
String triality, black hole entropy, and Cayley’s hyperdeterminant

M. J. Duff*
The Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2AZ

(Received 3 May 2007; published 19 July 2007)

The four-dimensional N � 2 STU model of string compactification is invariant under an SL�2; Z�S �
SL�2; Z�T � SL�2; Z�U duality acting on the dilaton/axion S, complex Kahler form T, and the complex
structure fields U, and also under a string/string/string triality S$ T $ U. The model admits an extremal
black hole solution with four electric and four magnetic charges whose entropy must respect these
symmetries. It is given by the square root of the hyperdeterminant introduced by Cayley in 1845. This also
features three-qubit quantum entanglement.
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I. INTRODUCTION

An interesting subsector of string compactification to
four dimensions is provided by the STU model whose low
energy limit is described byN � 2 supergravity coupled to
three vector multiplets. One may regard it as a truncation of
an N � 4 theory obtained by compactifying the heterotic
string on T6 where S, T,U correspond to the dilaton/axion,
complex Kahler form, and complex structure fields, re-
spectively. It exhibits an SL�2; Z�S strong/weak coupling
duality and an SL�2; Z�T � SL�2; Z�U target space duality.
By string/string duality, this is equivalent to a type IIA
string on K3� T2 with S and T exchanging roles [1–3].
Moreover, by mirror symmetry this is in turn equivalent to
a type IIB string on the mirror manifold with T and U
exchanging roles. Hence the truncated theory has a com-
bined �SL�2; Z��3 duality and complete S-T-U triality sym-
metry [4]. Alternatively, one may simply start with this
N � 2 theory directly as an interesting four-dimensional
supergravity in its own right, as described in Sec. II.

The model admits extremal black holes solutions carry-
ing four electric and magnetic charges. In Sec. III we
organize these 8 charges into the 2� 2� 2 hypermatrix
and display the S-T-U symmetric Bogomol’nyi mass for-
mula [4].

Associated with this hypermatrix is a hyperdeterminant,
discussed in Sec. IV, first introduced by Cayley in 1845 [5].

The black hole entropy, first calculated in [6], is quartic
in the charges and must be invariant under �SL�2; Z��3 and
under triality. The main result of the present paper, given in
Sec. V, is to show that this entropy is given by the square
root of Cayley’s hyperdeterminant.

The hyperdeterminant also makes its appearance in
quantum information theory [7] as the measure of three-
qubit entanglement known as the 3-tangle [8], which we
briefly review in Sec. VI.

II. THE STU MODEL

Consider the three complex scalars axion/dilaton field S,
the complex Kahler form field T, and the complex structure

field U

 S � S1 � iS2; T � T1 � iT2; U � U1 � iU2:

(2.1)

This complex parametrization allows for a natural trans-
formation under the various SL�2; Z� symmetries. The
action of SL�2; Z�S is given by

 S!
aS� b
cS� d

; (2.2)

where a, b, c, d are integers satisfying ad� bc � 1, with
similar expressions for SL�2; Z�T and SL�2; Z�U. Defining
the matrices MS, MT , and MU via

 M S �
1

S2

1 S1

S1 jSj2

� �
; (2.3)

the action of SL�2; Z�S now takes the form

 M S ! !S
TMS!S; (2.4)

where

 !S �
d b
c a

� �
; (2.5)

with similar expressions for MT and MU. We also define
the SL�2; Z� invariant tensors

 �S � �T � �U �
0 1
�1 0

� �
: (2.6)

Starting from the heterotic string, the bosonic action for
the graviton g��, dilaton �, two-form B�� fourU�1� gauge
fields AaS, and two complex scalars T and U is [4]
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where the metric g�� is related to the four-dimensional
canonical Einstein metric gc�� by g�� � e�gc�� and where

 H��� � 3�@��B��� �
1
2AS��

T��T � �U�FS����: (2.8)

This action is manifestly invariant under T duality and U
duality, with

 FS�� ! �!T
�1 �!U

�1�FS��;

MT=U ! !T
T=UMT=U!T=U;

(2.9)

and with �, g��, and B�� inert. Its equations of motion and
Bianchi identities (but not the action itself ) are also invari-
ant under S duality (2.2), with T and gc�� inert and with

 

FS��
a

~FS��
a

 !
! !�1

S

FS��
a

~FS��
a

 !
; (2.10)

where
 

~FS��
a � �S2��MT

�1 �MU
�1���T � �U��ab	

� FS��
b � S1FS��

a; (2.11)

where the axion field a is defined by

 ����	@	a �
�������
�g
p

e��g�	g��g��H	��; (2.12)

and where S � S1 � iS2 � a� ie��.
Thus T duality transforms Kaluza-Klein electric charges

�FS
3; FS

4� into winding electric charges �FS
1; FS

2� (and
Kaluza-Klein magnetic charges into winding magnetic
charges), U duality transforms the Kaluza-Klein and wind-
ing electric charge of one circle �FS

3; FS
2� into those of the

other �FS
4; FS

1� (and similarly for the magnetic charges)
but S duality transforms Kaluza-Klein electric charge
�FS

3; FS
4� into winding magnetic charge � ~FS

3; ~FS
4� (and

winding electric charge into Kaluza-Klein magnetic
charge). In summary we have SL�2; Z�T � SL�2; Z�U and
T $ U off shell but SL�2; Z�S � SL�2; Z�T � SL�2; Z�U
and an S-T-U interchange on shell.

One may also consider the type IIA action ITUS and the
type IIB action IUST obtained by cyclic permutation of the
fields S, T, U. Finally, one may consider an action [6]
where the S, T, and U fields enter democratically with a
prepotential

 F � STU (2.13)

which off shell has the full STU interchange but none of
the SL�2; Z�. All four versions are on-shell equivalent.

III. THE BOGOMOL’NYI SPECTRUM

Following [4], it is now straightforward to write down an
S-T-U symmetric Bogomol’nyi mass formula. Let us de-
fine electric and magnetic charge vectors 
aS and �aS asso-
ciated with the field strengths FS

a and ~FS
a in the standard

way. The electric and magnetic charges Qa
S and PaS are

given by

 FS0r
a 


Qa
S

r2 ; 	FS0r
a 


PaS
r2 ; (3.1)

giving rise to the charge vectors
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(3.2)

For our purpose it is useful to define a 2� 2� 2 array aijk
via
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transforming as

 aijk ! !S
i
l!T

j
m!U

k
na

lmn: (3.4)

Then the mass formula is

 m2 � 1
16a

T�MS
�1MT

�1MU
�1 �MS

�1�T�U

� �SMT
�1�U � �S�TMU

�1�a: (3.5)

This is consistent with the general N � 2 Bogomol’nyi
formula [9]. Although all theories have the same mass
spectrum, there is clearly a difference of interpretation
with electrically charged elementary states in one picture
being solitonic monopole or dyon states in the other.

This 2� 2� 2 array aijk is an example of a ‘‘hyper-
matrix,’’ a term coined by Cayley in 1845 [5] where he also
introduced a ‘‘hyperdeterminant.’’

IV. THE CAYLEY HYPERDETERMINANT

In analogy with the determinant of a 2� 2 matrix aij

 deta2 �
1
2�
ij�lmailajm � a00a11 � a01a10; (4.1)

the hyperdeterminant of aijk is defined to be
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� 2�a000a001a110a111 � a000a010a101a111

� a000a100a011a111 � a001a010a101a110

� a001a100a011a110 � a010a100a011a101�

� 4�a000a011a101a110 � a001a010a100a111�: (4.2)

The hyperdeterminant vanishes if the following system of
equations in six unknowns ui, vj, wk has a nontrivial
solution, not allowing any of the pairs to be both zero:
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 aijku
ivj � 0; aijku

iwk � 0; aijkv
jwk � 0:

(4.3)

Other useful identities are provided by the polynomial
symmetric under permutation of the four indices [10]:
 

P�x1; x2; x3; x4; y1; y2; y3; y4� � x2
1y

2
1 � x

2
2y

2
2 � x

2
3y

2
3 � x

2
4y

2
4

� 4x1x2x3x4 � 4y1y2y3y4

� 2x1y1x2y2 � 2x1y1x3y3

� 2x1y1x4y4 � 2x2y2x3y3

� 2x2y2x4y4 � 2x3y3x4y4

(4.4)

which obeys
 

P�x1; x2; x3; x4; y1; y2;y3; y4� � �x1y1 � x2y2 � x3y3

� x4y4�
2 � 4�x1x2 � y3y4�

� �x3x4 � y1y2� (4.5)

and
 

y2
1P�x1; x2; x3; x4; y1; y2; y3; y4�

� �x1y2
1 � x2y2y1 � x3y3y1 � x4y4y1 � 2x2x3x4�

2

� 4�x2x3 � y1y4��x2x3 � y1y4�

� �x2x4 � y1y3��x3x4 � y1y2�: (4.6)

Comparison with (4.2) yields

 Det a3 � P��a000; a110; a101; a011;�a111; a001; a010; a100�:

(4.7)

For our purposes, the important properties of the hyper-
determinant are that it is a quartic invariant under
�SL�2; Z��3 and under triality.

V. BLACK HOLE ENTROPY

The STU model admits extremal black hole solutions
satisfying the Bogomol’nyi mass formula. As usual, their
entropy is given by one quarter the area of the event
horizon. However, to calculate this area requires evaluating
the mass not with the asymptotic values of the moduli, but
with their frozen values on the horizon which are fixed in
terms of the charges [11]. This ensures that the entropy is
moduli-independent, as it should be. The relevant calcu-
lation was carried out in [6] for the model with the STU
prepotential. The electric and magnetic charges of that
paper are denoted �p0; q0�, �p1; q1�, �p2; q2�, �p3; q3� with
O(2, 2) scalar products

 p2 � �p0�2 � �p1�2 � �p2�2 � �p3�2; (5.1)

 q2 � �q0�
2 � �q1�

2 � �q2�
2 � �q3�

2; (5.2)

 p � q � �p0q0� � �p1q1� � �p2q2� � �p3q3�: (5.3)

In these variables, the entropy is given by

 S � ��W�p�; q���
1=2; (5.4)

where
 

W�p�; q�� � ��p � q�2 � 4��p1q1��p2q2�

� �p1q1��p
3q3� � �p

3q3��p
2q2��

� 4p0q1q2q3 � 4q0p
1p2p3: (5.5)

The function W�p�; q�� is symmetric under transforma-
tions: p1 $ p2 $ p3 and q1 $ q2 $ q3. For the solution
to be consistent we have to require W > 0, otherwise the
model is not defined.

If we now make the identifications

 

a000
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a011
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0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA
�
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0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA
; (5.6)

we recognize from (4.2) that

 W � �Deta3 (5.7)

and hence the black hole entropy is given by

 S � �
�����������������
�Deta3

p
: (5.8)

Some examples of supersymmetric black hole solutions
[12] are provided by the electric Kaluza-Klein black hole
with 
 � �1; 0; 0; 0� and � � �0; 0; 0; 0�; the electric wind-
ing black hole with 
 � �0; 0; 0;�1� and � � �0; 0; 0; 0�;
the magnetic Kaluza-Klein black hole with 
 � �0; 0; 0; 0�
and � � �0;�1; 0; 0�; the magnetic winding black hole
with 
 � �0; 0; 0; 0� and � � �0; 0;�1; 0�. These are char-
acterized by a scalar-Maxwell coupling parameter a �

���
3
p

.
By combining these 1-particle states, we may build up 2-,
3-, and 4-particle bound states at threshold [4,12]. For
example 
 � �1; 0; 0;�1� and � � �0; 0; 0; 0� with a �
1; 
 � �1; 0; 0;�1� and � � �0;�1; 0; 0� with a �
1=

���
3
p

; 
 � �1; 0; 0;�1� and � � �0;�1;�1; 0� with a �
0. The 1-, 2-, and 3-particle states all yield vanishing
contributions to deta3. A nonzero value is obtained for
the 4-particle example, however, which is just the
Reissner-Nordstrom black hole.

VI. 3-QUBIT QUANTUM ENTANGLEMENT

Interestingly enough, Cayley’s hyperdeterminant also
makes its appearance in quantum information theory.

Let the system ABC be in a pure state j�i, and let the
components of j�i in the standard basis be aijk:
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 j�i �
X
ijk

aijkjijki (6.1)

or

 j�i � a000j000i � a001j001i � a010j010i � a011j011i

� a100j100i � a101j101i � a110j110i � a111j111i:

(6.2)

In this context the aijk are complex numbers rather than
integers and the symmetry is �SL�2; C��3 rather than
�SL�2; Z��3. The three-way entanglement of the three qu-
bits A, B, and C is given by the 3-tangle of Coffman,
Kondu, and Wooters [8]
 

�ABC � 2j�ii
0
�jj

0
�kk

0
�mm

0
�nn

0
�pp

0
aijkai0j0manpk0an0p0m0 j

� 4jDeta3j: (6.3)

The 3-tangle is maximal for the Greenberger-Horne-
Zeilinger (GHZ) state j000i� j111i [13] and vanishes for
the states pj100i � qj010i � rj001i. The relation between
three-qubit quantum entanglement and the Cayley hyper-
determinant was pointed out by Miyake and Wadati [7].

Thus Cayley’s hyperdeterminant provides an interesting
connection, at least at the level of mathematics, between

string theory and quantum entanglement. Other mathe-
matical similarities are provided by the division algebras
[14] and by twistors [15]. What about physics? The near
horizon geometry of the black holes is AdS2 � S2 and one
might expect a relation between the black hole entropy and
the entanglement entropy of the conformal quantum me-
chanics that lives on the boundary [16], although the nature
of this particular anti-de Sitter/conformal field theory dual-
ity is not well understood [17]. In any event, the 3-tangle is
not the same as the entropy of entanglement [18]. So the
appearance of the Cayley hyperdeterminant in these two
different contexts of stringy black hole entropy and 3-qubit
quantum entanglement remains, for the moment, a purely
mathematical coincidence.
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