametrize C2 according to Eq. (24), where r0

is to be interpreted as the short-distance contribution to the
effective range. Since we have integrated out the scales m�
and �, it is reasonable to take r0 � �100 MeV��1. We will
parametrize
 �
gMDD�

f�
C2��PDS��B1��PDS�

�
��PDS���	

�

�100 MeV�3
;

(26)

where � is a dimensionless parameter we expect to be of
order unity. Figure 7 shows the partial width ��X !
D0 �D0�0� as a function of the binding energy. The central
solid line is the LO result. We use the central value for the
tree-level extraction of the D-meson axial coupling, g 	
0:6. The band in Fig. 7 shows the NLO rate with the
parameters r0 and � varied between

 0  r0 
1

100 MeV
; �1  �  1: (27)

As stated earlier the nonanalytic calculable corrections
from pion exchange in Eq. (23) give negligible corrections.
The band is dominated entirely by the contact interaction

contributions. Measurements of the X mass and partial
decay width into D0 �D0�0 can naturally be explained
within a molecular picture if the corresponding point in
Fig. 7 falls within, or—due to higher orders—close to, this
band. Values far outside the band can be accommodated
only if short-range parameters or higher-order effects are
anomalously large. In either case the appeal of our frame-
work would be strongly diminished.

IV. SUMMARY

In this paper we have developed an effective field theory
of nonrelativistic pions and D mesons that can be used to
describe the properties of the X�3872�, assuming it is a
weakly bound state ofD0 �D�0 andD�0 �D0 with anomalously
small binding energy. Because of an accidental cancella-
tion between the D-meson hyperfine splitting and the mass
of the�0, pion exchange is characterized by a smaller scale
than is typically the case in nuclear physics. This relatively
small scale and the small axial coupling in the D-meson
system (compared to the nucleon’s axial coupling) com-
bine to make the corrections from �0-meson exchange
amenable to perturbation theory. This justifies the applica-
tion of a theory similar to that proposed by Kaplan, Savage,
and Wise for low-energyNN interactions [51,52], in which
a leading-order contact interaction is resummed to all
orders to produce the bound state, and pion exchange and
higher-derivative contact interactions are treated within
perturbation theory.

This theory reproduces at leading order the calculation
of ��X ! D0 �D0�0� by Voloshin [39] which exploits the
universal behavior of theDD� wave function in the limit of
small binding energy. Effective-range corrections as well
as other corrections from short-distance scales are encoded
in higher-dimension contact operators in the theory. These
corrections turn out to completely dominate nonanalytic
calculable corrections from �0 exchange. Varying these
coefficients within ranges determined by naturalness al-
lows us to estimate the size of corrections to the leading-
order calculations of Voloshin. While it is somewhat dis-
appointing that the nonanalytic calculable corrections from
�0 exchange are so small that an experimental test of this
aspect of the theory seems unlikely in the foreseeable
future, the smallness of these corrections confirms one of
the main points of this work, namely, that pion exchange
can be dealt with using perturbation theory.
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FIG. 7. Decay rate for X ! D0 �D0�0 as a function of EX. We
use g 	 0:6. The central solid line corresponds to the LO
prediction. The band is the result of the NLO calculation when
the parameters r0 and � are varied in the ranges 0  r0 
�100 MeV��1 and �1  �  1.

(a) (b) (c)
C2

FIG. 6. NLO diagrams for calculating wave function renormalization.
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A naive estimate of the size of the NNLO corrections
based on the expansion parameter in Eq. (6) is 1% or
smaller. It is important to remember that in conventional
nuclear physics, large corrections come from graphs with
two or more pion exchanges in the 3S1 channel, which first
arise at NNLO. The two-pion-exchange graphs at NNLO
come with large coefficients, �5, which ruin the perturba-
tive expansion of KSW for two-nucleon systems [54]. In
our case similar size coefficients in two-pion-exchange
graphs should not ruin perturbation theory since even
with a large coefficient �5, they would only be expected
to be 5% or smaller. It would be interesting to perform the
NNLO calculation to check this. A NNLO correction of
5% would dominate the nonanalytic NLO contribution but
would be smaller than the uncertainty in the contact inter-
action contribution, indicating convergence of the expan-
sion. In the unlikely case that pion exchange is
nonperturbative, it can be resummed as done in nuclear
physics [63].

It is straightforward to extend the analysis of this paper
to other X�3872� decay and production processes, such as
X ! D0 �D0� or X ! J= �� ! J= ����. Coupling to
J= � and J= ! channels can be incorporated by includ-
ing these degrees of freedom explicitly in the theory and
coupling them to D0 �D�0 �D�0 �D0 via contact interactions.
It would be interesting to calculate �0 exchange to other
decays of the X�3872� to see if these corrections lead to any
interesting observable effects. It would also be interesting
to use data or theoretical calculations to fix some of the
counterterms appearing in the theory so as render calcu-
lations in this paper more predictive.
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APPENDIX A: DERIVING THE EFFECTIVE
LAGRANGIAN FROM HH�PT

Heavy-hadron chiral perturbation theory (HH�PT) [57–
59] can be used to derive the low-energy effective

Lagrangian for D mesons, D� mesons, and pions relevant
to the X�3872�. We begin with the two-component HH�PT
Lagrangian introduced in Ref. [67],

 L 	 Tr�Hy�iD0�H� � gTr�HyH� 
A�

�
�

4
Tr�Hy�H��; (A1)

where � are the Pauli matrices, � 	 mH� �mH, H 	 D 

� �D, and A 	 � ~r�=f� �O��3�. Here D is a heavy
vector field, D is a heavy pseudoscalar field, and � is the
pion field,

 � 	
1��
2
p �0 ��

�� � 1��
2
p �0

 !
: (A2)

Evaluating the traces in Eq. (A1) we obtain
 

L 	 2Dy
�
iD0 �

�

4

�
D� 2Dy

�
iD0 �

3�

4

�
D

� 2g�Dy 
AD�DyD 
A� � 2igDy 
D�A: (A3)

Since we wish to describe a bound state of two heavy
mesons the power counting of HH�PT in powers of
1=mH is inappropriate. Instead we need to power count
in the relative velocity v� 1 of the heavy mesons. The
kinetic energy which is subleading in 1=mH is leading in v,
and as a consequence we must include the kinetic term in
our Lagrangian,
 

L 	 2Dy
�
iD0 �

~r2

2mD�
�

�

4

�
D

� 2Dy
�
iD0 �

~r2

2mD
�
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4

�
D

� 2g�Dy 
AD�DyD 
A� � 2igDy 
D�A: (A4)

We now rescale the heavy-meson fields

 fD;Dg !
1���
2
p ei3�t=4fD;Dg; (A5)

which gives

 L 	 Dy
�
iD0 �

~r2

2mD�
��

�
D�Dy

�
iD0 �

~r2

2mD

�
D

� g�Dy 
AD�DyD 
A� � igDy 
D�A:

(A6)

Since we are only interested in those terms involving D�0,
D0, and �0 we keep only these fields in the Lagrangian:
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�
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�
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2
p
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Dy 
D� ~r�0: (A7)
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Next the kinetic term for the pion is derived from the
chiral Lagrangian
 

L� 	
f2
�

8
Tr�@��@��y� �

f2
�

4
B0 Tr�M����y��

	
1

2
@��0@��0 �

1

2
m2
���0�2 � self-interactions

	
1

2
�0��@2 �m2

���
0 � 
 
 
 ; (A8)

where � 	 exp�2i�=f��, M 	 diag�mu;md� is the quark-
mass matrix, and B0 is a constant. The pion self-interaction
terms are not needed at the order we are working so they
are dropped, and we add the pion kinetic term to Eq. (A7)
to obtain our Lagrangian.

However, this Lagrangian still includes the large scales
m� and �, which must be integrated out of the theory.
Since we are interested in a nonrelativistic theory of pions
we are justified in splitting the pion fields into creation and
annihilation operators �0 	 �̂� �̂y. In addition we re-
scale the meson fields to make the large scales explicit:

 �̂ 	
1����������

2m�
p e�im�t�; �̂y 	

1����������
2m�
p eim�t�y;

D! e�im�tD:
(A9)

The pion kinetic term can then be expanded:
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2m�

�
�

� higher-order relativistic corrections: (A10)

The terms above that include a large phase factor can be
integrated out. In addition to modifying the pion propaga-
tor the field redefinition in Eq. (A9) modifies the kinetic
term for D,

 D y

�
i@0 �

~r2

2mD�
� �

�
D! Dy

�
i@0 �

~r2

2mD�
� 	

�
D;

(A11)

where 	 	 ��m� ’ 7 MeV. Note that after the field
rescaling the last term in Eq. (A7) contains a phase factor
e�im�t, and can be dropped.

Finally, we obtain the kinetic terms and axial coupling
appearing in the Lagrangian of Eq. (10) by another rephas-
ing of the D and � fields,

 D ! e�i	tD; �! e�i	t�: (A12)

This just shifts the residual mass from the D kinetic term to
the� kinetic term. This last step is not essential, however it
is convenient. The remaining terms in Eq. (10) are short-
distance interactions allowed by power counting and the
symmetries of the theory.

APPENDIX B: NLO DIAGRAMS

The NLO decay diagrams involving pion exchange are
shown in Fig. 4. The result for Fig. 4(a) is

 

i
g3M2

DD�
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3
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 ~�X ~pD 
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�
� �pD ! p �D�; (B1)

where the functions h1�p� and h2�p� are given by
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Z 1

0
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; (B3)
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and the result for Fig. 4(b) is

 �
g3M2

DD�

12�f3
�

�3

�p2
D � �

2�2
~p� 
 ~�X � �pD ! p �D�: (B4)

Note that Fig. 4(b) includes, as a subgraph, the one-loopD�

self-energy contribution. In the PDS scheme the self-
energy graph has a linear divergence which gives an addi-
tive renormalization to the residual mass term of theD�. At
tree level, we performed a field redefinition which moved
the residual mass term from the kinetic term of the D� to
the kinetic term of the pion through a field redefinition. In
order that loop corrections do not reintroduce a residual
mass for the D�, we introduce a counterterm �	ct�D

yD�
�Dy �D�, which is defined to cancel the residual mass term at

each order in perturbation theory. At one-loop order, 	ct 	
g2�2�PDS=24�f2

�. This linearly divergent contribution to
the self-energy also appears in Fig. 6(b) and is canceled by
an insertion of the residual mass counterterm in a DD�

bubble (not shown in the figure).

The NLO diagrams with the counterterms C2 and B1 are
shown in Fig. 5. The result for Fig. 5(a) is
 

�iC2��PDS�
gM2

DD� ��PDS � ��

4�f�

p2
D � �

2

p2
D � �

2
~p� 
 ~�X

� �pD ! p �D�; (B5)

and the result for Fig. 5(b) is

 � iB1��PDS�
MDD� ��PDS � ��

2�
~p� 
 ~�X: (B6)

Finally, we show the NLO wave function renormaliza-
tion diagrams in Fig. 6. The NLO contribution to
Re�0��EX� from the graphs in Fig. 6 is
 

g2M3
DD�

12�2f2
�

�
�PDS � �

�
�
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4�2 ��2
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2�2 : (B7)
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