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The effect of the gauge transformation in the action principle for Hamiltonian gauge systems
formulated in terms of noncanonical symplectic structures is studied and, particularly, the compatibility
between gauge conditions and boundary conditions is analyzed. It is shown that the complete set of
commuting observables at the time boundary is now fixed by the boundary term and the symplectic
structure. The theory is applied to two nontrivial models having SL�2;R� and SU�2� gauge symmetries,
respectively, whose extended phase spaces are endowed with new interactions produced by noncanonical
symplectic structures.
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I. INTRODUCTION

Hamiltonian systems with constraints, in the sense in-
troduced by Dirac, are described by an action principle of
the form [1,2] (summation convention over repeated in-
dices is used throughout)

 S�qi; pi; �a; ��� �
Z �2

�1

�pi _qi �H � �a�a � �����d�;

(1)

i � 1; . . . ; N, where H is taken to be a first-class
Hamiltonian and the �’s are first-class constraints, while
the �’s are second class, i.e., [3]
 

f�a; �bg � Cab
c�c � Tab

������; (2a)

f�a; ��g � Ca�b�b � Ca����; (2b)

fH;�ag � Vab�b � Va������; (2c)

fH;��g � V�
b�b � V�

���: (2d)

Also,

 f��; ��g � C��; det�C��� � 0: (3)

The Poisson brackets in Eqs. (2) and (3),

 ff; gg �
@f
@qi

@g
@pi
�
@f
@pi

@g
@qi

; (4)

are computed with respect to the canonical symplectic
structure

 � � dpi ^ dqi: (5)

The Hamiltonian action (1) is obtained from a Lagrangian

action through the systematic implementation of Dirac’s
method, i.e., the starting point is a Lagrangian action from
which the momenta pi canonically conjugate to the con-
figuration variables qi are defined. From the definition of
the momenta, primary constraints usually arise which are
evolved until all the constraints are obtained, which are
then classified into first class and second class. By con-
struction, the canonical symplectic structure (5) plays a
central role in Dirac’s method.

Nevertheless, the action (1) is not the most general
action allowed to describe a constrained Hamiltonian sys-
tem. In fact, constrained dynamical systems with a finite
number of degrees of freedom can be written in a
Hamiltonian form by means of the dynamical equations
 

_x� � !���x�
�
@H
@x�
� �a

@�a
@x�
� ��

@��
@x�

�

� !���x�
@HE

@x�
; �; � � 1; 2; . . . ; 2N; (6)

where HE � H � �a�a � ���� is the extended
Hamiltonian and

 �a�x� � 0; ���x� � 0; (7)

are the constraints, which define the constraint surface �
embedded in the extended phase space �. � is a symplectic
manifold endowed with the symplectic structure

 ! �
1

2
!���x�dx

� ^ dx�; (8)

where �x�� are the coordinates that locally label the points
of �, which is considered as a single entity, i.e., � need not
be necessarily interpreted as the cotangent bundle of a
configuration space C. Now, instead of Eqs. (2) and (3),
the following equations hold:
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f�a; �bg! � Cab
c�c � Tab

������; (9a)

f�a; ��g! � Ca�b�b � Ca����; (9b)

fH;�ag! � Vab�b � Va������; (9c)

fH;��g! � V�
b�b � V�

���: (9d)

Also,

 f��; ��g! � C��; det�C��� � 0; (10)

where the Poisson brackets involved in Eqs. (9) and (10)
are computed using the symplectic structure ! on �:

 ff; gg! �
@f
@x�

!���x�
@g
@x�

: (11)

The dynamical equations of motion (6) and the constraints
(7) can be obtained from the action principle

 S�x�; �a; ��� �
Z �2

�1

�	��x� _x� �HE�d�; (12)

with ! � d	 where 	 � 	��x�dx
� is the symplectic po-

tential 1-form.
Once the differences between these two approaches to

Hamiltonian systems have been recalled, the problem
studied in this paper is set down. In Refs. [4–6] the issue
of the change of the action of Eq. (1) due to the change of
the canonical variables induced by the gauge transforma-
tion generated by the first-class constraints was analyzed.
There, the analysis was restricted to infinitesimal gauge
transformations. Later on, the analysis was extended to
include the full change of the action induced by finite
gauge transformations [7], which are relevant both classi-
cally and quantum mechanically because the latter include
also the ‘‘large’’ gauge transformations that are not in-
cluded in the infinitesimal procedure developed in
Refs. [4–6]. Moreover, the infinitesimal case was also
developed in Ref. [7], where some new aspects of this
case were reported, among others the differential equation
that the boundary term must satisfy in order to have gauge-
invariant actions. In all these papers, the analysis was
carried out by using the action (1), i.e., the extended phase
space � is endowed with canonical symplectic structures
from the very beginning. Moreover, the analysis has been
applied to general relativity formulated in terms of
Ashtekar variables and Polyakov’s action defined on mani-
folds M having the topology M � �	 R with � com-
pact and without a space boundary [8,9].

In this paper, the issue of the gauge invariance of the
action principle is analyzed for an action of the form (12).
This topic is relevant for the path integral quantization of
gauge systems [3–6,10], when new interactions are intro-
duced through the noncanonical symplectic structure.

II. THEORETICAL FRAMEWORK

The gauge invariance of the action can be analyzed from
two viewpoints depending on how the action (12) is inter-

preted: as a Hamiltonian action or as a Lagrangian action.
These two possible interpretations of the action lead to two
alternative approaches. In this paper the action will be
interpreted as a Hamiltonian one, and in the Concluding
Remarks section some comments regarding the
Lagrangian viewpoint will be made.

Therefore, it is assumed that the action (12) has the
Hamiltonian form from the very beginning. For the sake
of completeness, a function B�x; �� will be added at the
time boundary

 SB :� S�x�; �a� � B�x; ��j�2
�1 ; (13)

just to choose the variables that are going to be fixed at �1

and �2. The change of the action (13) under the infinitesi-
mal gauge transformation of the x’s,

 
"x
� � fx�; "a�ag! � !���x�

@G
@x�

; (14)

where G :� "a�a, and "a are the infinitesimal gauge pa-
rameters, and the infinitesimal gauge transformations of
the Lagrange multipliers 
"�a and 
"�� is

 
"SB �
Z �2

�1

��
"	�� _x� � 	�
" _x� � 
"H � �a
"�a

� �a
"�a � ��
"�
� � ��
"���d�� 
"Bj

�2
�1 :

(15)

Integrating by parts the term 	�
" _x�, by plugging (6) and

 
"	� � f	�;Gg! �
@	�
@x�

!�� @G

@x�
;

_	� � f	�;HEg! �
@	�
@x�

!�� @HE

@x�
;

(16)

into the right-hand side of 
"SB and using !�� � @�	� �
@�	�, leads to

 
"SB �
Z �2

�1

�fHE;Gg! � 
"H � �a
"�a � �a
"�a

� ��
"�� � ��
"���d�� �	�
"x� � 
"B�j
�2
�1 :

(17)

Using (9) to write explicitly the right-hand side of 
"H �
fH;Gg! � "afH;�ag! � �afH; "ag! and inserting the re-
sult (and doing the same for 
"�a and 
"��), leads to
 


"SB �
Z �2

�1

�"afHE; �ag! � "a�Vab�b � Va������

� �a"b�Cab
c�c � Tab

������� � ��"a�Ca�b�b

� Ca����� � �a
"�a � ��
"���d�

� �	�
"x� � 
"B�j
�2
�1 : (18)

On the other hand, if the Lagrange multipliers �a are
simultaneously transformed as [3]
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"�
a �

d"a

d�
� �c"bCbc

a � ��"bCb�
a � "bVb

a;


"�� � �c"bTbc
���� � "bVb

���� � ��"bCb�
�;

(19)

then
 


"SB �
Z �2

�1

�
"afHE; �ag! � �a

d"a

d�

�
d�

� �	�
"x� � 
"B�j
�2
�1 : (20)

Integrating by parts the second integrand leads to
 


"SB �
Z �2

�1

�"afHE; �ag! � "a _�a�d�

� �	�
"x� �G� 
"B�j
�2
�1

�
Z �2

�1

"a
@�a
@�

d�� �	�
"x� �G� fB;Gg!�j
�2
�1 :

(21)

Assuming that the �’s do not depend explicitly on �,
@�a
@� � 0.1 So, by using (14), finally

 
"SB �
�
	��x�!���x�

@G
@x�
�G� fB;Gg!

���������
�2

�1

�

��
	��x� �

@B�x; ��
@x�

�
!���x�

@G
@x�
�G

���������
�2

�1

(22)

is the change of the action (13) at first order in the gauge
parameters "a induced by the gauge transformation of the
dynamical variables generated by the first-class constraints
�a. Equation (22) clearly expresses the fact that there are
five objects which contribute to the boundary term (22): the
symplectic potential 	 � 	��x�dx

�, the inverse of the
symplectic structure !��, the gauge parameters "a, the
first-class constraints �a, and the boundary term �Bj�2

�1 .
Some remarks follow:
(1) if B in (13) does not depend explicitly on �, B�x�,

then its contribution to the action (13) and therefore
to the boundary term (22) can be absorbed by choos-
ing the new symplectic potential #��x� �
	� � @B=@x

� [the symplectic potential, by hy-
pothesis, does not depend explicitly on �; see
Eq. (12)].

(2) in the previous approaches to the subject [5–7], the
discussion about the objects that contribute to the
boundary term was focused on the dependency of
the first-class constraints �a, the gauge parameters,
and the boundary term �Bj�2

�1 , simply because the
symplectic structure and the potential were fixed
and tied to canonical coordinates from the very

beginning. Thus the roles of the symplectic potential
and the symplectic structure were not fully
appreciated.

(3) Equation (22) was obtained allowing the possibility
that the gauge parameters " could depend on the
phase space variables x: 
"F�x� � fF;Gg! �
"afF; �ag! � �afF; "

ag!. Usually, however, the
gauge parameters are allowed to depend on � only
and so 
"F � fF;Gg! � "afF; �ag. In this last
case, Eq. (22) is unaltered and reduces to
 


"SB �
�
"a���

��
	��x� �

@B
@x�

�

	!���x�
@�a
@x�
� �a

����������
�2

�1

: (23)

Under this assumption, the boundary term vanishes
because either (a) the gauge parameters vanish at the
time boundaries, "a��1� � 0 � "a��2�, (b) the terms
inside the curly brackets vanish at the time bounda-
ries, or (c) a combination of both (a) and (b).

(4) regarding the particular case given in Eq. (23) where
the gauge parameters depend on � only, if the gauge
transformation is allowed at the time boundaries,
"a��2� � 0 � "a��1�, then the boundary term can
vanish even for first-class constraints �a quadratic in
the variables x� provided that an appropriate choice
for the geometrical objects (	�, B, !��, and �a) is
made, i.e., gauge-invariant actions Sinv can be con-
structed by properly handling these geometrical ob-
jects. (See the examples in the next section.)

(5) if the original choice of the gauge potential 	� and
the function B is such that the action is not gauge
invariant, it is still possible to add another function
at the time boundary in such a way that the new
action is invariant (assuming that !�� and �a have
been fixed).

(6) note that the complete set of commuting observables
fixed at the time boundaries �1 and �2 depend not
just on the boundary term B but also on the sym-
plectic structure, a property not fully appreciated
when a canonical symplectic structure is used.

Coming back to the general discussion, once the gauge
invariance of the action has been analyzed, it just remains
to say some words about the compatibility between the
gauge conditions and the boundary conditions. Note that
good gauge conditions must take into account the sym-
plectic structure in the sense that the matrix of their
Poisson brackets with the first-class constraints must
have a nonvanishing determinant. Like in the case when
symplectic structures and symplectic potentials having the
canonical form are employed [4–7], the boundary condi-
tions of the action (13) might not be compatible with the
choice of a particular gauge condition without it mattering
if the action is invariant or if it is not. If this were the case,
the procedure for how to achieve such compatibility is

1Alternatively, the �-dependence of the �’s can be handled by
parametrizing the theory and considering ��; p�� as new varia-
bles thus enlarging the phase space as it was done in the
canonical case [11].
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essentially the same as that discussed in Refs. [4–7]. For
the benefit of the readers, such a procedure is applied to the
examples contained in the next section.

Finally, for the sake of completeness, Noether’s theorem
is discussed. If the action (13) transforms (without using
the equations of motion) at first order as

 
SB �
Z �2

�1

dF
d�

d� (24)

under the infinitesimal transformations

 

x0���0� � x���� � 
x�; �0a��0� � �a��� � 
�a;

�0���0� � ����� � 
��; �0 � �� 
�; (25)

then the corresponding Noether’s condition 
L0

x�

~
x� �

L0

�a

~
�a � 
L0

��

~
�� � d
d� �

@L0
@ _x�

~
x� �L0
��F � � 0 with

x� � ~
x� � dx�

d� 
� (and so on for the other variables)
and L0 � �	� �

@B
@x�� _x� � @B

@� �H � �
a�a � �

��� be-
comes

 �
!�� _x� �

@HE

@x�

�
~
x� � �a ~
�a � �� ~
��

�
d
d�

��
	� �

@B
@x�

�
~
x� �L0
��F

�
� 0; (26)

and so, if the equations of motion (6) and the first- and
second-class constraints are satisfied,

 

O �

�
	� �

@B
@x�

�
~
x� �F

�

��
	� �

@B
@x�

�
!�� @HE

@x�
�H �

@B
@�

�

� (27)

is constant along evolution in �. It is understood that all
terms in the right-hand side of the last equation are eval-
uated on the surface of first- and second-class constraints.

III. EXAMPLES THAT INVOLVE NONCANONICAL
SYMPLECTIC STRUCTURES

In this section, the ideas developed in Sec. II are applied
to two nontrivial models. In both cases, the extended phase
space is � � R8, and its points are labeled by �x�� �
�x1; x2; . . . ; x8� � �u1; u2; v1; v2; p1; p2; �1; �2�. The sym-
plectic geometry on � � R8 is given by the nondegenerate
closed 2-form ! � 1

2!��dx
� ^ dx� � dp1 ^ du

1 �

dp2 ^ du2 � d�1 ^ dv1 � d�2 ^ dv2 � 	dp1 ^ dp2 �
�d�1 ^ d�2. Equivalently, the inverse of the noncanoni-
cal symplectic structure is

 �!��� � fx�; x�g

�

0 	 0 0 1 0 0 0
�	 0 0 0 0 1 0 0
0 0 0 � 0 0 1 0
0 0 �� 0 0 0 0 1
�1 0 0 0 0 0 0 0
0 �1 0 0 0 0 0 0
0 0 �1 0 0 0 0 0
0 0 0 �1 0 0 0 0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
; (28)

where 	 and � are fixed constant real parameters. The
difference between the two models comes from the con-
crete form for the constraints that the phase space variables
must satisfy in each case.

One of the lessons learned from these models is that
gauge-invariant actions can be built in spite of the fact that
the constraints are quadratic in the phase space variables
provided that an appropriate choice for the symplectic
potential is made.

A. SL�2;R� model

This model was introduced in Ref. [12] in the context of
noncommutative quantum theory. Here, however, the
model is interpreted as a usual gauge system of the type
mentioned in Secs. I and II.

The phase space variables must satisfy the constraints

 

C1 :�
1

2
��p1�

2 � �p2�
2 � �v1�2 � �v2�2� ��v1�2

�
1

2
�2��2�

2 � 0;

C2 :�
1

2
���1�

2 � ��2�
2 � �u1�2 � �u2�2� � 	u1p2

�
1

2
	2�p2�

2 � 0;

V :� uipi � v
i�i � 	p1p2 ���1�2 � 0; (29)

with i � 1, 2. It turns out that the constraints of Eq. (29) are
first class with respect to the Poisson brackets computed
with the symplectic structure of Eq. (28). The resulting
algebra of constraints is

 fC1; C2g! � V ; fC1;V g! � �2C1;

fC2;V g! � 2C2;
(30)

which is isomorphic to the sl�2; r� Lie algebra.
By plugging (28) and (29), ��1; �2; �3� � �N;M; ��, and

��1; �2; �3� � �C1; C2;V � into Eqs. (6), the dynamical
Eqs. (6) acquire the form

CUESTA, MONTESINOS, AND VERGARA PHYSICAL REVIEW D 76, 025025 (2007)

025025-4



 

_u1 � Np1 �M	u
2 � ��u1 � 2	p2�;

_u2 � Np2 � �u2;

_v1 � M�1 � ��v1 � 2��2� ��Nv2;

_v2 � M�2 � �v2;

_p1 � M�u1 � 	p2� � �p1;

_p2 � Mu2 � �p2;

_�1 � N�v1 ���2� � ��1;

_�2 � Nv2 � ��2:

(31)

Using (31), the evolution of the constraints (29) yields

 

_C 1 � MV � 2�C1; _C2 � �NV � 2�C2;

_V � �2MC2 � 2NC1;
(32)

in agreement with the sl�2; r� Lie algebra of Eq. (30).
Gauge transformation. The finite gauge transformation

of the dynamical variables is

 

u01

u02

p01
p02

0
BBB@

1
CCCA �

� �	� � 	��� 
�
0 � 0 �
� 0 
 	�
0 � 0 


0
BBB@

1
CCCA

u1

u2

p1

p2

0
BBB@

1
CCCA; (33)

and

 

�01
�02
v01

v02

0
BBB@

1
CCCA �

� �� � 0
0 � 0 �
� ��
� �� 
 ���
0 � 0 


0
BBB@

1
CCCA

�1

�2

v1

v2

0
BBB@

1
CCCA; (34)

where �, �, 
, � 2 R with �
� �� � 1, while the
Lagrange multipliers transform as

 N0 � �2N � �2M� 2���� � _�� _��;

M0 � ��2N � 
2M� 2�
�� _�
� � _
;

�0 � ���N � �
M� ��
� ����� _�
� _��:

(35)

Notice that when the parameters 	 and � are turned off,
	 � 0 � �, the current model reduces to the SL�2;R�
model introduced in Ref. [13].

It is time to implement on this model the theory devel-
oped in Sec. II. This will be done in the following two
subsections by choosing different symplectic potentials
which amounts to choosing different boundary conditions.

1. A noninvariant action

The equations of motion of the model (29) and (31) can,
for instance, be obtained from the action principle
 

S�x�; N;M; �� �
Z �2

�1

d��p1� _u1 � 	 _p2� � p2 _u2

� �1� _v1 �� _�2� � �2 _v2 � NC1

�MC2 � �V � (36)

under the boundary conditions

 �u1 � 	p2����� � U1
�; u2���� � U2

�;

�v1 ���2����� � V1
�; v2���� � V2

�; � � 1; 2;

(37)

with U1
�, U2

�, V1
�, and V2

� specified real numbers.
The change of the action (36) under the finite gauge

transformation (33)–(35) is
 

S�x0�; N0;M0; �0� � S�x�;N;M; �� � ��� ~u 
 ~p� ~v 
 ~�

� 	p1p2 ���1�2�

�
1

2
����� ~u 
 ~u� ~� 
 ~�� 2	u1p2

� 	2�p2�
2� �

1

2
��
�� ~v 
 ~v� ~p 
 ~p

� 2�v1�2 ��2��2�
2�; (38)

and so the action is not invariant. Independently of this
property of the action (36), the choice of specific gauge
conditions could imply a gauge orbit whose end points at
�1 and �2 might additionally not satisfy the boundary
conditions (37) already specified [4–7]. For instance, the
gauge conditions

 C1 :� u1 � 	p2 � 0; C2 :� v1 ���2 � 0;

C3 :� u2 � c3 � 0;
(39)

with c3 a constant, are in general incompatible with the
boundary conditions (37). In fact, Eqs. (39) are good gauge
conditions in the sense that they fix the Lagrange multi-
pliers to be N � M � � � 0 (and thus the dynamics is
‘‘frozen’’). Moreover, the Poisson brackets between the
gauge conditions and the first-class constraints are

 �fCa; �bg!� �
p1 0 u1 � 	p2

0 �1 ��v1 ���2�

p2 0 u2

0
B@

1
CA

�

p1 0 0
0 �1 0
p2 0 c3

0
@

1
A; (40)

where the gauge conditions (39) were used to get the
second equality. The determinant of this matrix is
c3p1�1, and does not vanish for generic values of the
variables.

The incompatibility between the gauge conditions (39)
and the boundary conditions (37) can be removed by
modifying both the action as well as the boundary con-
ditions. The idea is to impose the gauge conditions in the
gauge-transformed variables

 u01 � 	p02 � 0; v01 ���02 � 0; u02 � c3 � 0;

(41)

i.e., the gauge conditions retain their functional form in the
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gauge-transformed variables. The substitution of (33) and
(34) into the left-hand side of (41) implies precise forms
for the gauge parameters:

 � � �
c3p1

�u1 � 	p2�p2 � p1u
2 ;

� �
c3�u1 � 	p2�

�u1 � 	p2�p2 � p1u2 ;

� � �
�v1 ���2���u

1 � 	p2�p2 � p1u
2�

c3��u1 � 	p2��v1 ���2� � p1�1�
;


 �
�1��u1 � 	p2�p2 � p1u2�

c3��u1 � 	p2��v1 ���2� � p1�1�
:

(42)

On the other hand, by using (33) and (34), the unprimed
variables in the left-hand side of the boundary conditions
(37) are replaced in terms of the primed variables and the
gauge parameters. In the expressions thus obtained,
 

�
u01 � 	
p02 � �p
01����� � U1

�;

��v01 ����02 � ��
0
1����� � V1

�;

�
u02 � �p
0
2����� � U2

�;

����02 � �v
02����� � V2

�;

(43)

the parameters given in (42) must be inserted to obtain the
right boundary conditions compatible with the gauge con-
ditions and with the corresponding action
 

S�x0�; N0;M0; �0� �
�
������ ~u0 
 ~p0 � ~v0 
 ~�0 � 	p01p

0
2

���01�
0
2� �

1

2
��
�� ~u0 
 ~u0 � ~�0 
 ~�0 � 2	u01p02

� 	2�p02�
2� �

1

2
����� ~v0 
 ~v0 � ~p0 
 ~p0

� 2�v01�02 ��
2��02�

2�

�
; (44)

which is (the original action S�x�; N;M; �� but expressed
in terms of the primed variables and it is) obtained from
(38) [7].

2. An invariant action

As mentioned in Sec. II, there exists the possibility of
adding a boundary term to the action (36) in such a way
that the resulting action is gauge invariant [7]. The simplest
action is

 Sinv�x
�;N;M; �� �

Z �2

�1

d��p1� _u1 � 	 _p2� � p2 _u2

� �1� _v1 �� _�2� � �2 _v2 � NC1

�MC2 � �V � �
1

2
��u1 � 	p2�p1

� u2p2 � �v
1 ���2��1 � v

2�2�j
�2
�1 :

(45)

In fact, a straightforward computation shows that

 Sinv�x0�; N0;M0; �0� � Sinv�x�; N;M; �� (46)

under the gauge transformation (33)–(35). Therefore,
Sinv�x

�; N;M; �� is fully invariant because the noninvariant
action (36) and the added noninvariant boundary term
combine exactly to make Sinv�x�; N;M; �� strictly
invariant.

Equivalently, due to the fact the boundary term in (45) is
�-independent, its contribution can be understood as a
different choice for the symplectic potential. By introduc-
ing this boundary term into the integrand,

 Sinv�x
�;N;M;�� �

Z �2

�1

d���� _x��NC1�MC2��V �;

(47)

with
 

� �
1

2
�p1du1 � p2du2 � �1dv1 � �2dv2

� �u1 � 	p2�dp1 � �	p1 � u2�dp2

� �v1 ���2�d�1 � ���1 � v
2�d�2�: (48)

That is to say, if the dynamical system were defined by the
action (47) from the very beginning, there would be no
need to add a boundary term because such an action is
already invariant under the gauge transformation, in com-
plete agreement with Eq. (23):

 ��!�� @�a
@x�
� �a � 0: (49)

The action (45) or (47) yields the equations of motion
provided that the boundary conditions
 

1

2
ln
�
u1 � 	p2

p1

�
���� � Q1

�;
1

2
ln
�
u2

p2

�
���� � Q2

�;

1

2
ln
�
v1 ���2

�1

�
���� � Q3

�;
1

2
ln
�
v2

�2

�
���� � Q4

�;

� � 1; 2 (50)

are satisfied.
Like in the the case of the noninvariant action, the choice

of a particular gauge condition might lead to a solution of
the equations of motion (a gauge orbit) whose values at the
end points �1 and �2 might not match the specified values
in the right-hand side of the boundary conditions (50) (see
Fig. 1). For instance, the gauge conditions

 C1 :� u1 � 	p2 � c1 � 0;

C2 :� v1 ���2 � c2 � 0;

C3 :� u2 � p2 � 0;

(51)

with c1 and c2 constants, are not compatible with the
boundary conditions (50). These conditions are good gauge
conditions in the sense that they fix the Lagrange multi-
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pliers to be � � N � M � 0. Additionally,

 �fCa; �bg!� �
p1 0 u1 � 	p2

0 �1 ��v1 ���2�

p2 0 u2

0
B@

1
CA

�

p1 0 c1

0 �1 �c2

p2 �p2 2p2

0
@

1
A; (52)

where the gauge conditions were used to get the second
equality. The determinant of the matrix is p2�p1�2�1 �
c2� � c1�1�.

Such a compatibility can be achieved by imposing the
gauge conditions in the gauge-related variables

 u01 � 	p02 � c1 � 0; v01 ���02 � c2 � 0;

u02 � p02 � 0;
(53)

from which, using (33) and (34), the gauge parameters are
fixed:

 � �
p2�c1�v1 ���2� � c2p1�

��u1 � 	p2�p2 � p1u2��v1 ���2�

�
�p1�u

2�v1 ���2� � p2�1�

��u1 � 	p2�p2 � p1u
2��v1 ���2�

; (54)

 � �
c2�u1 � 	p2�p2 � c1u2�v1 ���2�

��u1 � 	p2�p2 � p1u
2��v1 ���2�

�
��u1 � 	�2��u2�v1 ���2� � p2�1�

��u1 � 	p2�p2 � p1u2��v1 ���2�
;


 �
c2 � ��1

�v1 ���2�

(55)

(recall that �
� �� � 1). On the other hand, using (33)

and (34), the original boundary conditions (50) are rewrit-
ten in terms of the primed variables and the gauge parame-
ters:
 

1

2
ln
�
u01 � 	p02

p01

�
���� �

1

2
ln
�
����� � �����e2Q1

�


���� � �����e
2Q1

�

�
;

1

2
ln
�
u02

p02

�
���� � 0;

1

2
ln
�
v01 ���02

�01

�
���� �

1

2
ln
�
����� � �����e2Q3

�


���� � �����e
2Q3

�

�
;

1

2
ln
�
v02

�02

�
���� �

1

2
ln
�
����� � �����e2Q4

�


���� � �����e
2Q4

�

�
;

(56)

where� � 1, 2, which are by construction compatible with
the gauge conditions. The corresponding action is the same
one given in (45) or (47) but expressed in terms of the
primed variables: Sinv�x0�;M0;M0; �0�. Once the goal has
been achieved, one can simply drop the apostrophe ‘‘0’’
both in the action as well as in the boundary conditions to
have an action principle written in the usual form.

The difference between the case of the noninvariant
action and the case of the fully gauge-invariant action
lies in the fact that in the latter there is no need to modify
the action, but just to handle the boundary conditions.

B. SU�2� model

Now, a second model having an SU�2� gauge symmetry
is given. The dynamical variables must satisfy the con-
straints
 

H1 :�u1u2�v1v2�p1p2��1�2�	u2p2��v2�2� 0;

H2 :��u1�2��v1�2��p1�
2���1�

2��u2�2��v2�2

��p2�
2���2�

2�2	u1p2�2�v1�2�	2�p2�
2

��2��2�
2� 0;

D :�u1p2�v
1�2�u

2p1�v
2�1�	�p2�

2����2�
2� 0:

(57)

The Poisson brackets computed with respect to the sym-
plectic structure of Eq. (28) among these constraints yield

 fH1; H2g! � �4D; fH1; Dg! � H2;

fH2; Dg! � �4H1;
(58)

and so they are first class. The algebra turns out to be
isomorphic to the su�2� Lie algebra. This can be easily
accomplished by rescaling the constraints J1 :� H1=2,
J2 :� �H2=4, and J3 :� D=2, which satisfy fJi; Jjg �
"ij

kJk with "ijk the three-dimensional Levi-Civita symbol
"123 � �1.

Like in the noncommutative SL�2;R� model, when the
noncommutative parameters are turned off, 	 � 0 � �,

FIG. 1. The path in the right-hand side (RHS) matches the
gauge conditions, but its end points are incompatible with the
original boundary conditions for the action principle. Keeping
the gauge conditions (and so the path in the RHS) forces us to
modify the boundary conditions. The right modification can be
achieved by using the path in the left-hand side (LHS) which is
obtained from the path in the RHS by a gauge transformation
that does not vanish at the end points. The path in the LHS is not
compatible with the gauge conditions, but its end points are
compatible with the original boundary conditions.
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the resulting model still involves an SU�2� gauge symmetry.
By plugging (28) and (57), ��1; �2; �3� � �N;M; ��, and ��1; �2; �3� � �H1; H2; D� into Eqs. (6), the dynamical

equations become

 _u 1 � N�p2 � 	u
1 � 	2p2� � 2M�p1 � 	u

2� � ��u2 � 	p1�; _u2 � Np1 � 2Mp2 � ��u
1 � 	p2�;

_v1 � N��2 ��v1 ��2�2� � 2M��1 ��v2� � ��v2 ���1�; _v2 � N�1 � 2M�2 � ��v1 ���2�;

_p1 � �Nu
2 � 2M�u1 � 	p2� � �p2; _p2 � �N�u

1 � 	p2� � 2Mu2 � �p1;

_�1 � �Nv2 � 2M�v1 ���2� � ��2; _�2 � �N�v1 ���2� � 2Mv2 � ��1:

(59)

Gauge transformation. The finite gauge transformation
of the phase space variables is

 X0 � AX; Y0 � BY;

X �

u1

u2

p1

p2

0
BBB@

1
CCCA; Y �

v1

v2

�1

�2

0
BBB@

1
CCCA;

(60)

where the matrix A and B are given by

 A �

a� 	d �b� 	c �c� 	b �d�1� 	2�

b a �d c� 	b
c d a �b� 	c
d �c b a� 	d

0
BBB@

1
CCCA;

B �

a��d �b��c �c��b �d�1��2�

b a �d c��b
c d a �b��c
d �c b a��d

0
BBB@

1
CCCA;

(61)

where a, b, c, d 2 R with a2 � b2 � c2 � d2 � 1, while
the Lagrange multipliers transform as

 

N0 � �1� 2�b2 � c2��N � 4�ab� cd�M� 2�ac� bd��

� a _b� d _a� a _d� b _c;

M0 � �1� 2�b2 � d2��M� �bc� ad��� �cd� ab�N

�
1

2
�c _a� b _d� d _b� a _c�;

�0 � �1� 2�c2 � d2���� 4�ad� bc�M� 2�bd� ac�N

� a _b� c _d� b _a� d _c: (62)

Dirac Observables. The following functions are invari-
ant under the gauge transformation (60)–(62):

 O 1 �
1

2
��u1�2 � �u2�2 � �p1�

2 � �p2�
2� � 	u1p2 �

1

2
	2�p2�

2;

O2 � u1v1 � u2v2 � p1�1 � p2�2 ��u1�2 � 	v1p2 � 	��p2�
2;

O3 � u1v2 � u2v1 � p2�1 � p1�2 � 	v2p2 ��u2�2;

O4 � u1�1 � u
2�2 � v

1p1 � v
2p2 � 	p2�1 ��v

1�2;

O5 � u1�2 � u2�1 � v1p2 � v2p1 � 	p2�2 ��p2�2;

O6 �
1

2
��v1�2 � �v2�2 � ��1�

2 � ��2�
2� ��v1�2 �

1

2
�2��2�

2:

(63)

The Poisson brackets among them are

 fO1;O2g! � O4; fO1;O3g! � �O5;

fO1;O4g! � �O2; fO1;O5g! � O3;

fO2;O4g! � 2O1 � 2O6; fO2;O6g! � O4;

fO3;O5g! � 2O1 � 2O6; fO3;O6g! � O5;

fO4;O6g! � �O2; fO5;O6g! � �O3:

(64)

A straightforward computation shows that this algebra of
observables is isomorphic to the su�2� � so�2; 1� Lie al-
gebra [14].

1. A noninvariant action

Now, the effect of the gauge transformation in the action
principle will be analyzed. The equations of motion of the
model (57) and (59) can, for instance, be obtained from the
action principle

 S�x�; N;M; �� �
Z �2

�1

d��p1� _u1 � 	 _p2� � p2 _u2

� �1� _v1 �� _�2� � �2 _v2 � NH1

�MH2 � �D�;

(65)

under the boundary conditions
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�u1 � 	p2����� � U1
�; u2���� � U2

�;

�v1 ���2����� � V1
�; v2���� � V2

�;

� � 1; 2; (66)

with U1
�, U2

�, V1
�, and V2

� specified real numbers.
The change of the action (65) under the finite gauge

transformation (60)–(62) yields

 

S�x0�; N0;M0; �0� � S�x�; N;M; �� �
�ac� bd�

2

	 �H2 � 2�p1�
2 � 2�p2�

2 � 2��1�
2

� 2��2�
2� � �ad� bc��H1 � 2p1p2

� 2�1�2� � �c2 � d2�� ~u 
 ~p� ~v 
 ~�

� 	p1p2 ���1�2�; (67)

and so the action (65) is not gauge invariant.

2. An invariant action

Once again, it is possible to build gauge-invariant ac-
tions, the simplest of which is

 Sinv�x
�;N;M; �� �

Z �2

�1

d��p1� _u1 � 	 _p2� � p2 _u2

� �1� _v1 �� _�2� � �2 _v2 � NH1

�MH2 � �D� �
1

2
��u1 � 	p2�p1

� u2p2 � �v1 ���2��1 � v2�2�j
�2
�1 :

(68)

In fact, a straightforward computation using (60)–(62)
shows that

 Sinv�x
0�; N0;M0; �0� � Sinv�x

�;N;M; ��: (69)

Therefore, Sinv�x�; N;M; �� is strictly invariant. Like in the
case of the SL�2;R� model, introducing the boundary term
into the integrand

 Sinv�x�;N;M;�� �
Z �2

�1

d���� _x��NH1�MH2��D�;

(70)

with

 

� �
1

2
�p1du1 � p2du2 � �1dv1 � �2dv2

� �u1 � 	p2�dp1 � �	p1 � u
2�dp2

� �v1 ���2�d�1 � ���1 � v
2�d�2�; (71)

leads to the introduction of a new symplectic potential and

 ��!�� @�a
@x�
� �a � 0; (72)

as expected.
The analysis of a possible incompatibility between the

boundary conditions

 

1

2
ln
�
u1 � 	p2

p1

�
���� � Q1

�;
1

2
ln
�
u2

p2

�
���� � Q2

�;

1

2
ln
�
v1 ���2

�1

�
���� � Q3

�;
1

2
ln
�
v2

�2

�
���� � Q4

�;

� � 1; 2; (73)

of the action (68) or (70) with chosen gauge conditions can
be carried out along the same steps made for the case of the
SL�2;R� model.

IV. CONCLUDING REMARKS

The issue of the gauge invariance of the action principle
for Hamiltonian gauge systems whose extended phase
space is described in terms of arbitrary symplectic struc-
tures has been studied assuming that the action is already in
a Hamiltonian form. One of the main results reported in
this paper is the fact that an action featuring first-class
constraints quadratic in the phase space variables can be
strictly gauge invariant. The gauge invariance of the action
(13) can also be analyzed from a Lagrangian viewpoint. In
this last approach, the action (13) is assumed to have a
Lagrangian form and Dirac’s method is applied systemati-
cally, i.e, one first defines momenta canonically conjugate
to the variables x�, �a, and ��, increasing the number of
variables that label the points of the extended phase space
which is also equipped with a symplectic structure having,
by construction, the usual canonical form. If this approach
were followed, the gauge invariance of the resulting action
could be handled with the tools developed in Refs. [4–7].
Sometimes, however, it is not convenient to enlarge the
phase space, but to work the theory assuming that the
action already has a Hamiltonian form, and then the analy-
sis of the gauge invariance of the action must be carried out
along the ideas studied in this paper. (An example of the
Hamiltonian viewpoint can be found in the three-
dimensional Chern-Simons theory.)

Finally, the results of this paper can also be used to
extend the analyses developed in Refs. [15–17] by intro-
ducing new interactions through the symplectic structure.
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