
Probing nonstandard decoherence effects with solar and KamLAND neutrinos

G. L. Fogli,1 E. Lisi,1 A. Marrone,1 D. Montanino,2 and A. Palazzo1,3

1Dipartimento di Fisica and Sezione INFN di Bari, Via Amendola 173, 70126, Bari, Italy
2Dipartimento di Fisica and Sezione INFN di Lecce, Via Arnesano, 73100 Lecce, Italy

3Astrophysics, Denys Wilkinson Building, Keble Road, OX1 3RH, Oxford, United Kingdom
(Received 29 April 2007; published 28 August 2007)

It has been speculated that quantum-gravity might induce a foamy space-time structure at small scales,
randomly perturbing the propagation phases of free-streaming particles (such as kaons, neutrons, or
neutrinos). Particle interferometry might then reveal nonstandard decoherence effects, in addition to
standard ones (due to, e.g., finite source size and detector resolution.) In this work we discuss the
phenomenology of such nonstandard effects in the propagation of electron neutrinos in the Sun and in the
long-baseline reactor experiment KamLAND, which jointly provide us with the best available probes of
decoherence at neutrino energies E� few MeV. In the solar neutrino case, by means of a perturbative
approach, decoherence is shown to modify the standard (adiabatic) propagation in matter through a
calculable damping factor. By assuming a power-law dependence of decoherence effects in the energy
domain (En with n � 0, �1, �2), theoretical predictions for two-family neutrino mixing are compared
with the data and discussed. We find that neither solar nor KamLAND data show evidence in favor of
nonstandard decoherence effects, whose characteristic parameter �0 can thus be significantly constrained.
In the ‘‘Lorentz-invariant’’ case n � �1, we obtain the upper limit �0 < 0:78� 10�26 GeV at 95% C.L.
In the specific case n � �2, the constraints can also be interpreted as bounds on possible matter density
fluctuations in the Sun, which we improve by a factor of �2 with respect to previous analyses.
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I. INTRODUCTION

Although a satisfactory theory of quantum gravity is still
elusive, it has been speculated that it should eventually
entail violations of basic quantum mechanics, including
the spontaneous evolution of pure states into mixed (deco-
herent) states [1] through unavoidable interactions with a
pervasive and ‘‘foamy’’ space-time fabric at the Planck
scale [2]. The pioneering paper [3] showed that such
hypothetical source of decoherence might become mani-
fest in oscillating systems which propagate over macro-
scopical distances, through additional smearing effects in
the observable interferometric pattern (besides the usual
smearing effects due, e.g., to the finite source size and the
detector resolution). However, lacking an ab initio theory
of quantum-gravity decoherence, its effects can only be
parameterized in a model-dependent (and somewhat arbi-
trary) way. Searches with neutral kaon oscillations [3–6],
neutron interferometry [3,7] and, more recently, neutrino
oscillations [8–14], have found no evidence for such ef-
fects so far, and have placed bounds on model parameters.

Quantum-gravity effects in neutrino systems have been
investigated with increasing attention in the last decade, as
a result of the evidence for neutrino flavor oscillations.
Early attempts tried to interpret the solar neutrino puzzle
[8–10] or the atmospheric � anomaly [10] in terms of
decoherence. After the first convincing evidence for atmos-
pheric neutrino oscillations [15], a quantitative analysis
was performed in Ref. [11], considering possible decoher-
ence effects in the �� ! �� channel (see also Ref. [12]).
The phenomenology of terrestrial neutrino experiments

has also been investigated in Refs. [13,14]. More recently,
prospective studies have focused on decoherence effects in
high-energy neutrinos [16–20], observable in next genera-
tion neutrino telescopes. Furthermore, more formal aspects
of quantum-gravity decoherence in neutrino systems have
been developed [21–27]. This is only a fraction of the
related literature, which testifies to the wide and increasing
interest in the subject.

Despite this interest, to our knowledge such decoherence
effects have not been systematically investigated in the
light of the solar neutrino experiments performed in the
last few years. Solar neutrino oscillations [28] dominated
by matter effects [29,30] are currently well established by
solar neutrino experiments [31–41] and have been inde-
pendently confirmed by the long-baseline reactor experi-
ment KamLAND [42,43]. The striking agreement between
solar and KamLAND results determines a unique solution
in the mass-mixing parameter space (the so-called large
mixing angle (LMA) solution, see e.g. Refs. [44,45]), pro-
vides indirect evidence for matter effects with standard
amplitude [46], and generally (although not always [47])
implies that additional, nonstandard physics effects may
play only a subleading role, if any. In particular, the
KamLAND Collaboration has exploited the observation
of half oscillation cycle in the energy spectrum [43] to
exclude decoherence as a dominant explanation of their
data.

The main purpose of this paper is then to study decoher-
ence as a subdominant effect in solar and KamLAND
neutrino oscillations. Modifications of the standard oscil-
lation formulae in the presence of decoherence, and quali-
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tative bounds on decoherence parameters, are discussed in
Sec. II and III for KamLAND and solar neutrinos, respec-
tively. Quantitative bounds on subdominant decoherence
effects from a joint analysis of solar and KamLAND data
are studied in Sec. IV. Implications for decoherence in-
duced by matter fluctuations in the Sun are discussed in
Sec. V. The main results are finally summarized in Sec. VI.
The solar neutrino flavor evolution in the presence of
standard matter effects plus nonstandard decoherence is
discussed in a technical Appendix.

II. OSCILLATIONS WITH (OUT) DECOHERENCE
IN KAMLAND

Here and in the following, we assume the standard
notation [48] for neutrino mixing, and set the small mixing
angle �13 to zero for the sake of simplicity. For �13 � 0,
oscillations in the �e ! �e channel probed by long-
baseline reactor (KamLAND) and by solar neutrinos are
driven by only two parameters: the mixing angle �12 and
the neutrino squared mass difference �m2 � m2

2 �m
2
1. In

particular, the standard �e survival probability over a base-
line L in KamLAND reads:

 Pee � 1�
1

2
sin22�12

�
1� cos

�
�m2L

2E

��
: (1)

In the presence of additional decoherence effects, the
oscillating factor is exponentially suppressed, as shown in
Ref. [11] for the atmospheric �� ! �� channel. By chang-
ing the appropriate parameters for the KamLAND �e ! �e
channel, the results of Ref. [11] lead to the following
modification of the previous equation:

 Pee � 1�
1

2
sin22�12

�
1� e��L cos

�
�m2L

2E

��
; (2)

where the dimensional parameter � represents the inverse
of the decoherence length after which the neutrino system
gets mixed.1 Eq. (2) includes the limiting cases of pure
oscillations (� � 0 and �m2 � 0) and of pure decoherence
(� � 0 and �m2 � 0).

Unfortunately, lacking a fundamental theory for quan-
tum gravity, the dependence of � on the underlying dy-
namical and kinematical parameters (most notably the
neutrino energy E) is unknown. Following common prac-
tice, such ignorance is parameterized in a power-law form

 � � �0

�
E
E0

�
n
; (3)

where E0 is an arbitrary pivot energy scale, which we set as
E0 � 1 GeV in order to facilitate the comparison with
limits on � parameters investigated in other contexts (as
reviewed, e.g., in Ref. [49]). We shall consider only five

possible integer exponents,

 n � 0;�1;�2; (4)

which include the following cases of interest: The ‘‘energy
independent’’ case (n � 0); the ‘‘Lorentz-invariant’’ case
[11] (n � �1); the case n � �2 that can arise in some D-
brane or quantum-gravity models, in which �0 �
O�E2

0=MPlanck� � 10�19 GeV is expected (see, e.g.
Ref. [50]); and the case where decoherence might be
induced by ‘‘matter density fluctuations’’ rather than by
quantum gravity (n � �2, see Sec. V).

As previously remarked, the KamLAND Collaboration
[43] (see also [51]) has ruled out pure decoherence in the
Lorentz-invariant case (n � �1). In our statistical �2

analysis, we also find that this case is rejected at 3:6�
(i.e., ��2 � 13 with respect to pure oscillations). In addi-
tion, we find that the other exponents in Eq. (4) are also
rejected at >3� for the pure decoherence case. Therefore,
decoherence effects can only be subdominant in
KamLAND, namely

 �L	 1: (5)

For typical KamLAND neutrino energies (E� few MeV)
and baselines (L� 2� 102 km), the above inequality im-
plies upper bounds on �0, which range from �0 	
10�26 GeV (n � �2) to �0 	 10�16 GeV (n � �2). We
do not refine the analysis of such bounds (placed by
KamLAND alone), since they are superseded by solar
data constraints, as shown in the next section.

III. OSCILLATIONS WITH(OUT) DECOHERENCE
EFFECTS IN SOLAR NEUTRINOS

The survival probability describing standard adiabatic
�e transitions in the solar matter is given by the simple
formula (up to small Earth matter effects)

 P
ee �
1
2�1� cos2~�12�r0� cos2�12�; (6)

where ~�12�r0� is the energy-dependent effective mixing
angle in matter at the production radius r0 (see, e.g.,
Ref. [52] and references therein).

In the presence of nonstandard decoherence effects, we
find that the energy-dependent term is modulated by an
exponential factor

 P
ee �
1
2�1� e

��
R
 cos2~�12�r0� cos2�12�; (7)

where R
 � 6:96� 105 km is the Sun radius, while �
 is
defined as

 �
 � �0gn�E�; (8)

where the dimensionless function gn�E� embeds, besides
the power-law dependence En, also the information about
the solar density profile [which is instead absent in Eq. (6)].
The reader is referred to the Appendix for a derivation of
Eq. (7) and for details about the function gn�E�.

1Units: ��� � 1=length � energy. Conversion factor:
�1 km��1 � 1:97� 10�19 GeV.
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Equation (7) includes the subcase of pure oscillations
(�0 � 0 and �m2 � 0), but not the subcase of pure deco-
herence (�0 � 0 and �m2 � 0), since the limit �m2 ! 0
would entail strongly nonadiabatic transitions, and thus a
breakdown of the adiabatic approximation assumed above.
However, as noted in the previous section, the KamLAND
data exclude the limit �m2 ! 0; moreover, they require
�m2 values which are high enough to guarantee the validity
of the adiabatic approximations, with or without sublead-
ing decoherence effects (as we have numerically verified).
Therefore, for solar neutrinos, the only phenomenologi-
cally relevant cases are those including oscillations plus
decoherence.2

We have analyzed all the available solar neutrino data
with ��m2; �12; �0� taken as free parameters. It turns out
that, despite the allowance for an extra degree of freedom
(�0), the data always prefer the pure oscillations (�0 � 0)
as best fit, independently of the power-law index in Eq. (4).
Since there are no indications in favor of decoherence
effects, the exponent in Eq. (7) is expected to be small, and

 �
R
 	 1: (9)

For typical solar neutrino energies E� 10 MeV, it turns
out that gn�E� � 0:2� 10�2n (see the Appendix), and the
above inequality can be translated into upper bounds on �0,
which range from �0 	 10�28 GeV (for n � �2) to �0 	
10�20 GeV (for n � �2). Such bounds are two to 4 orders
of magnitude stronger than those placed by KamLAND
alone (see the end of the previous section). A useful
complementarity then emerges between solar and
KamLAND data in joint fits: The former dominate the
constraints on decoherence effects, while the latter fix the
mass-mixing parameters independently of (negligible) de-
coherence effects.

IV. COMBINATION OF SOLAR AND KAMLAND
DATA: RESULTS AND DISCUSSION

We have performed a joint analysis of solar and
KamLAND data3 in the ��m2; sin2�12; �0� parameter space
for the five power-law exponents n � 0,�1,�2. The main
results are: (i) �0 � 0 is always preferred at best fit, i.e.,
there is no indication in favor of decoherence effects;
(ii) the best-fit values and the marginalized bounds for
��m2; sin2�12� do not appreciably change from those ob-
tained in the pure oscillation case, namely, �m2 � �7:92�
0:71� � 10�5 eV2 and sin2�12 � �0:314�0:057

�0:047� at �2�
[44]; (iii) significant upper bounds can be set on the

decoherence parameter �0. Our limits on �0 are given
numerically in Table I (at the 2� level, ��2 � 4) and
graphically in Fig. 1 (at 2� and 3� level). Such limits
are consistent with those discussed qualitatively after
Eq. (9) in the previous section.

Figure 1 clearly shows that the bounds on �0 scale with
n almost exactly as a power law, changing by about two
decades for j�nj � 1. The reason is that the bounds are
dominated by solar neutrino data, and, in particular, by data
probing the 8B neutrinos in a relatively narrow energy
range around E� 10 MeV; the power-law dependence
assumed in Eq. (3) and embedded in the function gn�E�
then implies that the parameter �0 scales roughly as
�E=E0�

�n � 102n.

TABLE I. Upper limits on the decoherence parameter �0

obtained for different values of n from a global fit to solar and
KamLAND data, after marginalization of the mass-mixing pa-
rameters. The limits refer to 95% C.L. (i.e., 2�, or ��2 � 4).

n �0 (GeV)

�2 <0:81� 10�28

�1 <0:78� 10�26

0 <0:67� 10�24

�1 <0:58� 10�22

�2 <0:47� 10�20

FIG. 1 (color online). Upper bounds on the decoherence pa-
rameter �0 as a function of the power-law index n, as obtained
from a combined analysis of solar and KamLAND data. The
solid and dotted curves refer to 2� and 3� confidence level,
respectively.

2For the sake of curiosity, we have anyway calculated P
ee for
the pure decoherence case, by numerically solving the neutrino
evolution equations (discussed in the Appendix) for �m2 � 0
and � � 0. We always find P
ee > 1=2, which is forbidden by 8B
solar neutrino data [46].

3The details of the data set, of the solar model used [53] and of
the statistical �2 analysis have been reported in Ref. [44] and are
not repeated here.
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Although the case of no decoherence (�0 � 0) is pre-
ferred, it makes sense to ask what one should observe for
decoherence effects as large as currently allowed by the
data at, say, the 2� level. Figure 2 compares the P
ee energy
profile for the cases of pure oscillations (left panel) and of
oscillations plus decoherence (right panel), where �0 is
taken equal to the upper bound at 2�, as taken from
Table I.4 It can be seen that decoherence effects, to some
extent, mimic the effects of a larger mixing. For instance,
the curve with n � 0 in the right panel is not much differ-
ent from the curve at sin2�12 � 0:371 (upper 2� value) in
the left panel. As a consequence, one expects some degen-
eracy between the parameters �0 and sin2�12 when fitting
the data. The degeneracy is only partial however, because
decoherence effects can significantly change both the
shape and the slope of the energy profile within the current
2� bounds, as evident in the right panel. Therefore, future
measurements of the (currently not well constrained) solar
neutrino energy spectrum will provide further important
probes of decoherence effects.

The variation of P
ee due to subdominant decoherence
effects [see Eqs. (6) and (7)] is given, in first approxima-
tion, by

 �P
ee ’ �
1
2�
R
 cos2~�12 cos2�12; (10)

and changes sign with cos2~�12. As the energy increases,
the value of cos2~�12 changes from cos�12 > 0 (low-energy,
vacuum-dominated regime) to �1 (high-energy, matter-
dominated regime), the transition being located around
2 MeV for the 8B neutrino curves shown in Fig. 2. This
fact explains the general increase of P
ee for E * 2 MeV in
the right panel of Fig. 2. More detailed features depend
instead on the energy behavior of the function gn�E�,
which modulates decoherence effects (see the Appendix).
In general, gn�E� grows rapidly with increasing energy for
n > 0 (which explains the high-energy upturn of the curves
with n � �1 and n � �2), while it vanishes with decreas-
ing energy for all n � �2 (which explains the low-energy
equality of all curves but for n � �2).5 The ‘‘bunching’’ of
the curves around E� 10 MeV in the right panel of Fig. 2
is in part a data selection effect, since this energy region is
strongly constrained by precise 8B neutrino data. Further
spectral 8B data will be very useful to constrain the slope of
the energy spectrum and thus also the sign of the power-
law index n.

Figure 3 illustrates the partial degeneracy between de-
coherence effects and mixing angle, as a shift in the
allowed regions for fixed �0 � 0 in three representative
cases (from left to right, n � �2, 0,�2). In each panel, the
thin dotted curves enclose the mass-mixing parameter
regions allowed at 2� by the standard oscillation fit of
solar data (larger region) and by solar plus KamLAND data
(smaller region). The thick solid curves refer to the same
data, but fixing a priori the decoherence parameter �0 at
the 2� upper limit value in Table I. In all cases in Fig. 3, the
curves with �0 � 0 are shifted to lower values of the
mixing angle, as compared to pure oscillations; this means
that decoherence effects can be partly traded for a smaller
value of the mixing angle in solar neutrino oscillations.
Therefore, should future solar neutrino data prefer smaller
(larger) values of sin2�12 with respect to KamLAND data,
there would be more (less) room for possible subdominant
decoherence effects. As already remarked, the degeneracy
between �0 and sin2�12 is only partial, and future neutrino
spectroscopy will provide a further handle to break it,
should decoherence effects (if any) be found.

We conclude this section by confronting the bounds in
Table I with those derivable from the analysis of atmos-
pheric neutrino data (which, by themselves, exclude pure
decoherence, at least in the n � �1 case [55]). In princi-
ple, a direct comparison is not possible, since the �0

parameter introduced here for the solar �e ! �e channel

FIG. 2 (color online). Energy profile of the (daytime) survival
probability of 8B neutrinos, averaged over their production
region in the Sun: Comparison of the effects produced by
variations of sin2�12 for �0 � 0 (left panel) and by �0 � 0 at
fixed sin2�12 (right panel). In the left panel, sin2�12 is varied
within its �2� limits. In the right panel, for each index n �
��2;�1; 0;�1;�2� the value of �0 is taken equal to the
corresponding 2� upper limit (reported in Table I), which in
units of 10�24 GeV corresponds, respectively, to: 0:81� 10�4

(n � �2), 0:78� 10�2 (n � �1), 0.67 (n � 0), 0:58� 102

(n � �1), 0:47� 104 (n � �2). The curve corresponding to
standard oscillations (�0 � 0) is also shown in the right panel as
a guide to the eye. In all cases, �m2 is fixed at its best-fit value.

4For definiteness, Fig. 2 shows the daytime probability of 8B
neutrinos, averaged over their production region in the Sun.

5Constraints on the specific case n � �2 might thus benefit of
sub-MeV solar neutrino observations in Borexino [54].
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does not need to be the same as for the atmospheric �� !
�� channel. However, if the �0’s for these two channels are
assumed to be roughly equal in size, then it is easy to
realize that solar+KamLAND neutrinos set stronger
(weaker) bounds than atmospheric neutrinos for n < 0
(n > 0), as a consequence of the different neutrino energy
range probed. In fact, due to the assumed power-law en-
ergy dependence of decoherence effects, negative (posi-
tive) values of n are best probed by low-energy solar (high-
energy atmospheric) neutrino experiments. For the inter-
mediate case (n � 0), it turns out that matter effects render
solar neutrinos more sensitive to �0 than atmospheric
neutrinos. Just to make specific numerical examples: for
n � ��1; 0;�2� one roughly gets the bounds �0 & �0:7�
10�21; 0:4� 10�22; 0:9� 10�27� GeV from atmospheric
[11] (plus accelerator [12]) neutrino data, to be compared
with the corresponding limits from solar+KamLAND data
from Table I, �0 < �0:78� 10�26; 0:67� 10�24; 0:47�
10�20� GeV. Solar neutrinos clearly win over atmospheric
neutrinos for n  0. This comparison must be taken with a
grain of salt, since it can radically change by assuming
either independent �0’s in different oscillation channels, or
functional forms of ��E� different from power laws.

Finally we observe that in the n � �2 case, motivated
by some ‘‘quantum-gravity’’ or ‘‘string-inspired’’ models
[50], the solar+KamLAND limit on �0 is 1 order of mag-
nitude lower than the theoretical expectation [�0 �
O�E2

0=MPlanck� � 10�19 GeV]. In the case of atmospheric
neutrinos, this bound is even stronger (�0 < 0:9�
10�27 GeV). Consequently, these models appear strongly
disfavored, at least in the neutrino sector.

V. RECOVERING THE CASE OF DENSITY
FLUCTUATIONS IN THE SUN

Decoherence effects in solar neutrino oscillations can be
induced not only by quantum gravity, but also by more

‘‘prosaic’’ sources, such as matter density fluctuations—
possibly induced by turbulence in the innermost regions of
the Sun. This topic has been widely investigated in the
literature [56–65], and quantitative upper limits have al-
ready been set [61–64] by combining solar data and first
KamLAND results.

It turns out that stochastic density fluctuations lead (with
appropriate redefinition of parameters) to effects which
have the same functional form as those induced by quan-
tum gravity in the n � �2 case. More precisely, let us
consider fluctuations of the solar electron density Ne
around the average value hNei predicted by the standard
solar model

 Ne�r� � �1� �F�r��hNe�r�i; (11)

where F�r� is a random variable describing fluctuations at a
given radius r, and � represents their fractional amplitude
around the average. It is customary to assume a delta-
correlated (white) noise

 hF�r1�F�r2�i � 2	��r1 � r2�; (12)

where 	 is the correlation length of fluctuations along the
(� radial) neutrino direction.

As shown in Ref. [59] through a perturbative method
(which inspired our approach to decoherence in the
Appendix), the effect of delta-correlated noise on adiabatic
neutrino flavor transitions can be embedded through an
exponential damping factor as in Eq. (7). The functional
form turns out to be the same as for the n � �2 case,
provided that one makes—in our notation—the replace-
ment

 �0 ! �2	
�
�m2

2E0

�
2
: (13)

By using the bound �0 < 0:81� 10�28 GeV (Table I, case
n � �2) and the best-fit value �m2 � 7:92� 10�5 eV2,
one gets the following upper limit:

 �2	 < 1:02� 10�2 km �2��; (14)

on the parameter combination �2	 which is relevant
[59,63] for density fluctuation effects on neutrino
propagation.

As stressed in Ref. [63], care must be taken in extracting
an upper limit on the fractional amplitude � for fixed
correlation length 	. Indeed, the delta-correlated noise is
an acceptable approximation only if the correlation length
	 is much smaller than the oscillation wavelength in mat-
ter—a condition that becomes critical for low neutrino
energies. In particular, assuming a reference value 	 �
10 km as in [63], such condition is violated for energies
E & 1 MeV. Following Ref. [63], we have thus excluded
low-energy, radiochemical solar neutrino data form the
solar� KamLAND data fit, and obtained a slightly weaker
(but more reliable) upper bound from the analysis of 8B
neutrino data only,

FIG. 3 (color online). Constraints on the mass-mixing parame-
ters for �0 � 0 (thin dotted curves) and for �0 fixed at its 2�
upper limit in Table I (thick solid curves). The three panels refer,
from left to right, to the three cases n � �2, 0, and �2. The
smaller (larger) allowed regions refer to the solar� KamLAND
(solar only) data analysis.
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 �2	 < 1:16� 10�2 km �2��; (15)

which, for 	 � 10 km, translates into an upper limit on the
fractional fluctuation amplitude

 �< 3:4% �2��: (16)

This limit improves the previous one derived in Ref. [63]
(�< 6:3% at 2�) by a factor of �2, essentially as a result
of the inclusion of the most recent solar and KamLAND
neutrino data appeared after [63].6

VI. SUMMARY AND CONCLUSIONS

In this paper, we have investigated hypothetical deco-
herence effects (e.g., induced by quantum gravity) in the
�e ! �e oscillation channel explored by the solar and
KamLAND experiments. In both kinds of experiments,
decoherence effects can be embedded through exponential
damping factors, proportional to a common parameter �0,
which modulate the energy-dependent part of the �e sur-
vival probability. By assuming that the (unknown) func-
tional form of decoherence effects is a power-law in energy
(En), we have studied the phenomenological constraints on
the main decoherence parameter (�0) for n � 0,�1,�2. It
turns out that both solar and KamLAND data do not
provide indications in favor of decoherence effects and
prefer the standard oscillation case (�0 � 0) for any index
n. By combining the two data sets, n-dependent upper
bounds (dominated by solar neutrino data) have been
derived on �0, as reported in Table I and shown in Fig. 1.
In the ‘‘Lorentz-invariant’’ case n � �1, we obtain the
upper limit �0 < 0:78� 10�26 GeV at 95% C.L. For n �
�2, the results can also be interpreted as limits on the
amplitude of possible (delta-correlated) density fluctua-
tions in the Sun, which we improve by a factor of 2
[Eqs. (15) and (16)] with respect to previous bounds.

Further progress might come from a better determina-
tion of the energy profile of solar neutrino flavor transitions
as well as from more precise measurements of sin2�12

(which is partly degenerate with �0), attainable with
KamLAND and future long-baseline reactor neutrino ex-
periments [66].
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APPENDIX: DECOHERENCE AND MATTER
EFFECTS IN SOLAR NEUTRINOS

In this section we discuss a perturbative calculation of
decoherence effects for solar neutrinos, where matter ef-
fects are known to be relevant. The approach, inspired by
the work [59], draws on the formalism and the notation
introduced in Ref. [11] for the case of decoherence in the
�� ! �� channel, here adapted to the �e ! �e channel. In
the following, the notation is made more compact by
setting � � �12, c2� � cos2�12, s2� � sin2�12, Pee � P
ee
etc.

Decoherence effects in the flavor evolution of the
��e; �a� system (where a � �, 	) along the space coordi-
nate r�’ t�7 can be described in terms of the neutrino
density matrix, obeying a modified master equation of
the form [67]

 

d

dr
� �i�Hv �Hm�r�; 
� � ��D; �D;
��; (A1)

where Hv (Hm) is the ‘‘vacuum’’ (matter) Hamiltonian,
and the operator D embeds decoherence effects with am-
plitude �, parameterized as in Eq. (3): � � �0�E=E0�

n

with E0 � 1 GeV. While unitarity is preserved (i.e.,
Tr
�r� � 1), coherence is lost in the propagation
( d
dr Tr
2  0). Equation (A1) satisfies the conditions of

complete positivity [68] and nondecreasing entropy in the
� system evolution [69].

In the flavor basis the standard oscillation terms read

 Hv � �
k
2
U��3U

y
� �

k
2
�c2� s2�

s2� c2�

� �
; (A2)

 Hm � �
V�r�

2
�3; (A3)

where �3 is the third Pauli matrix, k � �m2=2E is the
vacuum wavenumber, and V�r� �

���
2
p
GFNe�r� is the inter-

action potential in matter.
As in Ref. [11], we assume energy conservation for

evolution in vacuum, i.e., Tr�Hv
�r�� � constant. This
condition is satisfied if �Hv;D� � 0 [4,70], namely, in a
two-dimensional system, if D / Hv. We can thus take

 D� �
1

2
�c2� s2�

s2� c2�

� �
; (A4)

without loss of generality, since any overall factor can be
absorbed in �0. We also make the plausible assumption
that Eq. (A4) is not altered for evolution in matter, since
decoherence induced by quantum gravity is unrelated to
electroweak matter effects.

As usual, Eq. (A1) can be written in terms of a ‘‘polar-
ization’’ vector P with components Pi �

1
2 Tr�
�i� (Bloch

6We have verified that, by adopting the same (older) data set
and standard solar model as used in Ref. [63], we recover the
same 2� upper limit, � & 6%.

7Note that r does not necessarily coincide with the radial
coordinate, due to the extended neutrino production region
(which is taken into account in our analysis.)
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equation):

 

dP
dr
� �kn� V�r�e3� � P� �P? �H �r�P� �D�P;

(A5)

where n � �s2�; 0;�c2��
T , P? � P� �P � n�n, and

 

H �r� �

0 �V�r� � kc2� 0

V�r� � kc2� 0 �ks2�

0 ks2� 0

2
664

3
775; (A6)

 D � �
c2

2� 0 c2�s2�
0 1 0

c2�s2� 0 s2
2�

2
4

3
5: (A7)

Note that for V � 0 (vacuum propagation), the solution of
the above Bloch equation leads to the survival probability
in Eq. (2) (see Ref. [11] for details.)

The matrix H has eigenvalues �0 � 0 and �� � �~k,
corresponding to the eigenvectors:

 u 0 �
s2~�
0
�c2~�

2
4

3
5; u� �

1���
2
p

c2~�
�i
s2~�

2
4

3
5: (A8)

In the above equations, a ‘‘tilde’’ marks effective parame-
ters in matter: ~k is the oscillation wavenumber in matter,
defined through ~k=k � �1� 2Vc2�=k� �V=k�2�1=2, while
~� is the mixing angle in matter, defined through s2~� �

ks2�=~k and c2~� � �kc2� � V�=~k. The matrix H is diago-
nalized through the matrix R�~�� � �u0;u�;u��: Ry�~�� �
H �R�~�� � diag�0;�i~k;�i~k�.

In the absence of decoherence effects, the adiabatic
solution of Eq. (A5) appropriate for current solar neutrino
phenomenology is
 

P�R
� �R��� � diag 1; e
�i
R
R

r0
dr~k�r�

; e
�i
R
R

r0
dr~k�r�

� �

�Ry�~�0�P�r0�; (A9)

where P�r0� �
T�0; 0; 1� for an initial �e state, ~�0 is the

mixing angle in matter at the production point r0, and ~� �
� is taken at r � R
. After averaging on the fast oscillating
terms (a ‘‘standard’’ decoherence effect), one recovers the
usual adiabatic formula [Eq. (6)] for the survival probabil-
ity Pee

 Pee � Tr�
j�eih�ej� �
1� P3�R
�

2
�

1� c2�c2~�0

2
:

(A10)

Let us now treat the term ��D�P in Eq. (A5) as a
perturbation [59]. The corrections to the eigenvectors lead
to variations of Pee of O��=k� & 10�3 (for the range of
�=k allowed a posteriori by the fit to solar neutrino data)
and can be neglected. The corrections to the two eigenval-
ues �� can also be neglected, since they would only lead to

a further damping of the fast oscillating terms, which are
already averaged out.8

The first-order correction to the eigenvalue �0 (whose
unperturbed value is zero) is the only relevant one,

 ��0 � ��uy0D�u0 � ��sin22�~�� ��: (A11)

and leads to the following correction to Eq. (A10):

 Pee �
1� e��c2�c2~�0

2
; (A12)

where

 � � �
Z R


r0

�
V�r�s2~��r�

k

�
2
dr: (A13)

Equation (7) is then recovered by setting �
 � �0gn�E�
and by defining the dimensionless function gn�E� as

 gn�E� �
�
E
E0

�
n Z R


r0

�
V�r�s2~��r�

k

�
2 dr
R


: (A14)

FIG. 4 (color online). Energy profile of the auxiliary function
gn�E�, which modulates the exponent of the damping factor
induced by decoherence in solar neutrino oscillations. The
function is multiplied by 103n for a better graphical view. The
shown function refers to a neutrino produced at the Sun center
and to best-fit oscillation parameters; altering this choice would
induce minor variations. See the text for details.

8Similarly, nonstandard decoherence effects in the path from
the Sun surface to the Earth are irrelevant, since they would
simply damp the (already averaged out) fast oscillations. The
only relevant effects occur within the Sun, through the modifi-
cation of the standard evolution in matter.
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The function gn�E� depends mostly on the neutrino
energy E and, to some extent, on the parameters r0, �m2,
and sin2�12. Figure 4 shows this function as calculated for
r0 � 0, �m2 � 7:92� 10�5 eV2, and sin2�12 � 0:314.
For E! 0 the function gn�E� (and the associated decoher-
ence effect) vanishes, except for the case n � �2, where
the factors E�2 and k�2 cancel out and provide a finite limit
g�2�0� � 0.

We have tested the analytical Eq. (A12) against the
results of a numerical integration of the Bloch equation,

for many representative points in the parameter space
relevant for solar � phenomenology, and we find very
good agreement (�Pee < 10�4) for all values of n � �2.
Only in the case n � �2, the comparison of analytical and
numerical results is slightly worse (but still very good,
�Pee < 10�3) at the lowest detectable energies
(� 0:1 MeV), due to the breakdown of perturbation theory
for E! 0. For practical purposes, however, the modified
adiabatic Eq. (A12) accurately replaces the results of nu-
merical solutions of the Bloch equation for solar neutrinos.
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