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In this fourth paper of the series, I clarify the somewhat mysterious relation between the large class of
orientation orbifolds (with twisted open-string conformal field theories (CFT’s) at ĉ � 52) and orienti-
folds (with untwisted open strings at c � 26), both of which have been associated to division by world
sheet orientation-reversing automorphisms. In particular—following a spectral clue in the previous
paper—I show that, even as an interacting string system, a certain half-integer-moded orientation
orbifold-string system is in fact equivalent to the archetypal orientifold. The subtitle of this paper, that
orientation orbifolds include and generalize standard orientifolds, then follows because there are many
other orientation orbifold-string systems—with higher fractional moding—which are not equivalent to
untwisted string systems.
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I. INTRODUCTION

Non-Abelian and free-bosonic orientation orbifolds [1–
3] were first studied as a large class of examples in the
orbifold program [1–15], which attempts to construct all
orbifold conformal field theories (CFT’s). From the begin-
ning there has been some mystery about the relation of the
orientation orbifolds to ordinary orientifolds [16], since
both classes ostensibly arise in the division A�H��=H�
of a CFT A�H�� by a symmetry group H� which contains
world-sheet orientation-reversing automorphisms.
However, following standard methods in orbifold theory,
the orientation-orbifold CFT’s contain twisted open-string
sectors (corresponding to the orientation-reversing auto-
morphisms) at twice the central charge c of A�H��—as
well as an equal number of twisted closed-string sectors
(which form an ordinary space-time orbifold) at c. By
twisted I mean fractionally moded, as expected in the
twisted sectors of any orbifold CFT. A simple understand-
ing of the doubled central charge of the twisted open-string
sectors is found in Ref. [1].

In the present series of papers [17–19], we have been
considering the critical orbifolds of permutation-type as
candidates for new physical string systems at higher central
charge, including the space-time permutation orbifolds at
any multiple of c � 26, as well as the general free-bosonic
orientation orbifold:

 

U�1�26

H�
; H� � Z2�world sheet� �H: (1.1)

In these cases, the nontrivial element of Z2�w:s:� permutes
the left and right movers of the critical closed stringU�1�26

while the extra automorphisms H act uniformly on both
chiralities. The twisted open-string sectors of these orbi-

fold CFT’s show an essentially unbounded variety of frac-
tional moding at central charge ĉ � 52.

As string theories however, the orbifolds of
permutation-type must also satisfy certain extended
physical-state conditions [16–18], which restrict their
physical spectra relative to the underlying orbifold
CFT’s, and this has led to some surprises. In particular,
although the ĉ � 52 orbifold-string spectra [18] are ge-
nerically unfamiliar, we have learned that the spectra of
some of the simplest (half-integer-moded) closed or open
ĉ � 52 strings are equivalent to those of ordinary un-
twisted closed or open strings at c � 26.

In the present paper, I will follow one of these spectral
clues to clarify the relation between orientation orbifolds
and orientifolds.

(1) In the first place, I will study here only the simple
two-sector, half-integer-moded orientation orbifold

 

U�1�26

H�
; H� � �1; �� � ��1�� (1.2)

in further detail, showing that—even as an interact-
ing string theory—this orientation orbifold is
equivalent to the archetypal orientifold

 

� � 0: unoriented closed string at c � 26; (1.3a)

� � 1: twisted open string at ĉ � 52

� ordinary NN string at c � 26; (1.3b)

that is, the conventional open-closed bosonic string
system [20]. In the course of this discussion, we will
see the extended physical-state conditions of
Refs. [17–19] realized via extended Ward identities
in the twisted-tree diagrams of the orbifold-string
system—and our unconventional, orientation-
orbifold description of the conventional system*halpern@physics.berkeley.edu
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also gives a new and very simple derivation of the
ratio of open- to closed-string Regge slopes.

(2) A second conclusion borders on the philosophical:
In contrast with the language of orientifolds, our
construction clearly shows the relation of the con-
ventional open-closed-string system to standard or-
bifold conformal field theory [1–15,21–25]. In
particular, the twisted sectors of any orbifold CFT
must show fractional moding, and indeed—
although it is not visible in mass-shell emission
from the boundaries—half-integer moding is still
present in the bulk of our twisted open string (1.3b).

(3) The final conclusion is that, as string theories, ori-
entation orbifolds include orientifolds

 forientation orbifoldsg � forientifoldsg: (1.4)

This embedding follows from the equivalence dis-
cussed here for the half-integer-moded case (1.2),
and the fact that there exist many other orientation
orbifolds (shown in Eq. (1.1)) with higher fractional
moding whose critical orbifold-string systems are
not equivalent [19] to untwisted strings.

It is hoped that the computations given here will serve as
a prototype for studying these more general orbifold-string
systems at the interacting level. I remind that all the ĉ � 52
orbifold-string spectra have an equivalent, unconvention-
ally twisted c � 26 description [19] of the twisted ĉ � 52
matter. Indeed, our result here extends an example of this
spectral equivalence to the interacting level, and the gen-
eral c � 26 spectral equivalence strongly suggests that an
equivalent but generically unconventional c � 26 descrip-
tion may also exist for all these interacting theories.

II. A SIMPLE ORIENTATION ORBIFOLD

To establish notation, I begin with a few well-known
facts about the ordinary (decompactified) critical closed
bosonic string U�1�26:

 

L�0� � �
J2�0�

2
� R; �L�0� � �

�J2�0�

2
� �R; (2.1a)

�R � R; J��0� � �J��0� ’ T�; � � 0; 1; . . . ; 25;

(2.1b)

A � B � A����B�; � �
1 0

0 �1

 !
: (2.1c)

Here �� is the inverse target-space metric, the zero-mode
eigenvalues fTg are the dimensionless momenta, and the
relations in Eq. (2.1b) are consequences of level matching

L�0� � �L�0�. The relation to the dimensionful momenta
fkg is

 T� �
������
�0c

q
k�; (2.2)

where �0c is the ordinary closed-string Regge slope. To
eliminate negative-norm states, one must fix L�0� �
�L�0� � 1 and hence T2 � �2 for the closed-string ground
state, but I will relax this mass-shell condition during our
discussion of the orientation orbifold as a conformal-field-
theoretic system.

The particular orientation orbifold we will study in de-
tail is

 

U�1�26

H�
; H� � �1; �� � ��1��; (2.3)

where �� is world sheet orientation reversal. The two
sectors � of this orbifold correspond to the following
automorphic action on the untwisted current modes of
U�1�26

 

� � 0: J��m�0 � J��m�; �J��m�0 � �J��m�; (2.4a)

� � 1: J��m�0 � � �J��m�; �J��m�0 � �J��m�;

(2.4b)

and the corresponding orientation-orbifold sectors, con-
structed by standard orbifold methods from U�1�26, are
similarly labeled:

 � � 0: untwisted �symmetric� sector at c � 26;

� � 1: twisted sector at ĉ � 52:
(2.5)

In particular, the untwisted sector is an unoriented closed
string, while the twisted sector is the half-integer-moded
open-string conformal field theory discussed in the follow-
ing section.

III. THE TWISTED SECTOR AS AN OPEN-STRING
CFT

The twisted open-string CFT of the orientation orbifold
(2.3) was constructed from the closed-string sector
funtwisted closed! twisted openg among the large class
of free-bosonic examples in Refs. [1–3], and further dis-
cussed in Refs. [17,19]. More specifically, we may use the
metric relation G�� � ���� to read off many results from
Ref. [3], beginning with the action, the mode expansions,
and the orbifold Virasoro generators of this particular
twisted sector:
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Ŝ � �
1

4�
���

Z
dt
Z �

0
d�

X1

u�0

@�x̂1�u@�x̂1�;�u; (3.1a)

@	 � @t 	 @�; (3.1b)

DN: x̂1�0��; t� � 2
X
m2Z

Ĵ1�0�m�
1
2�

m� 1
2

e�i�m�1=2�t sin
��
m�

1

2

�
�
�
; (3.1c)

NN: x̂1�1��; t� � q̂1�1 � 2Ĵ1�1�0�t� 2i
X
m�0

Ĵ1�1�m�

m
e�imt cos�m��; (3.1d)

L̂u

�
m�

u
2

�
�

13

8
	m��u=2�;0 �

1

4
���

X1

v�0

X
p2Z

:Ĵ1�v

�
p�

v� 1

2

�
Ĵ1�;u�v

�
m� p�

u� v� 1

2

�
:M: (3.1e)

In these results, : � :M is standard mode normal-ordering,
all quantities are periodic u! u	 2, and �u � 0, 1 is the
pullback to the fundamental region. Up and down indices
are simply related

 Â �u � 1
2�

��Â�;�u �
1
2�

��Â�u; (3.2)

where the last form holds by periodicity in u. Note that this
open-string sector contains 26 integer-moded NN degrees

of freedom and 26 half-integer-moded1 DN degrees of
freedom, giving a total central charge ĉ � 52. Half-integer
moding is of course the standard twisting of an order-two
automorphism such as that in Eq. (2.4b), and a simple
understanding of the doubled central charge of all open-
string orientation-orbifold sectors is given in Ref. [1].

The twisted algebras2 of this sector are

 �
Ĵ1�u

�
m�

u� 1

2

�
; Ĵ1�v

�
n�

v� 1

2

��
� �2

�
m�

u� 1

2

�
���	m�n���u�v�=2��1;0; (3.3a)�

L̂u

�
m�

u
2

�
; Ĵ1�v

�
n�

v� 1

2

��
� �

�
n�

v� 1

2

�
Ĵ1�;u�v

�
m� n�

u� v� 1

2

�
; (3.3b)�

L̂u

�
m�

u
2

�
; L̂v

�
n�

v
2

��
�

�
m� n�

u� v
2

�
L̂u�v

�
m� n�

u� v
2

�

�
52

12

�
m�

u
2

���
m�

u
2

�
2
� 1

�
	m�n���u�v�=2�;0; (3.3c)

where Eq. (3.3c), which appears universally in all ĉ � 52
orbifold strings, is called an order-two orbifold Virasoro
algebra [4,12,26]. The generators fL̂0�m�g of the integral
Virasoro subalgebra, with central charge ĉ � 52, are the
physical Virasoro generators of the sector. Note also the
presence of two sets of timelike modes fĴ10u; �u � 0; 1g and
hence twice the conventional number of negative-norm
states in the CFT. As string theories however, we know
that all twisted open and closed ĉ � 52 strings must also
satisfy the so-called extended physical-state conditions
[18,19]
 �
L̂u

��
m�

u
2

�

 0

�
�

17

8
	m��u=2�;0

�
j
i � 0;

�u � 0; 1

(3.4)

leaving a physical spectrum which in this particular case
[19] is identical to that of an ordinary untwisted open NN
string at c � 26. The extended physical-state conditions
(3.4) are the operator analogues of the extended Polyakov
constraints of Z2-twisted permutation gravity [17] and,
more precisely, these conditions are a consequence of the

twisted Becchi-Rouet-Stora-Tyutin (BRST) systems [18]
of ĉ � 52 matter. We will see another derivation of these
conditions for �m� u

2�> 0 at the interacting level below.
To study the interacting theory we will also need the

twisted Minkowski-space vertex operator

 

^̂g��T; �; t� / :e��i=2��x̂1�0��;t��x̂1�1��;t�����T� : (3.5)

which is an example of the free-bosonic or Abelian ‘‘limit’’
of the twisted affine primary fields [1–3,9–15] of the non-
Abelian orientation orbifolds. According to the orbifold
construction fclosed string! twisted open stringg in
Refs. [1–3], the quantities fTg in Eq. (3.5) are the same
untwisted closed-string momenta fTg defined for the ordi-
nary closed stringU�1�26 in Eqs. (2.1) and (2.2). The vertex

1Half-integer-moded scalar fields [21] (and the corresponding
twisted open strings with ND or DN boundary conditions
[22,23]) provided the first examples of twisted sectors of
orbifolds.

2The full quasicanonical algebra, branes, and twisted non-
commutative geometry of the general free-bosonic orientation
orbifold is given in Refs. [1,3].
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operator given here is in fact only one of two irreducible
components of the vertex operator derived in Refs. [1,3],
the latter including an extra 2� 2 reducible matrix struc-
ture which is further discussed in the appendix.

I limit the discussion here to the twisted vertex operator
for emission at � � � (returning later to emission at � �

0). Defining the quantities

 z � eit; A � B � A����B� (3.6)

we find that the precise form3 of this emission vertex is

 

ĝ��T;�; z� � zT
2 ^̂g��T;�; z� (3.7a)

� zT
2
e�i

��
2
p
T�qe�

��
2
p

lnzT�J�0� exp
�
�

���
2
p
T �

X
m
1

J��m�
m

��1�mzm
�

exp
� ���

2
p
T �

X
m
1

J�m�
m
��1�mz�m

�

� exp
�
�iT �

X
m��1

Ĵ10�m�
1
2�

m� 1
2

��1�mz��m�
1
2�

�
exp

�
�iT �

X
m>0

Ĵ10�m�
1
2�

m� 1
2

��1�mz��m�
1
2�

�
: (3.7b)

For computational convenience, I have here reexpressed the integer-moded NN subsystem in terms of conventional
Fubini-Veneziano operators [27]
 

J��m� �
1��
2
p Ĵ1�1�m�; q� �

1
2
��
2
p q̂1�1; (3.8a)

q�; J��0�� � �i���; J��m�; J��n�� � �m���	m�n;0; (3.8b)

but I keep the original notation for the commutators with the vertex operator:
 �

Ĵ1�u

�
m�

u� 1

2

�
; ĝ��T;�; z�

�
� ei��m���u�1�=2��2T�zm���u�1�=2�ĝ��T;�; z�; (3.9a)�

L̂u

�
m�

u
2

�
; ĝ��T;�; z�

�
� ei��m��u=2��

�
z@z �

�
m� 1�

u
2

�
4��T�

�
ĝ��T;�; z�; (3.9b)

��T� � �
T2

2
: (3.9c)

The phases in Eqs. (3.7) and (3.9) are a consequence of the
choice � � � in the twisted string coordinates (3.1c) and
(3.1d).

Finally, we will need the following properties of the
momentum-boosted twist-field states
 

jTi � lim
z!0

z�T
2
ĝ��T;�; z�j0i;

(3.10a)

�J��m 
 0� �
���
2
p
T�	m;0�jTi � J1�0��m�

1
2�> 0�jTi � 0;

(3.10b)�
L̂u

��
m�

u
2

�

 0

�
�

�
13

8
� 2��T�

�
	m��u=2�;0

�
jTi � 0;

(3.10c)

one of which will be selected below as the ground state of
the twisted open string.

IV. TWISTED TREE GRAPHS

I turn now to discuss the twisted ĉ � 52 open-string
CFT of the previous section as a sector of the full interact-
ing orientation-orbifold string theory.

Using the quantities introduced in the previous section, I
define the n-point twisted tree graphs of the interacting
string theory by the following ‘‘sidewise construction’’:

 

Ân�fTg��h�T�n�jĝ��T�n�1�;�;1�D̂L̂0�0��

� ĝ��T�n�2�;�;1����D̂L̂0�0��

� ĝ��T
�2�;�;1�jT�1�i; (4.1a)

D̂L̂0�0���
1

2�L̂0�0�� â2�
�

1

2

Z 1

0
dxxL̂0�0��â2�1; (4.1b)

â2�
17
8 : (4.1c)

Here ĝ� is the twisted vertex operator (3.7) for emission at
� � �, now additionally evaluated at z � 1. In the twisted
propagator D̂, the operator L̂0�0� is the zero mode of the
integral Virasoro subalgebra, and the constant â2 was
determined from the m � u � 0 component of the ex-
tended physical-state condition in Eq. (3.4). In the sidewise
construction, one sees the ĉ � 52 twisted open-string sec-
tor running horizontally (sidewise) in the direct channel,
whereas the behavior of the twisted trees in the cross
channels is not yet visible.4

3See, in particular, Subsec. 5.4 of Ref. [3].
4The sidewise construction may be unfamiliar today, though it

was well known in the first string era. Indeed it was this
construction which was used to obtain the (sidewise) R! NS
amplitudes [28] and, with the addition of twisted scalar fields,
the (sidewise) twisted sector! untwisted sector amplitudes [21]
in early orbifold theory.
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Comparing the propagator D̂ with the properties of the
twist-field states in Eq. (3.10), one then finds that the
ground state and hence the twisted vertex operators must
satisfy the mass-shell conditions

 ��T�i�� � 1
4; �T�i��2 � �1

2; i � 1; . . . ; n (4.2)

so that the ground state is a pole of the propagator.
Moreover, these conditions and the commutator (3.9b)
with the extended Virasoro generators imply the following
further properties of the twisted vertex operators
 

ĝ��T;�; z� � zL̂0�0�ĝ��T;�; 1�z�L̂0�0��1; (4.3a)��
e�i��m��u=2��L̂u

�
m�

u
2

�
� L̂0�0�

�
; ĝ��T;�; 1�

�

�

�
m�

u
2

�
ĝ��T;�; 1�; (4.3b)

where Eq. (4.3b) is a generalization of the so-called stabil-
ity condition [29] in untwisted string theory.

V. EXTENDED WARD IDENTITIES AT ĉ � 52

It was conjectured in Ref. [18] that the extended
physical-state conditions in Eq. (3.4) would also follow
from extended Ward identities in the interacting theory.

To see this explicitly in the present example, I begin by
defining the extended (twisted) gauge operators:

 

Ŵu

�
m�

u
2

�
� e�i��m��u=2��L̂u

�
m�

u
2

�

�

�
L̂0�0� �m�

u
2
� â2

�
; (5.1a)

�u � 0; 1: (5.1b)

In order to see that these gauges are active in the twisted
trees (4.1), the following vertex and propagator identities
are helpful

 

Ŵu

�
m�

u
2

�
ĝ��T�i�; �; 1� � ĝ��T�i�; �; 1�

�
e�i��m��u=2��L̂u

�
m�

u
2

�
� L̂0�0� � â2

�
; (5.2a)�

e�i��m��u=2��L̂u

�
m�

u
2

�
� L̂0�0� � â2

�
D̂L̂0�0�� � D̂

�
L̂0�0� �m�

u
2

�
Ŵu

�
m�

u
2

�
; (5.2b)

where Eqs. (5.2a) and (5.2b) follow, respectively, from the extended stability condition (4.3b) and the orbifold Virasoro
algebra (3.3c).

Then we find after some algebra the extended Ward identities at ĉ � 52:

 

Ŵu

��
m�

u
2

�

 0

�
ĝ��T�m�; �; 1�D̂L̂0�0�� � � � D̂L̂0�0��ĝ��T�1�; �; 1�j
i � 0; (5.3a)

8 j
is:t:
�
L̂u

��
m�

u
2

�

 0

�
� â2	m��u=2�;0�j
i � 0; �u � 0; 1: (5.3b)

It should be emphasized that Eq. (5.3b) is the same extended (twisted) physical-state condition (3.4) obtained from the
general twisted ĉ � 52 BRST system in Ref. [18]. In particular, Eqs. (3.10c) and (4.2) tell us that the twisted open-string
ground state at T2 � �1=2 is a physical state:
 

jTi � lim
z!0

z1=2ĝ��T;�; z�j0i; h�Tj � lim
z!1
h0jz3=2ĝ��T;�; z�; (5.4a)�

L̂u

��
m�

u
2

�

 0

�
� â2	m��u=2�;0�jTi � h�Tj�L̂u

��
m�

u
2

�
� 0

�
� â2	m��u=2�;0� � 0: (5.4b)

Unconventional prefactors in asymptotic conditions, such as those in Eqs. (3.10) and (5.4a), are well known in the orbifold
program (see e.g. Ref. [12]).

I also remind that the solution of the extended physical-state condition (5.3b) with the extended Virasoro generators
(3.1e) is known [19], showing that the physical spectrum of this particular twisted open ĉ � 52 string is the same as that of
an ordinary untwisted open NN string at c � 26. This leads us to suspect with Ref. [19] that the twisted trees (4.1) of the
orientation orbifold may be an unconventional realization of the tree graphs of ordinary NN strings.

VI. EVALUATION OF THE TWISTED TREES

To evaluate the twisted trees, I begin with the n-point correlators of the open-string orientation-orbifold CFT
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h0jĝ��T�n�; �; zn� � � � � ĝ��T�1�; �; z1�j0i � 	26

�Xn
i�1

T�i�
�Yn
j�1

z��1=2�
i

X
i<j

�
zi

�
1�

zj
zi

��
1� �zj=zi�1=2

1� �zj=zi�1=2

��
�2T�i��T�j�

(6.1a)

� 	26

�Xn
i�1

T�i�
�Yn
j�1

z��1=2�
i

X
i<j

�
����
zi
p
�

����
zj
p
��4T�i��T�j� (6.1b)

which follow from the twisted vertex operators (3.7) when8 ��T�i�� � 1=4 (see Eq. (4.2)). Then we may use the integral
representation (4.1b) of the twisted propagator to evaluate the sidewise construction in Eq. (4.1) as follows:
 

Ân�fTg� � 2��n�3�
Z 1

0

Yn�2

i�2

�dxix
�â2�1
i �h�T�n�jĝ��T�n�1�; �; 1�xL̂0�0�

n�2 � � � x
L̂0�0�
1 ĝ��T�2�; �; 1�jT�1�i (6.2a)

� 2��n�3�
Z 1

0
dzn�2

Z zn�2

0
dzn�3 � � �

Z z3

0
dz2 lim

zn!1
zn�1!1
z1!0

z1=2
1 z3=2

n h0jĝ��T�n�; �; zn� � � � ĝ��T�1�; �; z1�j0i (6.2b)

� 2��n�3�	26

�Xn
i�1

T�i�
�Z 1

0
dzn�2

Z zn�2

0
dzn�3 � � �

Z z3

0
dz2

Yn�2

i�2

z�2T�i��T�1���1=2�
i �1�

����
zi
p
��4T�n�1��T�i�

�
Y
i<j

�
����
zi
p
�

����
zj
p
��4T�i��T�j� : (6.2c)

Here I have used the boost (4.3a) and the asymptotic
relations (5.4a), as well as the standard change of variables
fzi �

Qn�2
j�i xjg to obtain Eq. (6.2b)—and the correlators

(6.1) to obtain the last form. The roots in all these expres-
sions reflect the half-integer modeing of the open-string
orientation-orbifold CFT.

But now consider the nonlinear change of variables

 zi � u2
i ; i � 2; . . . ; n� 2 (6.3)

which puts our result in the final form:
 

Ân�fTg� � 	26

�Xn
i�1

T�i�
�Z 1

0
dun�2

Z un�2

0
dun�3 � � �

�
Z u3

0
du2

Yn�2

i�2

�u�4T�i��T�1� �1� ui��4T�n�1��T�i� �

�
Y
i<j

�ui � uj�
�4T�i��T�j� : (6.4)

The nonlinear transformation has removed all the roots,
and indeed, under the following identification of the ordi-
nary, untwisted open-string Regge slope �00 and the dimen-
sionful momenta fkg

 

���
2
p
T�i� �

������
�00

q
ki; �00k

2
i ��1; i� 1; . . . ; n (6.5)

we see that the twisted ĉ � 52 trees in Eq. (4.1) are nothing
but a new factorization of the trees of the ordinary un-
twisted open NN string [30] at c � 26!.

The same NN trees are found as well for multiple
emission from the twisted open string at � � 0, where
the half-integer-moded DN coordinates in Eq. (3.1c) are
trivially suppressed. These evaluations also exhibit the
expected [17–19] no-ghost theorem (including the decou-
pling of zero-norm states) for the twisted ĉ � 52 sector of
this orientation orbifold.

VII. OPEN- AND CLOSED-STRING REGGE
SLOPES

As a byproduct of our computation

 closed �c � 26� ! twisted open �ĉ � 52�

’ untwisted open �c � 26� (7.1)

we also obtain a simple new derivation of the ratio of the
Regge slope �0c of the original untwisted closed string to
the slope �00 of the resulting untwisted open string. The key
is the appearance of the same [1–3] dimensionless mo-
menta fTg in both the untwisted and the twisted sector of
the orientation orbifold.5

In fact, we need only combine Eqs. (2.2) and (6.5) to find
the correct relation [31] between the slopes
 ������

�0c
q

k � T �

������
�00
2

s
k; (7.2a)

! �00 � 2�0c; (7.2b)

where ��s� � ��0� � �0s is the form of either leading
trajectory. Here I have assumed only that the dimensionful
momenta fkg are the same for both string types—which is
required by momentum conservation in any open-closed-
string interaction. I also emphasize that our computation
involves going off shell

 closed : T2 � �2! open: T2 � �1
2 (7.3)

in order to pass between the ground states of the two

5This phenomenon is quite general in the orbifold construction
of twisted sectors from the untwisted sector, so that e.g. the
untwisted representation matrices fTg of Lie g appear in the
twisted representation matrices fT �T�g of the twisted sectors of
Wess-Zumino-Witten (WZW) orbifolds [9–14] and WZW ori-
entation orbifolds [1–3]
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strings. This reflects the fact that the orientation-orbifold
construction funtwisted closed string! twisted open stringg
is fundamentally conformal-field theoretic.

VIII. CONCLUSIONS

We have confirmed at the interacting level the conclu-
sion reached for the physical spectrum in Ref. [19]: As a
string system, the simple orientation orbifold

 

U�1�26

H�
; H� � �1; �1 � ��1�� (8.1)

is equivalent to the archetypal orientifold
 

� � 0: unoriented closed string at c � 26; (8.2a)

� � 1: twisted open string at ĉ � 52

� ordinary NN string at c � 26; (8.2b)

that is, the ordinary open-closed bosonic string system.
Indeed, the evaluation of the twisted trees in Sec. VI has
sharpened the equivalence even at the spectral level—
showing now the correct decoupling of null physical states.
As a bonus, our unconventional formulation of the conven-
tional system also provided a new derivation of the ratio
(7.2b) of open- to closed-string Regge slopes.

This clarifies the somewhat mysterious relation between
the orientation orbifold (8.1) and the orientifold—both of
whose open-string CFT’s have been differently associated
to division by the world sheet orientation-reversing auto-
morphism �����. The resolution is that, as mass-shell
string theories, these particular two open-string sectors
are identical, even at the interacting level.

Although we have found equivalence in this case for the
spectrum and mass-shell emissions at the string bounda-
ries, I emphasize that the orientation-orbifold picture re-
mains qualitatively different than the conventional picture
in other regions of the theory, including
 

� the bulk 0<�<� of the twisted ĉ� 52 open string;

(8.3a)

� off mass-shell; (8.3b)

� as an open-string orbifold CFT; (8.3c)

where the half-integer modeing of standard orbifold theory
persists for the open-string sector of the orientation
orbifold.

Perhaps our most important conclusion however is the
subtitle of this paper : ‘‘Orientation orbifolds include ori-
entifolds.’’ This statement follows from the identification
(8.2) and the work of Refs. [17–19] where it is shown
that, without appending any Chan-Paton structure, there
are many other orientation-orbifold string systems
U�1�26=�Z2�w:s:� �H� with higher fractional moding
fn�r�=����g. These constructions, with many twisted
closed- and open-string sectors, are generically inequiva-

lent [19] to untwisted string systems and should be further
examined for consistency at the interacting level.

Towards this, one should bear in mind that the twisted
closed-string sectors of each orientation orbifold form an
essentially ordinary space-time orbifold [1–15] at c � 26,
while each ĉ � 52 twisted open-string sector has an
equivalent but unconventionally twisted c � 26 spectral
description [19] in terms of the unconventional matter-field
fractions f2n�r�=����g. For example, the orientation-
orbifold CFT’s
 

�1; !3; !2
3; ��; �� �!3; �� �!2

3�; !3
3 � 1; (8.4a)

�1; !2
4; �� �!4; �� �!

3
4�; !4

4 � 1 (8.4b)

contain 1=3- and 1=4-integer moding, respectively, though
the ĉ � 52 open strings of the latter have an equivalent
half-integer-moded c � 26 spectral description. It will be
interesting, in particular, to understand whether the equiva-
lent c � 26 spectral description of the general orientation-
orbifold string can be extended (as seen for our special case
here) to an equivalent but generically new c � 26 descrip-
tion of all these systems at the interacting level. Some
further remarks on the general-free bosonic orientation
orbifold are included in the appendix.
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APPENDIX: REDUCIBLE VERTEX OPERATORS

For the particular orientation orbifold studied in this
paper, Ref. [3] gives a set of twisted vertex operators
fĝ�T �g which have an additional 2� 2 matrix structure
relative to the ones studied here. The matrix vertex opera-
tors are easily obtained from the vertex operators ^̂g� in
Eq. (3.5) by the substitution
 

x̂1�u ! x̂1�u�u; �u � 0; 1; (A1a)

^̂g��T� ! ĝ�T � / :e��i=2�x̂�T :; (A1b)

where �0, �1 are, respectively, the 2� 2 unit matrix and the
first Pauli matrix. In this notation, the twisted representa-
tion matrices fT g have the form T �u � T��u where fTg
are the dimensionless closed-string momenta of the text.
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Correspondingly, the commutators of the matrix emis-
sion operators ĝ�T � at � � � with the twisted currents Ĵ
and extended Virasoro generators L̂ are obtained from
those in Eq. (3.9) by the additional substitutions

 ĝ��T� ! ĝ�T �; Ĵ1�u ! �uĴ1�u; L̂u ! �uL̂u:

(A2)

Twisted matrix tree graphs Â�fT g� can also be constructed
as in Eq. (4.1), now using matrix multiplication of ĝ’s with
all ��i�u � �u. Then one finds that the following matrix
gauges
 

Ŵu

�
m�

u
2

�
� e�i��m��u=2���uL̂u

�
m�

u
2

�

�

�
L̂0�0� �m�

u
2
� â2

�
(A3)

are operative in the matrix trees, leading to the same
extended physical-state conditions (5.4b). Explicit evalu-
ation of the matrix trees gives

 Â n�fT g� � �0Ân�fTg� (A4)

that is, two copies of the NN amplitudes Ân�fTg� obtained
in Eq. (6.4).

This result can be understood as reducibility of the
matrix vertex operators ĝ�T �
 

U �
1���
2
p

1 1

1 �1

 !
; U�1

Uy � �3; (A5a)

Uĝ�T �Uy �
ĝ��T� 0

0 ĝ��T�

 !
; (A5b)

where ĝ��T� (or ^̂g� for all �) is the vertex operator of the
text. The vertex operator ĝ��T� differs from ĝ��T� only by
a sign reversal x̂1�1 ! �x̂1�1 of the NN component of the
ĉ � 52 string, which reproduces Eq. (A4) because all
vertex-operator contractions are pairwise.

In the computations of the text, I have kept only one
irreducible component ĝ�, which is equivalent to the re-
placement �u ! 1, T ! T in the matrix vertex operator
ĝ�T �. Certainly, this choice is sufficient to satisfy ordinary
open$ closed string duality in this case. More physically,
the prescription may be understood as division by the
symmetry ĝ� $ ĝ�, which is a residual form of world
sheet parity [1–3] in this basis.

References [1,3] give mode expansions for the coordi-
nates x̂� and vertex-operator equations for the twisted
vertex operators

 ĝ �T ; �� / :eix̂
n�r��u
� T n�r���T;��

N
�u : (A6)

in open-string sector � of the general free-bosonic orien-
tation orbifold (1.1). The explicit form of the twisted
representation matrices fT �T;��g is given in Eq. (2.20d)
of Ref. [1], where the quantities fTg in this application are
the same dimensionless critical closed-string momenta of
the text. Each of these vertex operators has the same 2� 2
reducible matrix structure discussed here and, dividing by
world-sheet parity, I would speculate that the same pre-
scription �u ! 1 will be sufficient to satisfy open$
closed string duality in the general case.
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