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We compare results of the kt-factorization approach and the next-to-leading order collinear-
factorization approach for photon-jet correlations in pp and p �p collisions at Relativistic Heavy Ion
Collider, Tevatron, and Large Hadron Collider energies. We discuss correlations in the azimuthal angle as
well as in the two-dimensional space of transverse momentum of photon and jet. Different unintegrated
parton distributions (UPDF) are included in the kt-factorization approach. The results depend on UPDFs
used. The standard collinear approach gives a cross section comparable to the kt-factorization approach.
For correlations of the photon and any jet the next-to-leading order (NLO) contributions dominate at
relatively small azimuthal angles as well as for asymmetric transverse momenta. For correlations of the
photon with the leading jet (the one having the biggest transverse momentum) the NLO approach gives
zero contribution at �� <�=2, which opens a possibility to study higher-order terms and/or UPDFs in
this region.
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I. INTRODUCTION

Jet-jet correlations are an interesting probe of QCD
dynamics [1]. Recent studies of hadron-hadron correla-
tions at the Relativistic Heavy Ion Collider (RHIC) [2]
open a new possibility to study the dynamics of jet and
particle production. Hadron-hadron correlations involve
both jet-jet correlations as well as complicated jet struc-
ture. Recently, preliminary data on photon-hadron azimu-
thal correlations in nuclear collisions were also presented
[3]. In principle, such correlations should be easier for
theoretical description as here only one jet enters, at least
in leading-order perturbative QCD (pQCD). On the experi-
mental side, such measurements are more difficult due to
much reduced statistics as compared to the dijet studies.

Up to now no theoretical calculation for photon-jet was
presented in the literature, even for elementary collisions.
In the leading-order collinear-factorization approach the
photon and the associated jet are produced back-to-back. If
transverse momenta of partons entering the hard process
are included, the transverse momenta of the photon and the
jet are no longer balanced and finite (nonzero) correlations
in a broad range of relative azimuthal angle and/or in
lengths of transverse momenta of the photon and the jet
are obtained. The finite correlations can be also obtained in
higher orders of the collinear-factorization approach [4].
To our knowledge, no detailed studies for present accel-
erators have been presented in the literature.

In contrast to the coincidence studies the inclusive dis-
tributions of photons were studied carefully in pQCD up to
the next-to-leading order [5]. Similar studies were per-
formed recently also in the kt-factorization approach
[6,7]. A rather good description of direct-photon inclusive
cross sections can be obtained in both approaches. The

kt-factorization approach offers a relatively easy method to
calculate photon-jet correlations [7].

The kt-factorization approach was used recently to sev-
eral high-energy reactions, including heavy quark pair
photo- [8,9] and hadroproduction [10,11], charmonium
production [12,13], inclusive Z0 [14], and Higgs [15,16]
production.

In the present paper we shall compare results obtained in
the leading-order kt-factorization approach and the next-
to-leading-order collinear-factorization approach. We shall
discuss which approach is more adequate for different
regions of phase space. We shall present corresponding
results for proton-proton scattering at RHIC and LHC and
proton-antiproton scattering at Tevatron.

II. FORMALISM

A. 2! 2 contributions with unintegrated parton
distributions

In Fig. 1 we show a complete set of diagrams that appear
in the kt-factorization approach to photon-jet correlations.
It is known that at midrapidities and at relatively small
transverse momenta, photon-jet production is dominated
by (sub)processes initiated by gluons.

In the kt-factorization approach, the cross section for
simultaneous production of a photon and an associated jet
in the collisions of two hadrons (pp or p �p) can be written
as
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where F i�x1; k
2
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2
1� and F j�x2; k
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2
2� are so-called

unintegrated parton distributions. Longitudinal momentum
fractions are evaluated as
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���
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p
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���
s
p
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We shall return to the choice of the factorization scale in
the next section. Its role is completely different in different
approaches, i.e., different choices of UPDFs. Special at-
tention will be devoted to the Kwieciński UPDF and the
role of the scale parameter there.

If one makes the following replacement
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and

 M ij!�k�k
2
1;t; k

2
2;t� !Mij!�k�k

2
1;t � 0; k2

2;t � 0� (4)

then one recovers the standard leading-order collinear
formula.

The final partonic state is �k � �g, �q. Matrix elements
for corresponding processes are discussed in the appendix.

As explained in the appendix, our matrix elements are
obtained as extrapolation of standard on-shell matrix ele-
ments to off-shell kinematics. We have also used exact
matrix elements obtained in Ref. [6], which include longi-
tudinal photons. In the limit k1;t ! 0 and k2;t ! 0 one
reproduces the familiar on-shell matrix element.

The inclusive invariant cross section for direct-photon
production can be written as

 

d�h1h2!�

dy1d2p1;t
�
Z
dy2

d2k1;t

�
d2k2;t

�
�. . .�j ~p2;t� ~k1;t� ~k2;t� ~p1;t

(5)

and analogously the cross section for the associated parton
(jet) can be written as

 

d�h1h2!k

dy1d
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Z
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d2k1;t

�
d2k2;t
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Let us return to the coincidence cross section. The integra-
tion with the Dirac delta function in Eq. (1)

 

Z
dy1dy2

d2k1;t

�
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�. . .��2�. . .� (7)

can be performed by introducing the following new auxil-
iary variables:

 

~Q t � ~k1;t � ~k2;t; ~qt � ~k1;t � ~k2;t: (8)

Then our initial cross section can be written as

 

d�h1h2!�;parton

d2p1;td
2p2;t

�
1

4

Z
dy1dy2
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2
dq2

t d�qt�. . .�j ~Qt� ~Pt
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Above ~Pt � ~p1;t � ~p2;t. The factor 1
4 in front of the integral

on the right-hand side of Eq. (9) comes from the Jacobian
of the � ~k1;t; ~k2;t� ! � ~Qt; ~qt� transformation (see [7]).

B. 2! 3 contributions in NLO collinear-factorization
approach

Up to now we have concentrated only on processes with
two explicit hard partons (�k) in the kt-factorization ap-
proach. It is of interest to compare the results of our
approach with those of the standard collinear next-to-lead-
ing-order approach. In this section we discuss processes
with three explicit hard partons. In Fig. 2 we show dia-
grams for 2! 3 subprocesses included in our calculations.
In the following we assume particle No. 1 to be a photon.
Then particle No. 2 is g, q, and �q, depending on the
subprocess.

The cross section for h1h2 ! �klX processes can be
calculated according to the standard parton model formula

 d�h1h2!�kl �
X
ijk

Z
dx1dx2pi�x1; �2�pj�x2; �2�d�̂ij!�kl:

(10)

The elementary cross section can be written as

(a)

(c) (d)

(b)

FIG. 1. Basic diagrams of the kt-factorization approach to
photon-jet correlations.
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where the three-body phase space element reads
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This element can be expressed in an equivalent way in
terms of parton rapidities
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The last formula is useful for practical applications. Now
the cross section for hadronic collisions can be written in
terms of the 2! 3 matrix element as

 d� �
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ŝ2 x1pi�x1; �
2�x2pj�x2; �

2�jMij!�klj
2; (14)

where the longitudinal momentum fractions are evaluated
as
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Repeating similar steps as for 2! 2 processes we get
finally
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X
ijkl

1

64�4ŝ2 x1pi�x1; �2�x2pj�x2; �2�jMij!�klj
2
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where the relative azimuthal angle between the photon and
the associated jet (��) is restricted to the interval �0; ��.
The last formula is very useful in calculating the cross
section for particle 1 and particle 2 correlations.

III. RESULTS

In this section we shall present results for RHIC and
Tevatron energies. We use UPDFs from the literature.
There are only two complete sets of UPDFs in the literature
which include not only the gluon distributions but also the
distributions of quarks and antiquarks:

(a) Kwieciński [17],
(b) Kimber-Martin-Ryskin [18].

For comparison we shall include also the unintegrated
parton distributions obtained from the collinear ones by
the Gaussian smearing procedure. Such a procedure is
often used in the context of direct photons [19,20].
Comparing results obtained with those Gaussian distribu-
tions and the results obtained with the Kwieciński distri-
butions with nonperturbative Gaussian form factors will
allow one to quantify the effect of UPDF evolution as
contained in the Kwieciński evolution equations. What is
the hard scale for our process? In our case the best candi-
date for the scale is the photon and/or jet transverse mo-
mentum squared. Since we are interested in rather small
transverse momenta the evolution length is not too large
and the deviations from initial kt distributions (assumed
here to be Gaussian) should not be too big.

At high energies one enters into a small-x region, i.e., the
region of a specific dynamics of the QCD emissions. In this
region only unintegrated distributions of gluons exist in the
literature. In our case the dominant contributions come
from QCD-Compton gluon-quark or quark-gluon initiated
hard subprocesses. This means that we need unintegrated
distributions of both gluons and quarks/antiquarks. In this
case we take such UGDFs from the literature and supple-
ment them by the Gaussian distributions of quarks/
antiquarks.

Let us start from presenting our results on the �p1;t; p2;t�
plane. In Fig. 3 we show the maps for different UPDFs used
in the kt-factorization approach as well as for NLO
collinear-factorization approach for p1;t, p2;t 2
�5; 20� GeV and at the Tevatron energy W � 1960 GeV.
In the case of the Kwieciński distribution we have taken
b0 � 1 GeV�1 for the exponential nonperturbative form
factor and the scale parameter �2 � 100 GeV2. Rather
similar distributions are obtained for different UPDFs.
The distribution obtained in the NLO approach differs
qualitatively from those obtained in the kt-factorization
approach. First of all, one can see a sharp ridge along the
diagonal p1;t � p2;t. This ridge corresponds to a soft sin-
gularity when the unobserved parton has very small trans-
verse momentum p3;t. As will be clear in a moment this
corresponds to the azimuthal angle between the photon and
the jet being �� � �. Obviously this is a region that
cannot be reliably calculated in collinear pQCD. There
are different practical possibilities to exclude this region
from the calculations. The most primitive way (possible
only in theoretical calculations) is to impose a lower cut on
transverse momentum of the unobserved parton p3;t.

FIG. 2. Diagrams for NLO collinear-factorization approach for
photon-jet-jet production.
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Second, the standard collinear NLO approach generates a
much bigger cross section at configurations asymmetric in
p1;t and p2;t. We shall return to this observation in the
course of this paper.

As discussed in Ref. [7], Kwieciński distributions are
very useful to treat both the nonperturbative (intrinsic
nonperturbative transverse momenta) and the perturbative
(QCD broadening due to parton emission) effects on the

(a) (b)

(c) (d)

FIG. 3. Transverse-momentum distributions d�=dp1;tdp2;t at W � 1960 GeV and for different UPDFs in the kt-factorization
approach for Kwieciński (b0 � 1 GeV�1, �2 � 100 GeV2) (a), BFKL (b), KL (c), and NLO 2! 3 collinear-factorization approach
including diagrams from Fig. 2(d). The integration over rapidities from the interval �5< y1, y2 < 5 is performed.

(a) (b)

FIG. 4 (color online). Azimuthal angle correlation functions at (a) RHIC, (b) Tevatron energies for different scales and different
values of b0 of the Kwieciński distributions. The solid line is for b0 � 0:5 GeV�1, the dashed line is for b0 � 1 GeV�1, and the dotted
line is for b0 � 2 GeV�1. Three different values of the scale parameters are shown: �2 � 0:25, 10, 100 GeV2 [the bigger the scale the
bigger the decorrelation effect, different colors (shades) on line]. In this calculation p1;t, p2;t 2 �5; 20� GeV and y1, y2 2 ��5; 5�.
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same footing. In Fig. 4 we show the effect of the scale
evolution of the Kwieciński UPDFs on the azimuthal angle
correlations between the photon and the associated jet. We
show results for different initial conditions (b0 � 0:5, 1.0,
2:0 GeV�1). At the initial scale (fixed here as in the
original GRV [21] to be �2 � 0:25 GeV2) there is a size-
able difference of the results for different b0. The differ-
ence becomes less and less pronounced when the scale
increases. At �2 � 100 GeV2 the differences practically
disappear. This is due to the fact that the QCD-evolution
broadening of the initial parton transverse-momentum dis-
tribution is much bigger than the typical initial nonpertur-
bative transverse-momentum scale.

In Fig. 5 we show corresponding azimuthal angular
correlations for three different energies relevant for
RHIC, Tevatron, and LHC. In this case integration is
made over transverse momenta p1;t, p2;t 2 �5; 20� GeV
and rapidities y1, y2 2 ��5; 5�. The standard NLO col-
linear cross section grows somewhat faster with energy
than the kt result with unintegrated Kwieciński distribu-
tion. This is partially due to an approximation made in the
calculation of off-shell matrix elements. Up to now we
have used matrix elements called ‘‘on-shell’’ (for an ex-
planation, see the appendix). This approximation is ex-
pected to be reliable for small transverse momenta of
initial gluons (for a detailed discussion, see Ref. [7]). For

larger gluon transverse momenta the longitudinal gluons
start to play an important role. This is obviously not
included in our simple extrapolation of the on-shell
formula.

In Fig. 6 we show the ratio of the cross section obtained
with the two approaches. While at relative azimuthal an-
gles close to � the two approaches coincide, they start to

FIG. 6. Off-shell to so-called on-shell cross section ratio as a
function of relative azimuthal angle for proton-(anti)proton
collision at W � 200 GeV (solid), W � 1960 GeV (dashed),
W � 14 000 GeV for the Kwieciński UPDFs within the
kt-factorization approach. Here y1, y2 2 ��5; 5�.

FIG. 5 (color online). Photon-jet angular azimuthal correlations d�=d�� for proton-(anti)proton collision at W � 200, 1960,
14 000 GeV for different UPDFs in the kt-factorization approach for the Kwieciński (solid), BFKL (dashed), KL (dotted) UPDFs/
UGDFs, and for the NLO collinear-factorization approach (thick dashed). Here y1, y2 2 ��5; 5�.
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diverge when approaching � � 0. This can be understood
as follows. In the kt 2! 2 approach the emission of the
photon and jet at the same azimuthal angle (�� 0) must
necessarily involve large ‘‘initial’’ transverse momenta,
where deviations from the simple extrapolation can be
expected. This means that the azimuthal angular distribu-
tions in this region should be calculated rather from the
exact formula. The larger the energy the worse the result
obtained by extrapolating the matrix element.

In Fig. 7 we show the same ratio as a function of
transverse momentum of the photon and jet. Far from the
diagonal we observe large deviations from the approximate
result. Of course, by definition this is the region of large
initial gluon transverse momenta where longitudinal glu-
ons become important.

The singularity in NLO pQCD at �� � � is strongly
correlated with the sharp ridge in Fig. 3(d). This is dem-
onstrated in Fig. 8 where we present the results of azimu-
thal correlation function obtained for different cuts on p3;t.
The cut modifies only the region of relative azimuthal
angles close to �. Such a cut would remove also the
singularity along the diagonal p1;t � p2;t present in
Fig. 3(d) and called here a ridge for easy reference. We

wish to stress in this context that there are no singularities
of the ridge type in the kt-factorization approach.

These are small transverse momenta of the unobserved
jet which contribute to the sharp ridge along the diagonal
p1;t � p2;t. It is therefore difficult to distinguish these
three-parton states from the states with two partons. The
ridge can be eliminated in calculation by imposing a cut on
the transverse momentum of the third (unobserved) parton.
In experiments there is no possibility to impose such cuts
and other methods must be used. We shall return to this
point later in this paper.

In Fig. 9 we show angular azimuthal correlations for
different interrelations between transverse momenta of
outgoing photon and partons: (a) with no constraints on
p3;t, (b) the case where the p2;t > p3;t condition (called the
leading-jet condition in the following) is imposed,
(c) p2;t > p3;t, and an additional condition p1;t > p3;t.
The results depend significantly on the scenario chosen
as can be seen from the figure. The general pattern is very
much the same for different energies.

In Fig. 10 we show two-dimensional transverse-
momentum distribution d�=dp1;tdp2;t�p1;t; p2;t� for the
same extra conditions imposed before in Fig. 9 for azimu-
thal angle correlations. Imposing the condition that the
associated jet is the leading jet (p2;t > p3;t) causes the
large part of the phase space p1;t < 2p2;t to not be available
in the next-to-leading approach. If one imposes in addition
that p1;t�photon�> p3;t�unobserved jet� then also the
p2;t < 2p1;t region becomes excluded for the NLO ap-
proach. These NLO-excluded regions are therefore regions
sensitive to higher-order corrections in pQCD.

In general, the correlations between the photon and the
jet depend strongly on all kinematical variables—trans-
verse momenta, azimuthal angles, etc. In order to expose
this better, in Fig. 11 we define windows in the �p1;t; p2;t�
plane which will be used in the following to study azimu-
thal correlations. At lower energies (as for RHIC) a region
of rather low transverse momenta is more adequate (left
figure). At larger energies (as for Tevatron) also a region of
somewhat larger transverse momenta can be of interest

FIG. 7. Off-shell to so-called on-shell cross section ratio as a function of transverse momentum of the photon and jet at W �
200 GeV (a), W � 1960 GeV (b), W � 14 000 GeV (c) for the Kwieciński UPDF (b0 � 1 GeV�1, �2 � 100 GeV2). The integration
over rapidities from the interval �5< y1, y2 < 5 is performed.

FIG. 8. Photon-jet angular azimuthal correlations d�=d�� for
proton-antiproton collision at W � 1960 GeV for the NLO
collinear-factorization approach and different cuts on p3;t.
Here y1, y2 2 ��5; 5�.
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FIG. 9 (color online). Angular azimuthal correlations for different cuts on the transverse momentum of third (unobserved) parton in
the NLO collinear-factorization approach without any extra constraints (dashed), p3;t < p2;t (solid), p3;t < p2;t and p3;t < p1;t in
addition (dotted). Here W � 200, 1960, 14 000 GeV, and y1, y2 2 ��5; 5�.

(a) (b)

(c)

FIG. 10. Two-dimensional distributions in transverse momenta of the photon and jet (W � 1960 GeV) d�=dp1;tdp2;t for different
constraints on the transverse momentum of third (unobserved) parton in the NLO collinear-factorization approach with no constraints
on p3;t (a), p3;t < p2;t (b), p3;t < p2;t and p3;t < p1;t (c). All 2! 3 processes shown in Fig. 2 were included. Here y1, y2 2 ��5; 5�.

PHOTON-JET CORRELATIONS IN pp AND p �p . . . PHYSICAL REVIEW D 76, 034003 (2007)

034003-7



(right figure). The notation shown in the figure will be used
for brevity in the rest of this paper for easy reference.

In Fig. 12 we show angular azimuthal correlations
d�=d�� at RHIC energy

���
s
p
� 200 GeV for the

Kwieciński UPDFs in the kt-factorization approach with
on-shell (extrapolation method) and off-shell matrix ele-
ments and for the NLO collinear-factorization approach
with extra leading-jet condition p3;t < p2;t. Here the
transverse momentum of the photon (p1;t) and that of the
associated jet (p2;t) belong to the interval (5, 20) GeV. For
the RHIC energy there is almost no difference between
results obtained with off-shell and on-shell (see appendix)
matrix elements.

FIG. 12 (color online). Angular azimuthal correlations
d�=d�� at

���
s
p
� 200 GeV for Kwieciński UPDFs and on-shell

ME (solid), Kwieciński UPDFs and off-shell ME (thick dotted),
NLO collinear with no cuts on p3;t (dashed), and NLO collinear
with cut on p3;t < p2;t (dash-dotted). Here y1, y2 2 ��5; 5�.
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(b)

FIG. 11. The definition of the windows in �p1;t; p2;t� plane for
RHIC energy

���
s
p
� 200 GeV (a) and for Tevatron energy

���
s
p
�

1960 GeV (b).

FIG. 13 (color online). Angular azimuthal correlations
d�=d�� at

���
s
p
� 1960 GeV for Kwieciński UPDFs and on-

shell ME (solid), Kwieciński UPDFs and off-shell ME (thick
dotted), NLO collinear with no cuts on p3;t (dashed), and NLO
collinear with cut on p3;t < p2;t (dash-dotted). Here y1, y2 2

��5; 5�.

FIG. 14 (color online). Angular azimuthal correlations
d�=d�� at

���
s
p
� 1960 GeV for Kwieciński UPDFs and on-

shell ME (solid), Kwieciński UPDFs and off-shell ME (thick
dotted), NLO collinear with no cuts on p3;t (dashed) and NLO
collinear with cut on p3;t < p2;t (dash-dotted). Here jy1j, jy2j<
0:9.
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In Fig. 13 we show analogous angular distributions as in
Fig. 12 but for Tevatron energy

���
s
p
� 1960 GeV. In Fig. 14

we show angular correlations for a restricted range of
rapidities jy1j, jy2j< 0:9 (corresponding to the present
Tevatron apparatus) of the photon and the correlated jet.
Limiting to midrapidities does not change the shape of
azimuthal correlations significantly.

In Fig. 15 we show similar distributions as in Fig. 13 but
for transverse-momentum windows spanned over a broader
range of transverse momenta p1;t, p2;t 2 �20; 80� GeV for
the photon and the jet. We observe a slightly faster de-
crease of the kt-factorization cross sections for larger p1;t

and p2;t.
The standard collinear approach can be applied only in

the region that is free of singularities. In order to eliminate
the regions where the pQCD calculation is not reliable
some cuts on the measured transverse momenta must be
applied. The simplest method is to use cuts shown in
Fig. 16. Mathematically this means that p1;t > pcut, p2;t >
pcut, and

 jp1;t � p2;tj> �S: (17)

We shall call the last cut a scalar cut for further easy
reference. In Fig. 17 we show the azimuthal angle corre-
lation function for different values of the scalar cut �S �
0, 1, 2, 3 GeV. Clearly the NLO singularity at �� � � can

be removed by imposing the cut. However, the cut lowers
also the kt-factorization cross section.

We have also tried another option to cut off the singu-
larity:

 j ~p1;t � ~p2;tj> �V: (18)

This type of the cut we call here vector one for brevity. In
Fig. 18 we show a corresponding photon-jet azimuthal
angle correlation function with different values of the cut
�V � 0, 1, 2, 3 GeV. The situation here is very similar to
that for the scalar cut.

FIG. 15 (color online). Angular azimuthal correlations
d�=d�� at

���
s
p
� 1960 GeV for Kwieciński UPDFs and on-

shell ME (solid), Kwieciński UPDFs and off-shell ME (thick-
dotted) NLO collinear with no cuts on p3;t (dashed) and, NLO
collinear with cut on p3;t < p2;t (dash-dotted). Here y1, y2 2
��5; 5�.
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FIG. 16. Diagram showing excluded region in �p1;t; p2;t� plane.

FIG. 17 (color online). Angular azimuthal correlations
d�=d�� at

���
s
p
� 1960 GeV for different (scalar) cuts �S �

0, 1, 2, 3 GeV for NLO collinear (dashed), Kwieciński (solid),
BFKL (dashed), KL (dotted), and KMR (dash-dotted). Here p1;t,
p2;t 2 �5; 20� GeV and y1, y2 2 ��5; 5�.
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IV. CONCLUSIONS

We have performed for the first time the calculation of
the photon-jet correlation observables in proton-proton
(RHIC, LHC) and proton-antiproton (Tevatron) colli-
sions—a calculation that is lacking in the literature. Up
to now such correlations have not been studied experimen-
tally either. We have concentrated on the region of small
transverse momenta (semihard region) where the
kt-factorization approach seems to be the most efficient
and theoretically justified tool. We have calculated corre-
lation observables for different unintegrated parton distri-
butions from the literature. Our previous analysis of
inclusive spectra of direct photons suggests that the
Kwieciński distributions give the best description at low
and intermediate energies. We have discussed the role of
the evolution scale of the Kwieciński UPDFs on the azi-
muthal correlations. In general, the bigger the scale the
bigger decorrelation in azimuth is observed. When the
scale �2 � p2

t �photon� � p2
t �associated jet� (for the kine-

matics chosen �2 � 100 GeV2) is assumed, much bigger
decorrelations can be observed than from the standard
Gaussian smearing prescription often used in phenomeno-
logical studies.

The correlation function depends strongly on whether it
is the correlation of the photon and any jet or the correla-
tion of the photon and the leading jet which is considered.
In the last case there are regions in azimuth and/or in the

two-dimensional �p1;t; p2;t� space that cannot be populated
in the standard next-to-leading-order approach. In the latter
case, kt factorization seems to be a useful and efficient tool.

We believe that photon-jet correlations can be measured
at Tevatron. At RHIC one can measure jet-hadron correla-
tions for rather not too high transverse momenta of the
trigger photon and of the associated hadron. This is pre-
cisely the semihard region discussed here. In this case
theoretical calculations would require inclusion of the
fragmentation process. This can be done easily assuming
an independent parton fragmentation method using frag-
mentation functions extracted from e�e� collisions. This
will be the subject of the following analysis.

ACKNOWLEDGMENTS

We are indebted to Jan Rak from the PHENIX
Collaboration for the discussion of recent results for
photon-hadron correlations at RHIC. This work was par-
tially supported by the grant of the Polish Ministry of
Scientific Research and Information Technology No. 1
P03B 028 28.

APPENDIX

1. Matrix elements for 2! 2 processes with initial
off-shell partons

In this paper we include four 2! 2 processes such as
q �q! �g, �qq! �g, gq! �q, qg! �q important at
midrapidity and relatively small transverse momenta. The
corresponding matrix elements for the on-shell initial par-
tons read

 jMq �q!�gj
2 � ��em

����������������
�1;s�2;s
p

�16��
�
8

9

��
û
t̂
�
t̂
û

�
;

jM �qq!�gj
2 � ��em

����������������
�1;s�2;s
p

�16��
�
8

9

��
t̂
û
�
û
t̂

�
;

jMgq!�qj
2 � ��em

����������������
�1;s�2;s
p

�16��
�
�

1

3

��
û
ŝ
�
ŝ
û

�
;

jMqg!�qj
2 � ��em

����������������
�1;s�2;s
p

�16��
�
�

1

3

��
t̂
ŝ
�
ŝ
t̂

�
:

The matrix elements for the off-shell initial partons were
derived in Ref. [6]. To a good approximation the matrix
elements for the off-shell initial partons can be also ob-
tained by using on-shell formulas but with ŝ, t̂, û calculated
including off-shell initial kinematics. In this case ŝ� t̂�
û � k2

1 � k
2
2, where k2

1, k2
2 < 0 denote virtualities of initial

partons. Our prescription can be treated as a smooth ana-
lytic continuation of the on-shell formula off mass shell.
With our choice of initial parton four-momenta k2

1 � �k
2
1;t

and k2
2 � �k

2
2;t.

Explicit formulas for exact off-shell matrix elements
were calculated and can be found in Ref. [6]. In this paper

FIG. 18 (color online). Angular azimuthal correlations
d�=d�� at

���
s
p
� 1960 GeV for different (vector) cuts �V �

0, 1, 2, 3 GeV for NLO collinear (dashed), Kwieciński (solid),
BFKL (dashed), KL (dotted), and KMR (dash-dotted). Here p1;t,
p2;t 2 �5; 20� GeV and y1, y2 2 ��5; 5�.
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we compare results obtained with both (approximate and
exact) ways.

2. Matrix elements for 2! 3 processes

In order to obtain parton-parton! �-jet matrix ele-
ments for the next-to-leading order one can use the follow-
ing expression:

 

1

4

X
spins

1

NC

X
col

jMj2 � CF4��e2
qg

2
1;sg

2
2;s

�
2
�
CF �

1

2
NC

�
a4

� NC
a2a7 � a3a6

a9

��
a2

1 � a
2
5

a2a3a6a7

�
a2

2 � a
2
6

a1a3a5a7
�

a3
1 � a

2
7

a1a2a5a6

�

for the ��p1� � q�p2� ! g�k1� � g�k3� � q�k2� process
obtained in [5]. Here CF � 4=3, NC � 3,

 g2
1;s � 4��s�p

2
1;t� g2

2;s � 4��s�p
2
2;t�

and

 

a1 � p2 � p1; a5 � k2 � p1; a8 � k3 � p1; a10 � k1 � p1;
a2 � p2 � k1; a6 � k2 � k1; a9 � k3 � k1;
a3 � p2 � k3; a7 � k2 � k3;
a4 � p2 � k2;

are redundant invariants. The longitudinal momentum
fractions are calculated as

 x1 � �p1;te
y1 � p2;te

y2 � p3;te
y3�=

���
s
p

x2 � �p1;te�y1 � p2;te�y2 � p3;te�y3�=
���
s
p

As an example the expression for matrix elements for
the second diagram

 g�p1� � g�p2� ! ��k1� � q�k3� � �q�k2�

in Fig. 2(b) we get from

 ��p1�
z�}|�{

� q�p2�|�{z�} ! g�k1�
z�}|�{

� g�k3�|�{z�}� q�k2�

diagram (see Fig. 19) if we make the following replace-
ment:

 p1 ! k1; k1 ! p1; p2 ! k3; k3 ! p2;

thus obtaining

 

a1 ! a9; a5 ! a6; a8 ! a2; a10 ! a10;
a2 ! a8; a6 ! a5; a9 ! a1;
a3 ! a3; a7 ! a4;
a4 ! a7;
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