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SU�N� field, we get indications of a nontrivial field theory.
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I. INTRODUCTION

To write a field theoretical model which has nonzero
values for the coupling constants at zeros of the beta
function of the renormalization group is an endeavor which
is still continuing in particle physics. The �4 theory is a
‘‘laboratory’’ where different methods in quantum field
theory are first applied. After it was shown that this model
became a trivial theory when the cutoff was removed [1,2],
it was clear that analyzing the terms in the perturbation
series was not sufficient to decide whether one had a truly
interacting theory. Work in this field was also given by
Wilson and others [3,4]. Renormalization group methods,
first introduced by Wilson for this purpose [5], are the most
commonly used techniques in studying whether one has a
trivial theory or not.

Since a nontrivial fixed point is not yet found for QCD,
there are attempts to study alternative models for this
purpose given in [6]. A very popular model is the
Nambu-Jona-Lasinio model, hereafter NJL [7]. This model
is written in terms of spinor fields only, and is used as an
effective theory extensively in high energy physics [8,9].
The NJL model was also shown to be trivial [10,11].
Recent attempts to gauge this model to obtain a nontrivial
theory are given in Refs. [12–16]. Both functional and
diagram summing methods were used in these papers.
Exact renormalization group methods proposed by
Wilson and Polchinski [5,17] are often employed for this
purpose. A very recent paper on this method is given by
Sonoda [18].

Another model, which uses only spinors, is the Gürsey
model [19]. We have worked on different forms of the
Gürsey model [20–22]. Our starting point was both our
earlier work [23–27], where Gürsey model Lagrangian
was attempted to be written in a polynomial form, and
recent work [9,28–31], which suggested that the gauged
form of the NJL model can be interpreted as a nontrivial
theory. In [20] we reinterpreted our earlier work [23], and
showed that rather than finding a trivial theory, as claimed
in [26], we ended up in a model where composite particles
took part in physical processes. The constituent fields,
however, did not interact with each other when perturba-

tion theory was applied to the model, as already shown in
[26]. In [22], we showed that, when this model is coupled
to a constituent U�1� gauge field, we were mimicking a
gauge Higgs-Yukawa (gHY) system, which had the known
problems of the Landau pole, with all of its connotations of
triviality.

The essential point of our earlier work was the fact that
the propagator of the composite scalar field was equal to
�
p2 . Since � goes to zero as the cutoff is removed, many of

the diagrams, where the scalar field propagator takes part
as an internal line, become convergent. We could show that
there was no breaking of the chiral symmetry, thus no mass
generation, for the fermion fields in our model in higher
orders of perturbation theory.

Here we will study our original model [20], coupled to a
SU�N� gauge field, and use solely renormalization group
techniques. We start with the description of our starting
model without the gauge field [20]. Then we derive the
renormalization group equations (RGEs) in one loop, and
try to derive the criteria for obtaining nontrivial fixed
points for the coupling constants of the theory. Here we
closely follow the line of discussion followed in our
Ref. [12]. In our model, however, there is a composite
scalar field with a propagator completely different from a
constituent scalar field used in this reference. This gives
rise to RGEs in our case which are different from those
given by Harada et al. Since our starting models are differ-
ent, the motivation of our work is different from that of this
reference. We show that the renormalization group equa-
tions point to the nontriviality of the model when it is
coupled to an SU�N� gauge field. We end up with a few
remarks in the last section.

II. THE ORIGINAL MODEL

Our initial model is given by the Lagrangian

 L � i � @6  � g �  �� ��g �  � a�3�: (1)

Here the only terms with a kinetic part are the spinors. �
is a Lagrange multiplier field, � is a scalar field with no
kinetic part, g and a are coupling constants. This expres-
sion contains two constraint equations, obtained from writ-
ing the Euler-Lagrange equations for the � and � fields.
Hence, it should be quantized by using the Dirac constraint
analysis as performed in Ref. [20].
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The Lagrangian given above is just an attempt in writing
the original Gürsey Lagrangian,

 L � i � @6  � g0� �  �4=3; (2)

in a polynomial form.
We already showed how the �5 invariance of the Gürsey

Lagrangian, which prevents the fermion field from acquir-
ing a finite mass in higher orders, is retained in our model,
and the fact that our model is equivalent to the original
Gürsey model only classically in [20].

To quantize the latter system consistently, we proceed
via the path integral method. This procedure is carried out
in Ref. [20]. At the end of these calculations we find out
that we can write the constrained Lagrangian given in
Eq. (1) as
 

L0 � i � �@6 � ig�� �
a
4
��4 � 2�3�� 2��3 ��4�

�
i
4
c���2 � 2����2�c; (3)

where the effective Lagrangian is expressed in terms of
scalar fields �, and �, ghost fields c, c� and spinor fields
only.

The fermion propagator is the usual Dirac propagator in
lowest order, as can be seen from the Lagrangian. After
integrating over the fermion fields in the path integral, we
obtain the effective action. The second derivative of the
effective action with respect to the � field gives us the
induced inverse propagator for the � field, with the infinite
part given as

 inf
�
ig2

�2��4
Z d4p
p=�p=� q=�

�
�
g2q2

4��
: (4)

Here dimensional regularization is used for the momentum
integral and � � 4� n. We see that the � field propagates
as a massless field.

When we study the propagators for the other fields, we
see that no linear or quadratic term in � exists, so the one
loop contribution to the � propagator is absent. Similarly
the mixed derivatives of the effective action with respect to
� and � are zero at one loop, so no mixing between these
two fields occurs. We can also set the propagators of the
ghost fields to zero, since they give no contribution in the
one loop approximation. The higher loop contributions are
absent for these fields.

In Ref. [20] we also studied the contributions to the
fermion propagator at higher orders and we found, by
studying the Dyson-Schwinger equations for the two point
function, that there were no new contributions. We had at
least one phase where the mass of the spinor field was zero.

III. RENORMALIZATION GROUP EQUATIONS

Here we couple an SU�NC� gauge field to the model. We
also take spinors with different flavors, up to Nf. The new
Lagrangian reads

 

L �
XNf
i�1

i � i 6D i � g
XNf
i�1

� i i�� �
�
g
XNf
i�1

� i i � a�3

�

�
1

4
Tr�F��F���: (5)

Upon performing constraint analysis similar to the one
performed in [20], we see that we have to satisfy

 

XNf
i�1

� i i � a�
3 � 0; 3a��2 � g

XNf
i�1

� i i � 0: (6)

After calculating the constraint matrix, raising the result to
the exponential by using ghost field, and performing the
transformations � � �� � and � � �� �, we get simi-
lar equations as given in Eq. (3). We see that both the � and
the ghost fields coming from the compositeness constraint
decouple from our model.

At this point we have to note that there are two kinds of
ghost contributions in the new model. The ghosts coming
from the gauge condition on the vector field do not de-
couple, and contribute to the renormalization group equa-
tions in the usual way. We impose these constraints on
Eq. (5).

After these steps we start with the effective Lagrangian
given as

 L00 � �
1

4
Tr�F��F��� �

a
4

�4 �
XNf
i�1

� iiD6  i

�
XNf
i�1

g� � i i � Lghost � Lgauge fixing: (7)

Here Nf is the number of flavors. The gauge field belongs
to the adjoint representation of the color group SU�NC�
where D� is the color covariant derivative. g, a, and e are
the Yukawa, quartic scalar, and gauge coupling constants,
respectively. We take Nf in the same order as NC.

In the one loop approximation, the renormalization
group equations read as

 16�2 d
dt
e�t� � �be3�t�; (8)

 16�2 d
dt
g�t� � �cg�t�e2�t�; (9)

 16�2 d
dt
a�t� � �ug4�t�; (10)

where b, c, and u are positive constants given as

 b �
11NC � 4T�R�Nf

3
; c � 6C2�R�;

u � 8NfNC:
(11)

Here C2�R� is a second Casimir, C2�R� �
�N2

C�1�

2NC
, and R is
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the fundamental representation with T�R� � 1
2 . We take�0

as a reference scale at low energies, t � ln��=�0�, where
� is the renormalization point.

In the RGE we see that the diagrams, where scalar
propagators take part, are down by powers of �. Hence,
we do not have contributions proportional to a2�t�, g3�t�,
and a�t�g2�t�, as one would have in the gHY system as
described in the work of [12]. Since the diagrams, omitted
in [12] via a 1

Nc
analysis, are down by an order of � in our

analysis, we do not need a relation betweenNC,Nf, and the
coupling constants at this point.

A. Solutions of the RGEs

The solution for the first RG Eq. (8) can be obtained
easily as

 e2�t� � e2
0

�
1�

b�0

2�
t
�
�1
; (12)

where �0 �
e2

0

4� . Define

 	�t� 	
��t�
�0
	
e2�t�

e2
0

; (13)

where e0 � e�t � 0� which is the initial value at the ref-
erence scale �0. For the solution of the second RG equa-
tion (9), we can define a RG invariant H�t� as

 H�t� � �c� b�	�1��c=b��t�
e2�t�

g2�t�
: (14)

SinceH�t� is a constant, we call itH0. Then, the solution of
the gauge coupling constant can be written as

 g2�t� �
�c� b�e2

0

H0
	c=b�t�: (15)

The solution of the last RG equation (10) can be defined by
another RG invariant K�t�, given as

 K�t� � �u	�1�2c=b�t�
�

1�
2�2c� b�

u
a�t�

g2�t�

e2�t�

g2�t�

�
:

(16)

We can then write

 a�t� �
u

2�2c� b�
g2�t�

e2�t�
g2�t�

�
1�

K0

u
	1��2c=b��t�

�
: (17)

Here K0 is the value of the RG invariant. We can rewrite
Eq. (17) as

 a�t� �
u�c� b�2e2

0

2H2
0�2c� b�

�
	�1�2c=b�t� �

K0

u

�
: (18)

When we check the ultraviolet limit now, we find

 	�t! 1� ! �0; b > 0; (19)

 	c=b�t! 1� ! �0; c; b > 0; (20)

and

 	�1�2c=b�t! 1� !

8<
:
�0; 2c > b;
�0; 2c > b > c;
�1; b > 2c:

(21)

We see that the constants H0 and K0 play important roles
on the behavior of solutions of coupling equations (12),
(15), and (18). For c > b,H0 should be positive; for c < b,
H0 should be negative to have the Yukawa coupling take a
real value. This is necessary to have a unitary theory. Also
for a region c < b < 2c, with H0 < 0, the unitarity condi-
tion is satisfied for all coupling constants. The K0 
 0
condition is also needed for stability of the vacuum. If
K0 < 0, we get a�t! 1�< 0, which raises the problem
of the vacuum instability.

Next we study the different limits our parameters can
take.

1. b! �0 limit case for finite t

We find

 e2�t� � e2
0; g2�t� �

ce2
0

H0
exp

�
�
�
�c
t
�
;

a�t� �
uce2

0

4H2
0

�
exp

�
�

2�
�c
t
�
�
K0

u

�
:

(22)

Here c
2� �

1
�c

and �0 � �. This means that, when we set
the b term to zero, the Yukawa running coupling constant
decreases exponentially to zero. For this limit the gauge
and the quadratic coupling constants go just to a constant.

2. c! b limit case for finite t

If c approaches b, the limit depends on the value of H0.
If H0 is nonzero, g2�t� goes to zero. If H0 goes to zero as a
constant times c� b, i.e. H0 �

c�b
H1

, we find that g2�t� and
a�t� are both proportional to e2�t� as follows:

 g2�t� � H1e
2�t�; H1 > 0; (23)

 a�t� �
ue2

0H
2
1

2b

�
	�t� �

K0

u

�
: (24)

3. 2c! b limit case for finite t

When 2c approaches b, the behavior of a�t� changes. If
we set K0

u � �1� 2c�b
b K1, then a�t� goes as ln	�t�

 a�t� �
ube2

0

8H2
0

�K1 � ln	�t��: (25)

This behavior is not allowed since a�t� diverges as t!
�1.

RENORMALIZATION GROUP ANALYSIS . . . PHYSICAL REVIEW D 76, 025013 (2007)

025013-3



IV. NONTRIVIALITY OF THE SYSTEM

In this section we use the preceding results to investigate
the nontriviality of the system with several criteria such as:

All the running coupling constants:
(i) should not diverge at finite t > 0 (no Landau poles);

(ii) should not vanish identically;
(iii) should not violate the consistency of the theory such

as unitarity and/or vacuum stability.
Since the composite scalar field is the novel feature of our
model, we will not consider the case when the scalar field is
completely decoupled from the theory.

A. Fixed point solution

We derive the expressions given below from the RGE
equations:

 8�2 d
dt

�
g2�t�

e2�t�

�
� �b� c�

�
g2�t�

e2�t�

�
e2�t�; (26)

 8�2 d
dt

�
e2�t�

g2�t�

a�t�

g2�t�

�
� �2c� b�

�
e2�t�

g2�t�

a�t�

g2�t�

�
u

2�2c� b�

�
e2�t�: (27)

For the fixed point solution, b equals c in Eq. (26). For this
value, there is a single solution which satisfies both
Eqs. (26) and (27). This solution is given as

 

e2�t�

g2�t�
�

1

H1
; (28)

where H1 is a constant, and

 

a�t�

g2�t�
�
uH1

2c
: (29)

If we take H0 � H1�c� b� approaching zero as c ap-
proaches to b, while K0 � 0 in Eq. (18), then we find

 g2�t� � H1e2�t�; (30)

 a�t� �
uH1

2c
g2�t�: (31)

Since g2�t�
e2�t� and a�t�

g2�t� are constants, the behavior of the

Yukawa and quartic scalar couplings are completely deter-
mined by the gauge coupling. This corresponds to ‘‘cou-
pling constant reduction’’ in the sense of Kubo, Sibold, and
Zimmermann [32]. In the context of the RGE, it corre-
sponds to the Pendleton-Ross fixed point [33].

B. Yukawa coupling

As seen from the previous sections, the behavior of the
Yukawa coupling depends on whether c > b or c < b. The
point where c � b needs a special care. Moreover, the sign
of the H0 is important.

1. c> b case

In this case H0 should not equal to zero. Then we find in
the UV limits

 g2�t! 1� !
�
�0; H0 > 0;
�0; H0 < 0:

(32)

So the Yukawa coupling is asymptotically free. As it is
seen, the sign of the RG invariant is important. It should be
chosen positive not to cause the violation of stability of the
vacuum.

In Fig. 1 we plot g2 vs e2 for c � 8, b � 7. Both
coupling constants approach the origin as t goes to infinity.
Thus, our model fulfills the condition required by the
asymptotic freedom criterion.

2. c< b case

In this case with a nonzero value of H0,

 g2�t! 1� !
�
�0; H0 > 0;
�0; H0 < 0:

(33)

For H0 < 0, our system satisfies the asymptotic freedom
condition. Our system does not have a Landau pole. In this
respect it differs from the gHY system [12]. As shown
below, there is a restriction on the value of b in this case.

3. c � b case

This is the fixed point solution analyzed above:

 g2�t� � H1e2�t�: (34)

C. Quartic scalar coupling

a�t� can be analyzed with four nontrivial limits of the
Yukawa coupling:

(i) c > b with H0 > 0,

FIG. 1. Plot of g2�t� vs e2�t� for different values of H0. The
arrows denote the flow directions toward the UV region.
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(ii) c < b < 2c with H0 < 0,
(iii) b > 2c with H0 < 0,
(iv) c � b with H0 � 0.

For the c > b case, we should have H0 > 0, whereas in the
c < b < 2c case we have H0 < 0. In both cases K0 should
be greater or equal to zero for the stability of the vacuum.
In the third case, b > 2cwithH0 < 0, for all the real values
of K0, a�t� diverges in the UV limit. This means that there
is no chance for a nontrivial theory in that region. Finally,
the c � b case with H0 � 0 has already be shown in
Eq. (24). It is clear that in the UV limits K0 should not
take negative values.

As seen above, these constraints give different relations
between numbers of color and flavor. Note that in all the
cases studied, if we take K0 < 0, one can deduce from
Eq. (18) that a�t� can be made equal to zero for a finite
value of t, a situation which should not be allowed.
Therefore, we can use only the option with K0 
 0. The
standard model with three colors and six flavors satisfies
the c > b case.

For K0 � 0 at the UV limit, the equation (18)

 a�t� �
u�c� b�2e2

0

2H2
0�2c� b�

	�1�2c=b�t� ! �0 (35)

shows that the coupling constant is asymptotically free.

Also for a nonzero K0, we find in the UV limit

 a�t� !
�c� b�2e2

0K0

2H2
0�2c� b�

: (36)

Then the sign of the K0 is crucial for the stability of the
vacuum.

Although for K0 > 0 we do not violate unitarity, we see
that the asymptotic freedom criterion is not satisfied. The
requirement of this criterion fixes K0 at the value zero. In
Fig. 2, we plot the RG flows in the �a�t�; g2�t�� plane for
different values of H0 higher than zero while the gauge
coupling ��t � 0� is fixed to 1. The origin is the limit
where t goes to infinity, there both coupling constants
approach zero when K0 � 0.

V. CONCLUSION

Here we write the SU�N� gauge version of the polyno-
mial Lagrangian inspired by the Gürsey model. In [20] we
had found an interacting model, where only the composites
take part in scattering processes, if only perturbative cal-
culations are done. Gauging it with a constituent U�1� field
resulted in a model which looked like the gHY system,
with all the problems associated with the Landau pole [22].
When a SU�N� gauge field is coupled, instead, we find that
the renormalization group equations for the three coupling
constants indicate that this model is nontrivial. All the
coupling constants go to zero asymptotically as the cutoff
parameter goes to infinity, exhibiting the behavior dictated
by asymptotic freedom.

In Eqs. (26) and (27), we give the equations for the ratios
of the coupling constants and find the fixed points. We see
that we can have nontrivial fixed points.

One can apply the exact renormalization group to our
model and obtain the additional vertices as given in our
Refs. [12,13]. This will be pursued in the future.
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653 (2006).
[21] M. Hortaçsu and F. Taşk�n, Int. J. Mod. Phys. A 22, 83

(2007).
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