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We compare results of the k,-factorization approach and the next-to-leading-order collinear-
factorization approach for dijet correlations in proton-proton collisions at RHIC energies. We discuss
correlations in azimuthal angle as well as correlations in two-dimensional space of transverse momenta of
two jets. Some k,-factorization subprocesses are included for the first time in the literature. Different
unintegrated gluon/parton distributions are used in the k,-factorization approach. The results depend on
unintegrated gluon distribution functions (UGDF)/unintegrated parton distribution function (UPDF) used.
For the collinear next-to-leading order (NLO) case, the situation depends significantly on whether we
consider correlations of any two jets or correlations of leading jets only. In the first case, the 2 — 2
contributions associated with soft radiations summed up in the k,-factorization approach dominate at ¢ ~
7 and at equal moduli of jet transverse momenta. The collinear NLO 2 — 3 contributions dominate over
k,-factorization cross section at small relative azimuthal angles as well as for asymmetric transverse-
momentum configurations. In the second case, the NLO contributions vanish at small relative azimuthal
angles and/or large jet transverse-momentum disbalance due to simple kinematical constraints. There are
no such limitations for the k,-factorization approach. All this makes the two approaches rather comple-
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mentary. The role of several cuts is discussed and quantified.
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L. INTRODUCTION

The subject of jet correlations is interesting in the con-
text of recent detailed studies of hadron-hadron correla-
tions in nucleus-nucleus [1] and proton-proton [2]
collisions. Those studies provide interesting information
on the dynamics of nuclear and elementary collisions.
Effects of geometrical jet structure were discussed recently
in Ref. [3]. No QCD calculation of parton radiation was
performed up to now in this context. Before going into
hadron-hadron correlations, it seems indispensable to bet-
ter understand correlations between jets due to the QCD
radiation. In this paper we address the case of elementary
hadronic collisions in order to avoid complicated and not
yet well understood nuclear effects. Our analysis should be
considered as a first step in order to understand the nuclear
case in the future. We wish to address the problem how far
one can simplify the calculation so that it is useful and
handy in the nuclear case and yet realistic in the proton-
proton case.

In the leading-order collinear-factorization approach jets
are produced back to back. These leading-order jets are
therefore not included into the correlation function,
although they contribute a big ( ~ %) fraction to the inclu-
sive cross section. The truly internal momentum distribu-
tion of partons in hadrons due to Fermi motion (usually
neglected in the literature) and/or any soft emission would
lead to a decorrelation from the simple kinematical con-
figuration. In the fixed-order collinear approach, only next-
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to-leading-order terms lead to nonvanishing cross sections
at ¢ # 7 and/or p,, # p,, (moduli of transverse mo-
menta of outgoing partons). In the k,-factorization ap-
proach, where transverse momenta of gluons entering the
hard process are included explicitly, the decorrelations
come naturally in a relatively easy to calculate way. In
Fig. 1 we show diagrams illustrating the physics situation.
The soft emissions, not explicit in our calculation, are
hidden in model unintegrated gluon distribution functions
(UGDF). In our calculation the last objects are assumed to
be given and are taken from the literature.

The k,-factorization was originally proposed for heavy
quark production [4]. In recent years it was used to de-
scribe several high-energy processes, such as total cross
section in virtual photon-proton scattering [5], heavy quark
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inclusive production [6,7], heavy-quark—heavy-antiquark
correlations [8,9], inclusive photon production [10,11],
inclusive pion production [12,13], Higgs boson [14] or
gauge boson [15] production, and dijet correlations in
photoproduction [16] and hadroproduction [17].

It is often claimed that the k,-factorization approach
includes implicitly some higher-order contributions of
the standard collinear approach. This loose statement re-
quires a better understanding and quantification.

Here we wish to address the problem of the relation
between both approaches. We shall identify the regions
of the phase space where the hard 2 — 3 processes, not
explicitly included in the leading-order k,-factorization
approach, dominate over the 2 — 2 contributions calcu-
lated with UGDFs. We shall show how this depends on
UGDFs used.

We shall concentrate on the region of relatively semi-
hard jets, i.e. on the region related to the recently measured
hadron-hadron correlations at RHIC. Here the resumma-
tion effects may be expected to be important. The resum-
mation physics is addressed in our case through the
k,-factorization approach.

II. FORMALISM

A. 2 — 2 contributions with unintegrated parton
distributions

It is known that at high energies, at midrapidities, and
not too large transverse momenta, the jet production is
dominated by (sub)processes initiated by gluons. In this
paper we concentrate only on such processes. The region of
forward/backward rapidities and/or processes with large
rapidity gap between jets will be studied elsewhere. The
cross section for the production of a pair of partons (k, /)
can be written as

do(hhy, — jetjet) dky, d*k
d21 2d2J jet) _ Z fdyld)b L 47Ky
P1,:4" P2y ikl m m

167%(x1x,5)? | Mij = KDP

- 82(ky, + ko, = P1s — Pay)

X fi(xly k%);)fj(x% k%);)) (21)
where
m i m :
X, = %e“l + %eﬂz, (2.2)
= Dty 4 mz”e_yz, (2.3)

Xy =
Js NG
and m, , and m, , are so-called transverse masses defined as
m;; = \/p?, + m?, where m is the mass of a parton. In the

following, we shall assume that all partons are massless.
The objects denoted by F;(x;, k7,) and F;(x,, k3,) in the
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equation above are the unintegrated parton distributions in
hadron h; and h,, respectively. They are functions of
longitudinal momentum fraction and transverse momen-
tum of the incoming (virtual) parton. If one makes the
following replacement,

Filxn ki) = xifi(x) (ki) (2.4)

and

:]:j(x% k%,t) - x2fj(x2)6(k%,[)v (25)

then one recovers the familiar standard collinear-
factorization formula.

A comment concerning the basic formula (2.1) is in
order here. The formula (2.1) is rather conjectured than
derived rigorously theoretically. It has, however, some nice
features. First of all, it gives a correct collinear limit if the
spread in parton transverse momenta (k,’s) tends to zero.
Furthermore we wish to note that a similar formula is often
used in calculating inclusive cross sections for pion pro-
duction in proton-proton or proton-antiproton collisions
with phenomenological Gaussian UGDFs. There is, how-
ever, a difference. In many calculations in the literature
with the Gaussian smeared UGDFs the initial partons are
assumed to be on mass shell [18]. Then, when integrating
differential cross section, problems appear with singular-
ities due to parton propagators. Those are removed phe-
nomenologically by introducing some extra parameters. In
contrast, our partons are assumed to have spacelike virtual-
ities (which is more natural for partons which are in the
middle of complicated Feynman diagrams). Technically
we assume k> = —Kk? as is often done in the high-energy
k,-factorization approach.

It was advocated recently [19] to use a more general
approach. In practice, this requires a generalization of
unintegrated parton distributions to so-called doubly unin-
tegrated parton distributions [20] which in the most general
case are functions of 4 variables. Some prescription, being
a generalization of the so-called Kimber-Martin-Ryskin
prescription for unintegrated parton distribution functions
(UPDFs), was proposed in Ref. [20]. Up to now, this so-
called (z, k,)-factorization method was used to calculate
only inclusive photoproduction of dijets and inclusive
production of gauge bosons. Our case of dijet correlations
would be more complicated as it requires generalized
distributions in both hadrons and the two-body dijet phase
space (compared to one-body phase space in the case of
gauge boson production). We leave such a more general
approach for future studies.

We wish to note that in the case of jet correlations at
BNL RHIC, considered here, the energies are not big
enough and corresponding longitudinal momentum frac-
tions are not too small (x ~ 0.1) to apply the high-energy
factorization and in practice there is no well theoretically
founded framework. We believe, however, that the inclu-
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sion of transverse momenta is the most important
ingredient.

The inclusive invariant cross section for jet production
can be written

do(hihy — jet d’k, , d*k 1
o(h 22 jet) _ ) Z [dyz Lt 2,z< . .
dy,d*p,, 5T 7 \167*(x;x,5)

X | M(ij— kD> Filxy, k)

X Filx, k%))) (2.6)

Z’Z,r:kl,r Jr122,)‘ -p 1t
and equivalently as

do(hyhy — jet)

1 oy ] iy, P o, 1
dy,d*p,, 5T Va7 1672 (xx09)?

X |M(ij — kD> Fi(xy, k7 )

X F (. k%),)) @.7)

i’l,r:kl,r"'kz,t_f’_

Let us return to the coincidence cross section. The
integration with the Dirac delta function in (2.1)

d*k, , d*k > > - o
fd)ﬁdyz ﬂ_l’t %( : ')52(k1,z + ko — P — Doy)-

(2.8)

can be performed by introducing the following new auxil-
iary variables:

Oi=ky+hky G=ky—k, (29
In Eq. (2.8) (- - -) is exactly the same as in Eqgs. (2.6) and
(2.7). We shall not write it explicitly any longer. The
Jacobian of this transformation is

M:C ! )(1 I >=2.2=4.

a(kl,t» ]zz,z) 1 —1 1 —1
(2.10)
Then our initial cross section can be written as
do(hhy — 00) 1
e  =E dv.dv-d>0.d%aq.(- - -
Epr. P, 2 f yidy,d”Q,d*q,(- )
X 820, = Pry — P2 (2.11)
1
=5 [dandatggms @12

K_H
fdyldyzqtdqtdsbq,( Mg —p
W_/

(2.13)

1
T4
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- [ dyidyrs dq,d¢q,( No_s.
(2.14)

Above P, = p 1+ + Do, Different representations of the
cross section are possible. If one is interested in the distri-
bution of the sum of transverse momenta of the outgoing
quarks, then it is convenient to write

dzpl,tdzpzt = %dzptdzpt = %d(ﬁP,Pthtd(ﬁp/ptdpt

= %ZWPth,quplptdp,. (2.15)

If one is interested in studying a two-dimensional map
P1: X pa, then

d?py,d®py, = dpy,dpy,ddaps,dps,. (2.16)

Then the two-dimensional map in jets transverse momenta
can be written as

dO’(pl » P2, t)

dod
dpi,dpy, ] b1ddapiiPay

x [dvidy: padgds, (). @10

The integral over ¢»; and ¢, must be the most external one.
The integral above is formally a 6-dimensional one. It is
convenient to make the following transformation of varia-
bles:

(1, d2) = (py = D1+ o b = b1 — ¢o), (2.18)

where ¢, € (0,47) and ¢_ € (—2, 27). Now the new
domain (¢, ¢_) is twice bigger than the original one
(1, ¢,). The differential element

010,
ddd do . do_ 2.19
didpy = (J7TE v do @19)
The transformation Jacobian is
didgy\ _ 1 (2.20)
0,0 _ 2 '
Then
do . do_
d2P1,td2P2,z = P1,th1,tP2,th2,t+
= Pl,rdpl,rpz,tdpz,tZWd(b—- (2.21)

The integrals in Eq. (2.17) can be written equivalently as
do(py, pay) 11
s b e = e d d -
dpl,tdpz,t 2 / ¢+ (/) P1,:1P2,t
1
X [dY1dy21qtdq[d¢ql(. ). (222)

The first factor of % comes from the Jacobian of the trans-
formation and the second % is due to the extra extension of
the domain.
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By symmetry, there is no dependence on ¢, and there-
fore the final result can be written as

dO'(pl v P2 z) 1
_ = . 4 d -
dpy,dpy; 2 2 7/ b-P1.iP2s

1
x [dvidy: g, ). @23)

This 5-dimensional integral is now calculated for each
point on the map p;, X p,,. This formula can be also
used to calculate a single particle spectrum of parton 1
and parton 2.

The matrix elements for 2 — 2 processes are discussed
briefly in Appendix A. The analytical continuation of the
standard on-shell matrix elements (see Appendix A) will
be called in the following ‘“‘on-shell approximation™ for
brevity. In Refs. [17,21] exact matrix elements for off-shell
initial gluons were presented (see Appendix A). We have
checked that the results obtained with the on-shell approxi-
mation and those obtained with the off-shell matrix ele-
ments are numerically almost identical. The deviations
occur only for very virtual (large k,) gluons where the
contribution to the cross section is small for majority of
UGDFs.

In the present calculation we shall also include compo-
nents with gluon-quark and quark-gluon processes shown
in Fig. 2. In the next section we shall discuss how large
their contributions are to the cross section.

B. 2 — 3 contributions in collinear-factorization
approach

Up to now we have considered only processes with two
explicit hard partons. In this section we shall discuss
processes with three explicit hard partons. In Fig. 3 we
show a typical 2 — 3 process. We also show kinematical
variables needed in the description of the process. We
select the particles 1 and 2 as those which correlations
are studied. This is only formal as all possible combina-
tions are considered in real calculations.

FIG. 2. New k,-factorization contributions included in the
present paper.

PHYSICAL REVIEW D 76, 034001 (2007)

X,
hy
R

,a% A~
p
X1 /

hy
X»

FIG. 3. A typical diagram for 2 — 3 contributions. The kine-
matical variables used are shown explicitly.

“0G00000> s.ps0)

correlation

The cross section for h;h, — gggX can be calculated
according to the standard parton model formula:

do(hihy, — ggg) = fdxldXZgl(le ,u2)g2(x2, ,U~2)
X do(gg — g88)- (2.24)

The elementary cross section can be written as

] —
do(gg — g88) = Iﬂvlggﬂgggl dR;. (2.25)

The three-body phase space element is

d3P1 d3P2 d3P3 (277)4
2E,(27)? 2E,(27)? 2E;(27)3

X 8%py + pp = P1 — P2~ P3)

dR3 =

(2.26)

It can be written in an equivalent way in terms of parton
rapidities:

d)’1d2171,t d)’2d2pz,t dJ’3d2P3,t @ )4
@4m)Q2m)? (4m)(Q2m)* (4m)(2m)?

X 8*(p, + pp = P1 — P2 — P3).

dR3 =

(2.27)

The last formula is useful for practical purposes. Now the
cross section for hadronic collisions can be written in terms
of 2 — 3 matrix element as

1

do = dy,d’py ,dy,d’ p; ,dy; ey

1 e
X ?X181(x1» LRx282(x0, pPI My _s3l% (2.28)

where the longitudinal momentum fractions are evaluated
as

=)t B oo
Xy = % exp(—y;) + P2t \/— L exp(—y,) + P \/— - exp(—y3).

(2.29)

Repeating similar steps as for 2 — 2 processes we get
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finally
1
64152

X p1,dp1P2dprded —dy dy,dys,

do x181(xy, ,u,%)ngz(xz, szr)|sz—»3|2

(2.30)

where ¢ _ is restricted to the interval (0, 77). The last
formula is very useful in calculating the cross section for
particle 1 and particle 2 correlations.

C. Unintegrated gluon distributions

In general, there are no simple relations between unin-
tegrated and integrated parton distributions. Some of the
UPDFs in the literature are obtained based on familiar
collinear distributions, some are obtained by solving evo-
lution equations, some are just modeled, or some are even
parametrized. A brief review of unintegrated gluon distri-
butions (UGDFs) that will be used here can be found in
Ref. [9]. We shall not repeat all details concerning those
UGDFs here. We shall discuss in more details only ap-
proaches which treat unintegrated quark/antiquark
distributions.

In some of the approaches, one imposes the following
relation between the standard collinear distributions and
UPDFs:

i

= (2.31)
k?

alx, u2) = ﬁ) " fa k2, )

where a = xq or a = xg. As discussed in Ref. [22] this
relation has no deep theoretical foundation, in particular,

|
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contains divergences associated with the use of the light-
cone gauge. However, we shall not use this relation in
practice.

Because of its simplicity, the Gaussian smearing of
initial transverse momenta is a good reference for other
approaches. It allows one to study phenomenologically the
role of transverse momenta in several high-energy pro-
cesses. We define a simple unintegrated parton distribu-
tion:

_’FiGa“SS(x, K2, ,LLZ) = XP,@"(X, Mz) ) fGauss(kz), (2.32)

where p$°ll(x, u?) are the standard collinear (integrated)
parton distribution (i =g, ¢, §) and fgus(k?) is a
Gaussian two-dimensional function:

S Gauss (kz) =

1
exp(—k?/207) —. (2.33)

2
2moy

The UPDFs defined by Eq. (2.32) and (2.33) are normal-
ized such that

/j:'?auss(x, k2’ M2)dk2 = xp?on(x, 1“‘2)' (2.34)

Kwiecinski has shown that the evolution equations for
unintegrated parton distributions take a particularly simple
form in the variable conjugated to the parton transverse
momentum. In the impact-parameter space the Kwiecinski
equations take the following relatively simple form:

a (u? T T
) [ by 06 = 001 = D) Fs(2,8,7) = Fasti b |

ou?
0 Fs(x, b, p?) _ a(u?) [ 5 .
St = S [ delet a1 — Db Py Fs(5but) 4 P F (S bow?)
— [2P,y(2) + 2P, (D] Fs(x, b, Mz)},
a? ( ] b! 2) s( 2) 1 - s
ot = Sl [ oG — 0 - aub)| Py Fs(5 bw?) + Pu@F oS b |
— [2P(2) + 2P (D] F 6(x, b, ;ﬂ)}. (2.35)
{
We have introduced here the short-hand notation, Folob=0,pu?) = 12_6 Pl 1), (2.37)

Fuo=JumJu FamFa s
f5=j:u+fﬁ+fd+j:3+j:s+f§-
The unintegrated parton distributions in the impact factor
representation are related to the familiar collinear distribu-
tions as follows:

On the other hand, the transverse-momentum dependent
UPDFs are related to the integrated parton distributions as

xpe(n, w2) = L AT (x, 12, ). (2.38)

The two possible representations are interrelated via
Fourier-Bessel transform
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Folo k2, 1) = f " dbbIy(kb) Filx, b, ),
0 (2.39)

Fo b, u2) = ﬁ) dkik,Jo(kib) F oo, K2, 12).

The index k above numerates either gluons (k = 0), quarks
(k > 0), or antiquarks (k < 0).

While physically F,(x, k%, u?) should be positive, there
is no obvious reason for such a limitation for F,(x, b, u?).
The momentum space UPDFs have different theoretical
status than the impact-parameter space UPDFs. While the
first have a probabilistic meaning, like usual parton distri-
bution functions, the latter are rather technical objects and
are only Fourier transforms of the first. This, of course,
does not guarantee the positivity.

In the following we use leading-order parton distribu-
tions from Ref. [23] as the initial condition for QCD
evolution. The set of integrodifferential equations in
b-space was solved by the method based on the discretiza-
tion made with the help of the Chebyshev polynomials (see
[24]). Then the unintegrated parton distributions were put
on a grid in x, b, and u? and the grid was used in practical
applications for Chebyshev interpolation.

For the calculation of jet correlations here, the parton
distributions in momentum space are more useful. These
calculations require a time-consuming multidimensional
integration. An explicit calculation of the Kwiecinski
UPDFs via Fourier transform needed in the main calcula-
tion values of (x, kT ,) and (x,, k3 ,) (see next section) is not
possible. Therefore auxiliary grids of the momentum-
representation UPDFs are prepared before the actual cal-
culation of the cross sections. These grids are then used via
a two-dimensional interpolation in the spaces (x;, k7 ,) and
(xa, k3 ,) associated with each of the two incoming partons.

Finally, in Fig. 4 we show an example of k? dependence
of UGDFs used in the present paper for a typical value of x
relevant for the selected range of transverse momenta of
jets. We present results for the Kwieciniski, Kharzeev-
Levin [25], BFKL [26,27], and Ivanov-Nikolaev [28].
There are subtle differences between different distribu-
tions. Consequences of the differences will be discussed
in the section where we show our results for jet
correlations.

Many of the UGDFs in the literature are of very phe-
nomenological character and their value is based on their
success in describing particular experimental data. Their
universality is not completely clear. Some others, like
Kwiecinski distributions for instance, are obtained from a
pQCD framework with some reasonable approximations.
On the general ground, there is an interesting issue of
theoretical foundation of UGDFs and even their definition
(for a nice critical review of the subject see e.g. [22]). Our
attitude here is very pragmatic—we wish to present results
for dijet correlation obtained with the different UGDFs
from the literature.
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FIG. 4 (color online). Unintegrated gluon distributions as a
function of gluon k? for a typical x = 0.05. In the case of the
Kwiecifiski distribution by = 1 GeV~! and u? = 100 GeV>.

III. RESULTS

Let us concentrate first on 2 — 2 processes calculated
within the k,-factorization approach with the inclusion of
initial transverse momenta. We shall include the following
four (sub)processes:

(i) gluon + gluon — gluon + gluon (called diagram

A, see Fig. 1(a)]
gluon + gluon — quark + antiquark (called dia-
gram A,, see Fig. 1(b)]
(ii) gluon + (anti)quark — gluon + (anti)quark (called
diagram B, see Fig. 2(a)]
(iii) (anti)quark + gluon — (anti)quark + gluon (called
diagram B,, see Fig. 2(b)]
Only the first two were included recently in the
k;-factorization approach [17,29]. The papers in the litera-
ture have been concentrated on large energies, i.e. on such
cases when only gluons come into the game. We shall show
that at present subasymptotic energies (RHIC, Tevatron)
also the last two must be included, even at midrapidities. A
similar conclusion was drawn recently for inclusive pion
distributions at RHIC [13].

In Fig. 5 we show two-dimensional maps in (py,, p,)
for the subprocesses listed above. Only very few ap-
proaches in the literature include both gluons and quarks
and antiquarks. In the calculation above, we have used
Kwiecinski UPDFs with exponential nonperturbative
form factor (by = 1 GeV™!), and the factorization scale
lu'2 = (pt,min + pt,max)2/4 = 100 Gevz-

In Fig. 6 we show fractional contributions (individual
component to the sum of all four components) of the above
four processes on the two-dimensional map (y;, y,). One
point here requires a better clarification. Experimentally it
is not possible to distinguish gluon and quark/antiquark
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do/dpydpa, (Mb/GeV?)

do/dp,,dpa, (Mb/GeV?)
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do/dpy,dpa, (Mb/GeV?)

do/dpy.dpa, (Mb/GeV?)

FIG. 5. Two-dimensional distributions in p; , and p,, for different subprocesses gg — gg (left upper) gg — ¢g (right upper), gg —
gq (left lower) and gg — gg (right lower). In this calculation W = 200 GeV and Kwiecinski UPDFs with exponential nonperturbative
form factor (by = 1 GeV~!) and u? = 100 GeV? were used. Here integration over full range of parton rapidities was made.

jets. Therefore in our calculation of the (y;, y,) depen-
dence, one has to symmetrize the cross section (not the
amplitude) with respect to gluon-quark/antiquark ex-
change (y; — y,, ¥ — y;). This can be done technically
by exchanging 7 and & variables in the matrix element
squared. While at midrapidities the contribution of dia-
gram B; + B, is comparable to the diagram A, at larger
rapidities the contributions of diagrams of the type B
dominate. The contribution of diagram A, is relatively
small in the whole phase space. When calculating the
contributions of the diagram A; and A,, one has to be
careful about collinear singularity which leads to a signifi-
cant enhancement of the cross section at ¢ _ = O and y, =
¥,, 1.. in the one jet case. This is particularly important for
the matrix elements obtained by the naive analytic con-
tinuation from the formula for on-shell initial partons. The
effect can be, however, easily eliminated with the jet-cone
separation algorithm discussed in Appendix D.

For completeness in Fig. 7 we show azimuthal-angle
dependence of the cross section for all four components.
There is no sizable difference in the shape of azimuthal
distribution for different components.

The Kwiecinski approach allows one to separate the
unknown perturbative effects incorporated via nonpertur-

bative form factors and the genuine effects of QCD evolu-
tion. The Kwieciniski distributions have two external
parameters:

(i) the parameter b, responsible for nonperturbative
effects, such as primordial distribution of partons
in the nucleon,

(ii) the evolution scale u? responsible for the soft re-
summation effects.

While the latter can be identified physically with character-
istic kinematical quantities in the process u> ~ pi,. p3,.
the first one is of nonperturbative origin and cannot be
calculated from first principles. The shapes of distributions
depends, however, strongly on the value of the parameter
by. This is demonstrated in Fig. 8 for the gg — gg sub-
process. The smaller b, the bigger decorrelation in azimu-
thal angle can be observed. In Fig. 8 we show also the role
of the evolution scale in the Kwiecinski distributions. The
QCD evolution embedded in the Kwiecinski evolution
equations populate larger transverse momenta of partons
entering the hard process. This significantly increases the
initial (nonperturbative) decorrelation in azimuth. For
transverse momenta of the order of ~10 GeV, the effect
of evolution is of the same order of magnitude as the effect
due to the nonperturbative physics. For larger scales of the
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FIG. 6. Two-dimensional distributions of fractional contributions of different subprocesses as a function of y; and y, for gg — gg
(left upper) gg — gg (right upper), gg — gq (left lower) and gg — gg (right lower). In this calculation W = 200 GeV and
Kwieciniski UPDFs with exponential nonperturbative form factor and b, = 1 GeV~! were used. The integration is made for jets
from the transverse-momentum interval: 5 GeV < p,,, p,, <20 GeV.

order of u? ~ 100 GeV?, more adequate for jet produc-
tion, the initial condition is of minor importance and the
effect of decorrelation is dominated by the evolution.
Asymptotically (infinite scales) there is no dependence
on the initial condition provided reasonable initial condi-
tions are taken.

In Fig. 9 we show azimuthal-angle correlations for the
dominant at midrapidity gg — gg component for different
UGDFs from the literature. Rather different results are
obtained for different UGDFs. In principle, experimental
results could select the “best” UGDF. We do not need to
mention that such measurements are not easy at RHIC and
rather hadron correlations are studied instead of jet
correlations.

Before we start presenting further more detailed results,
let us concentrate on the next-to-leading order (NLO)
calculation.! In Fig. 10 we show the results of a calcula-
tion, on the (p;, p,,) plane where soft divergences are
shown explicitly. One clearly sees 3 sharp ridges: along x
and y axes as well as along the diagonal. The ridges along x
and y axes can be easily eliminated by imposing cuts on

'Please note that what we call here NLO, is called sometimes
LO in the context of jet correlations [30].

D1, and p,,, i.e. on jets taken in the analysis of correla-
tions. The elimination of the third ridge is more subtle and
will be discussed somewhat later. Sometimes asymmetric
cuts on jet transverse momenta are imposed in order to
avoid technical problems.

In Fig. 11 we show the maps for different choices of
UGDFs and for gg — ggg processes in the broad range of
transverse momenta 5 GeV < py,, p,, < 20 GeV for the
RHIC energy W = 200 GeV. In this calculation we have
not imposed any particular cuts on rapidities. We have not
imposed also any cut on the transverse momentum of the
unobserved third jet in the case of 2 — 3 calculation. The
small transverse momenta of the third jet contribute to the
sharp ridge along the diagonal p,, = p,,. Naturally this is
therefore very difficult to distinguish these three-parton
states from standard two-jet events. In principle, the ridge
can be eliminated by imposing a cut on the transverse
momentum of the third (unobserved) parton. There are
also other methods to eliminate the ridge and underlying
soft processes which will be discussed somewhat later.

In Fig. 12 we compare distributions in relative azimuthal
angle obtained with different UGDFs and the distribution
obtained within standard collinear NLO. Here we limit to
the region of midrapidities. Very different azimuthal cor-
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FIG. 7 (color online). The angular correlations for all four
components: gg — gg (solid), gg — ¢g (dashed), and gg —
gq = qg — qg (dash-dotted). The calculation is performed
with the Kwiecifiski UPDFs and by = 1 GeV~!. The integration
is made for jets from the transverse-momentum interval:
5GeV<py, py<15GeV and from the rapidity interval:
—4 <y, y <4

=) 99 —> 99
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) — |
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FIG. 8 (color online). The azimuthal correlations for the gg —
gg component obtained with the Kwiecinski UGDFs for differ-
ent values of the nonperturbative parameter b, and for different
evolution scales u?> = 10 (online blue), 100 (online red) GeV?2.
The initial distributions (without evolution) are shown for ref-
erence by black lines.
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FIG. 9 (color online). The azimuthal correlations for the gg —
gg component obtained for different UGDFs from the literature.
The Kwieciniski distribution is for by = 1 GeV~! and u? =
100 GeV2.

relation functions are obtained for different UGDFs. The
NLO azimuthal-angle correlation function is comparable

to those obtained in the k,-factorization approach for ¢ _ <
90°.

~ 20
>
[1B)
e
6'15
10
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B (AN
0 5 10 15 20
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FIG. 10. Two-jet correlations for a 2 — 3 gg — ggg compo-
nent for RHIC energy W = 200 GeV. The soft singularities are
shown as ridges. The pQCD calculations are reliable outside of
the regions of ridges.
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da/dp,dps, (Mmb/GeV?)

do/dpy.dpa, (Mb/GeV?)

Two-dimensional distributions in p;, and p,, for Kharzeev-Levin (left upper), Balitsky-Fadin-Kuraev-Lipatov (right upper),

and Ivanov-Nikolaev (left lower) UGDFs, and for the gg — ggg (right lower). In this calculation —4 <y, y, <4.

FIG. 11.
—~ T ' r
‘ED 1 b w=2000cev
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FIG. 12 (color online). Jet-jet azimuthal correlations do/d¢ _
for the gg — gg component and different UGDFs as a function
of azimuthal angle between the gluonic jets. In this calculation
W =200 GeV and —1<y;, y,<1, 5GeV<py, pu<
20 GeV. The notation here is the same as in Fig. 9. The two
new thin solid (online black) lines are for NLO collinear ap-
proach without (upper line) and with (lower line) leading-jet
restriction.
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FIG. 13. Cross section for the gg — ggg component on the

(p1.» P2.) plane with the condition of leading jets (partons). The
borders of NLO accessible regions are clearly visible.
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FIG. 16. The excluded diagonal region. Shown are also stan-
dard cuts on jet transverse momenta.
Oe
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When calculating dijet correlations in the standard NLO
(2 — 3) approach, we have taken into account all possible
FIG. 14.  Definition of windows in the (p; ., p2,) plane for a  dijet combinations. This is different from what is usually
further use. taken in experiments [30], where correlations between

|
o

-
o
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FIG. 15 (color online). Dijet azimuthal correlations do-/d¢ _ for different windows in the (p;;, p,,) plane as a function of relative
azimuthal angle ¢ _ between outgoing jets for RHIC energy W = 200 GeV. The jet-cone radius R, = 1 was used here in addition to
separate jets. The notation here is the same as in Fig. 12.
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FIG. 17 (color online).
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Azimuthal angular correlations for different values of the parameter A; = 0, 2, 5 GeV. Different UGDF are

used. The notation here is the same as previously. The jet-cone radius R, = 1 was used in addition to separate jets. The notation here

is the same as in Fig. 12.
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-
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FIG. 18 (color online).
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Azimuthal angular correlations for different values of the parameter A, = 0, 2, 5 GeV. Different UGDF are

used. The notation here is the same as previously. The jet-cone radius R, = 1 was used in addition to separate jets. The notation here

is the same as in Fig. 12.

leading jets are studied. In our notation this means p;, <
p1,: and p;3, < p,,. When imposing such an extra condi-
tion on our NLO calculation, we get the dash-dotted curve
in Fig. 12. In this case do/d¢_ = 0 for ¢p_ < 3. This
vanishing of the cross section is of purely kinematical
origin. Since in the k,-factorization calculation only two
jets are explicit, there is no such effect in this case. This
means that the region of ¢_ < %77 should be useful to test
models of UGDFs. For completeness in Fig. 13, we show a
two-dimensional plot (p; ;, p,;) with imposing the leading-
jet condition. Surprisingly, the leading-jet condition re-
moves a big part of the two-dimensional space. In particu-
lar, regions with p, , > 2p, , (NLO-forbidden regionl) and
P1.: > 2ps,; (NLO-forbidden region2) cannot be populated
via the 2 — 3 subprocess.” There are no such limitations
for 2— 4, 2—5, and even higher-order processes.
Therefore measurements in ‘“NLO-forbidden” regions of
the (p,,,, p»,) plane would test higher-order terms of the
standard collinear pQCD. These are also regions where
UGDF:s can be tested, provided that not too big transverse
momenta of jets are taken into the correlation in order to

*In the LO collinear approach the whole plane, except of the
diagonal p;, = p,,, is forbidden.

assure the dominance of gluon-initiated processes (for
larger transverse momenta and/or forward/backward rap-
idities, one has to include also quark/antiquark initiated
processes via unintegrated quark/antiquark distributions).

Can we gain new information correlating the space of
azimuthal angle (¢ _) and the space spanned by the lengths
of transverse momenta (p; ,, p,,)? In particular, it is inter-
esting how the jet azimuthal correlations depend on a
region of (py;, p,,). For this purpose in Fig. 14 we define
several regions in (p;, p,,), called windows, for easy
reference in the following. They have been named A;; for
future easy notation. In Fig. 15 we show angular azimuthal
correlations for each of these regions separately. While at
small transverse momenta the cross section obtained with
2 — 2 k,-factorization and 2 — 3 collinear-factorization
approaches are of similar order, at larger transverse mo-
menta and far from the diagonal p;, = p,, the cross
section is dominated by the genuine next-to-leading-order
processes. In these regions the standard higher-order
collinear-factorization approach seems to be the best, and
probably the only, method to study dijet azimuthal-angle
correlations.

Cuts on p,, and p,, remove a big part of soft singular-
ities, leaving only the region of p;, = p,,. In order to
eliminate the regions where the pQCD calculation does not
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apply, we suggest to exclude the region shown in diagram
16 which is equivalent to including the following cuts on
the lengths of transverse momenta of the jets taken into
account in the correlations:

|p1e = pad > Ay (3.1
In Fig. 17 we show the distribution of the cross section in
azimuthal angle for different cuts A; =0, 2, 5 GeV. We
shall call the cuts given in Eq. (3.1) scalar cuts for easy
reference. We have also tried another way to remove
singularities:

|Pri+ Dol > Ay (3.2)
In Fig. 18 we show the distribution of the cross section in
azimuthal angle for different cuts A, = 0, 2, 5 GeV [we
shall call the cuts given by Eq. (3.2) vector cuts for brev-
ity]. These results are very similar to those obtained with
the scalar cuts.

Both scalar and vector cuts remove efficiently the sin-
gularity of the collinear 2 — 3 contribution at ¢ _ = 7. If
too big values of A, or A,, are used, the cross section of the
k,-factorization @ 2 — 2  contribution is reduced
considerably.

IV. DISCUSSION AND CONCLUSIONS

Motivated by the recent experimental results of hadron-
hadron correlations at RHIC, we have discussed dijet
correlations in proton-proton collisions. We have consid-
ered and compared results obtained with the collinear next-
to-leading-order approach and the leading-order
k,-factorization approach.

In comparison to recent works in the framework of the
k,-factorization approach, we have included two new
mechanisms based on gg — gg and gg — gg hard sub-
processes. This was done based on the Kwiecinski unin-
tegrated parton distributions. We find that the new terms
give significant contribution at RHIC energies. In general,
the results of the k,-factorization approach depend on
UGDFs/UPDFs used, i.e. on approximation and assump-
tions made in their derivation.

An interesting observation has been made for azimuthal-
angle correlations. At relatively small transverse momenta
(p; ~ 5-10 GeV) the 2 — 2 subprocesses, not contributing
to the correlation function in the collinear approach, domi-
nate over 2 — 3 components. The latter dominate only at
larger transverse momenta, i.e. in the traditional jet region.

The results obtained in the standard NLO approach
depend significantly on whether we consider correlations
of any jets or correlations of only leading jets. In the NLO
approach, one obtains d%_ = 0if ¢p_ < 3w for leading jets
do —

as a result of a kinematical constraint. Similarly i dpy,
t 1

0if py;>2py,0r pyy >2py;.
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There is no such constraint in the k,-factorization ap-
proach which gives a nonvanishing cross section at small
relative azimuthal angles between leading jets and
transverse-momentum asymmetric configurations. We
conclude that in these regions the k,-factorization approach
is a good and efficient tool for the description of leading-jet
correlations. Rather different results are obtained with
different UGDFs which opens a possibility to verify them
experimentally. Alternatively, the NLO-forbidden configu-
rations can be described only by higher-order (next-to-
next-to-leading order and higher-order) terms. We do not
need to mention that this is a rather difficult and technically
involved computation.

On the contrary, in the case of correlations of any
unrestricted jets (all possible dijet combinations) the
NLO cross section exceeds the cross section obtained in
the k,-factorization approach with different UGDFs. This
is therefore a domain of the standard fixed-order pQCD.
We recommend such an analysis as an alternative to study
leading-jet correlations. In principle, such an analysis
could be done for the already collected Tevatron data.

The consequences for particle-particle correlations mea-
sured recently at RHIC require a separate dedicated analy-
sis. Here the so-called leading particles may come both
from leading and nonleading jets. This requires taking into
account the jet fragmentation process. We leave this analy-
sis for a separate study.
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APPENDIX A: MATRIX ELEMENTS FOR 2 — 2
PROCESSES WITH INITIAL OFF-SHELL GLUONS

In this paper we shall include the following 2 — 2
processes with at least one gluon in the initial state:
(@) gg — g8, (b) gg¢ — qq, (¢) g9 — gq, (d) 98 — g8,
i.e. processes giving significant contributions for inclusive
jet production at relatively small jet transverse momenta
and midrapidities [31]. The last two processes were not
included in Refs. [17,29]. We shall show that at RHIC
energies they give contributions similar (or even larger)
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to the contribution of the asymptotically dominant gg —
gg subprocess.

The matrix elements for on-shell initial gluons/partons
read (see e.g. [32])

9 ta sa  §t
M — 2:—43_—_7_—,
| Mgg—gel 7 8s 2 2 2

1 fa 40 471 i i
M,yoiil> =g 65+ 5+ -+3-+3-)
(Meemoal” =580 737732735735
M P — g 48+ a0 a2+ 8§ (A1)
| M gyeql® = &5 Y, + 2 )
_ 482+ 2+§2
| Myg—go? = 83— —5+ =

9 §t i

For on-shell initial gluons (partons) § + 7 + & = 0.

The matrix elements for off-shell initial gluons are
obtained by using the same formulas but with §, 7, @
calculated including off-shell initial kinematics. In this
case § + 7 + & = ki + k3, where k7, k3 < 0 are virtualities
of the initial gluons. Our prescription can be treated as a
smooth analytic continuation of the on-shell formula off
mass shell. With our choice of initial gluon four-momenta
ki = —k}, and k = —k3,.

In Refs. [17,21] another formula which includes off-
shellness of initial gluons was presented:

do d*k, , d*k
2 7] _f Lt 21?( L k)
d“py,d-p,,dy dy, T
do
P Jk A2
Zp &, Fx2 k3,), (A2)
where
do N? 1

=2 ———ai(u,) 55

dzPl,tdZPZ,t (Ng = 1) kitk%,t
X 52(El,t + lzz,z - i)l,t - ﬁZ,t)ﬂ’ (A3)

The factor A is a function of momenta entering the hard
process A = A(S, 1, 4, ky 4, k) (see [17]). The factor A
has been rederived recently in Ref. [29] and the result of
Leonidov and Ostrovsky was confirmed.

Please note a different convention of UGDF in our paper
(F) with those in Refs. [17,21] (f). The UGDFs in the two
conventions are related to each other as

F (e kp) = fx, kD) / k.

In order to eliminate the delta function in Eq. (A3) we can
use the same tricks as in the previous section.

The formula of Leonidov and Ostrovsky is equivalent to
our formula if we define

(A4)

N2 —1 A
e a; 2 .2 "
2N; kl,zkz,z

| M = 167(x,x,5)? (A5)

off-shell
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APPENDIX B: MATRIX ELEMENTS FOR 2 — 3
PROCESSES

In this Appendix we list the squared matrix elements
averaged and summed over initial and final spins and
colors used to calculate the contribution of the 2 — 3
partonic processes (for useful reference, see e.g. [32,33]).

For the gg — ggg process (k| + ky — k3 + k4 + ks),
the squared matrix element is

1 N3
2 g6
I MIP =3¢ *N? —
+ (12453) + (12534) + (12543) + (13245)

+ (13254) + (13425) + (13524) + (12453)

+ (14325)]2(1(,-19.) / ]‘[(kikj),

i<j i<j

[(12345) + (12354) + (12435)

(BI)

where (l]lml’l) = (kzk])(k]kl)(klkm)(kmkn)(knkl)

It is useful to calculate the matrix element for the
process g — ggg. The squared matrix elements for other
processes can be obtained by crossing the squared matrix
element for the process gg — ggg (p, + pp — ki + ky +
k3):

N2 -1 3
|MI> = g¢ AN Za bila; + b7)/(ayazyazbbybs)
x |:§ + N2<— _ a1b2 + (lzbl _ a2b3 + [l3b2
2 2 (kyk2) (kaks)

A

_azb + a1b3> 2_N4<a3b3(albz + ayb))
S

(k3k;) (koks)(ksky)
ayby(aybs + aszby) | aby(azby + a1b3)>}
(ksky)(kiky) (ky ko) (kyks) '

(B2)
where the quantities a; and b; are defined as
a; = (p.k;), = (pyki). (B3)

The matrix element for the process gg — ggg is ob-
tained from that of gg — ggg by appropriate crossing:

(ky, ky, ks, ky, ks)

88—qdg
= % : qu—»ggg(_k4, —ks, —ki, —ka, ks).  (B4)
We sum over 3 final flavors (f = u, d, s).
For the gg — qgg process
[MI? go—ggs (ki ko, k3, Ky, ks)
= (=3) " IMP g gge ki, —ks, —ky, ky ks) — (B5)

and finally for the process gg — Ggg
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|MI? g—qe5 (K1, ko, ks, Ky, ks)
B (_%) ' |Mlzqq—'ggg(_k3y ky, —ky, ky, ks).

(B6)

The squared matrix elements are used then in formula
(2.24). The contributions with two quark/antiquark initi-
ated processes are important at extremely large rapidities.
They will be neglected in the present analysis where we
concentrate on midrapidities.

APPENDIX C: RUNNING «;

The treatment of the running coupling constants in 2 —
2 and 2 — 3 subprocesses is important in numerical evalu-
ation of the cross section.

For the 2 — 2 case we shall try several prescriptions:

(al) a% = as(P%,;)as(P%,,),

(@) o = a3l

(a3) ai = a3(p1pa)-

Analogously for the 2 — 3 case:

(:81) ag = as(P%t)as(P%,)as(P%,t),

2 2 2
pi,tpy,tp
(B) @ = ad(Ffti),
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APPENDIX D: JET SEPARATION

In order to make reference to a real situation, as in
experiments, one has to take care about separation of jets
in the azimuthal angle and rapidity space.

In the case of the k,-factorization calculation, when there
are only two explicit jets we impose the following jet-cone
condition:

Ry, = \/(A¢12)2 + (1 — y2)* <Ry (D1)

Of course in this case A¢;, = ¢_. R, is an external
parameter. For reasonable values of Ry < 1 the condition
may be active only for small ¢ _. We discuss the role of the
extra cut in the paper.

In the case of 2 — 3 subprocesses, one has to check two
extra conditions:

Ry = \/(A¢13)2 + (1 = v3)* <R,

Rz = \/(A¢23)2 + (y2 = y3)* <R,.

Here one can expect a slightly more complicated situation.
Those two cuts reduce the correlation function everywhere

ing_ = Ad¢y,.

(D2)
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