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The Schrödinger wave functional  � exp��SfAa
i � ~x�g� for the d � 3� 1 QCD vacuum is a partition

function constructed in d � 4; the exponent 2S [in j j2 � exp��2S�] plays the role of a d � 3 Euclidean
action. We start from a simple conjecture for S based on dynamical generation of a gluon mass M in
d � 4, then use earlier techniques of the author to extend (in principle) the conjectured form to full non-
Abelian gauge invariance. We argue that the exact leading term, of O�M�, in an expansion of S in inverse
powers of M is a d � 3 gauge-invariant mass term (gauged nonlinear sigma model); the next-leading
term, of O�1=M�, is a conventional Yang-Mills action. The d � 3 action that is (twice) the sum of these
two terms has center vortices as classical solutions. The d � 3 gluon mass m3, which we constrain to be
the same as M, and d � 3 coupling g2

3 are related through the conjecture to the d � 4 coupling strength,
but at the same time the dimensionless ratio m3=g

2
3 can be estimated from d � 3 dynamics. This allows us

to estimate the d � 4 coupling �s�M2� in terms of the strictly d � 3 ratio m3=g2
3; we find a value of about

0.4, in good agreement with an earlier theoretical value but somewhat low compared to the QCD
phenomenological value of 0:7� 0:3. The wave functional for d � 2� 1 QCD has an exponent that is
a d � 2 infrared-effective action having both the gauge-invariant mass term and the field-strength squared
term, and so differs from the conventional QCD action in two dimensions, which has no mass term. This
conventional d � 2 QCD would lead in d � 3 to confinement of all color-group representations. But with
the mass term (again leading to center vortices), only N-ality 6�0 mod N representations can be confined
[for gauge group SU�N�], as expected.

DOI: 10.1103/PhysRevD.76.025012 PACS numbers: 11.15.�q, 11.15.Tk, 12.38.�t

I. INTRODUCTION

The functional Schrödinger equation (FSE) for gauge
theories, while no simpler to solve (and perhaps harder, in
some ways) than any other nonperturbative formulation of
QCD, has often been used over the years to gain insight
into various aspects of QCD or, more generally, SU�N�
gauge theory [1–20]. However, not all of these works
address the important question of how confinement is ex-
pressed in the FSE. A recent paper [19], appearing after the
present work was issued as a preprint, also invokes—as we
do here—a dynamical gluon mass as the leading term in a
certain expansion of the vacuum wave functional of the
FSE.

In any approach to the FSE for QCD that purports to
reveal confinement, there are two important prerequisites:
The first is gauge invariance, and it has been addressed
many ways. The second is the need to insure that there are
only short-range field-strength correlations; otherwise (see,
e.g., the qualitative and in some ways incomplete discus-
sion of Feynman [6]) there cannot be confinement. Given
these, confinement further requires long-range pure-gauge
contributions to the potential. These long-range pure-
gauge parts appear in the FSE as massless longitudinally
coupled scalars that mimic Goldstone fields, although of
course there is no symmetry breaking in QCD. Just as with
conventional Goldstone fields, these massless poles do not
appear in the QCD S matrix; this would be so even if QCD

were not a confining theory. As is well known, center
vortices, solitons of an infrared-effective action for QCD
that encapsulates dynamical and gauge-invariant genera-
tion [21–23] of a gluon massM, show just these properties
and so provide a confinement mechanism. This mass has
been estimated theoretically [21], from phenomenology
[24,25], and on the lattice [26], all yielding values of 600�
200 MeV. The center vortices in d � 3 are characterized
by closed strings that (generically) constitute the constant-
time cross sections of d � 4 center vortices; a confining
condensate of center vortices in d � 4 is therefore mir-
rored by a similar condensate in d � 3. (Of course, the
classical local minimum describing a single or a few center
vortices is not relevant in isolation; it is necessary that there
be an entropy-driven condensate of vortices. We do not
discuss that issue here.)

In d � 3� 1 the FSE describes four-dimensional dy-
namics in d � 3 terms, because the exponent S in the
vacuum wave functional  � exp��S� is (half of) a d �
3 action, which we label Id�3, depending on the spatial
gauge potentials at zero time. Many authors have discussed
center vortices for QCD in strictly d � 4 terms. Our ques-
tion is, how are such solitons—and hence confinement—
described in the FSE action 2S � Id�3?

Our answer proceeds in four steps. The FSE exponent S
is an infinite series of n-point functions integrated over the
spatial components of n gauge potentials (see the
Appendix, which reviews earlier work [8] on the FSE, as
well as Sec. III). The first step, described in Sec. II, con-
siders the lowest-order term S2 of this expansion, which is*Cornwall@physics.ucla.edu
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quadratic and shows only Abelian U�1�N
2�1 gauge invari-

ance. Our conjectured form of S2 exactly satisfies the FSE
with an Abelian gauge Hamiltonian that phenomenologi-
cally describes a gauge-invariant gluon mass M; it is
essentially N2 � 1 copies of the Abelian Higgs model
with infinite Higgs mass.

Since our focus is on confinement, an infrared phenome-
non, we will use techniques and approximations that are
useful in the infrared regime, even though they may mis-
state ultraviolet-dominated phenomena. In particular,
although we treat the gluon mass M as a constant, it is
actually a running mass M�k2� evaluated on shell. In order
that there be dynamical mass generation in QCD, the
running mass must vanish for large momentum k2 [21].
This vanishing cures certain short-distance singularities of
the center-vortex solitons coming from an infrared-
effective action. We will ignore this complication through-
out this paper.

The Abelian case is not entirely trivial, since the action
S2 contains the square root of an operator—the hallmark
of the FSE. (Throughout this paper, we take this operator,
called �, in the simple form � �

�������������������
M2 �r2
p

.)
Nonetheless, S2 has center-vortex solutions. Although
these do not completely coincide with conventional d �
3 center vortices, they show the necessary features: Long-
range pure-gauge parts that confine, and field strengths that
vanish at large distances as exp��M�� where � is the
distance from the closed string on which the vortex lives.

In anticipation of what we must do in the non-Abelian
case, we study briefly the infrared expansion of S2 in
powers of k2=M2 and show that the first two terms yield
a familiar action. The leading term is a gauge-invariant
mass term; the next-leading term is the usual Abelian
gauge action. However, if the expansion is truncated after
two terms, the gauge mass described by them is erroneous.
The reason is elementary: The infrared expansion, at least
in the Abelian case, is nothing but the first two terms of the
expansion

 

�������������������
M2 �r2

p
!

1

M

�
M2 �

1

2
r2 � . . .

�
; (1)

the two terms saved correspond to a mass
���
2
p
M instead of

M. We propose that it may be phenomenologically useful,
although not highly accurate, to make the replacement

 

�������������������
M2 �r2

p
!

Z
M
�M2 �r2� (2)

where the renormalization constant Z ’ 1 can be estimated
in various ways. This heuristic replacement has the correct
gluon mass. We discuss the motivation for this renormal-
ization, coming from omitted terms in the infrared
expansion.

The second step, the subject of Sec. III, begins with the
problems of enforcing non-Abelian gauge invariance.
Using earlier work [8], we show that S2 of step one can

be gauge completed to exact non-Abelian gauge invariance
with an infinite series of n-point functions and powers of
gauge potentials, in such a way that all n-point functions
depend only on the operator �, no matter what the specific
form of � is. Gauge completion uses the gauge technique
[21,27], as reviewed in the Appendix. The gauge technique
is an approximation that becomes exact only at zero mo-
mentum, but is useful generally for momenta not large
compared to M. In this gauge-completed S we continue
to use the simple form in S2 of the two-point function
introduced in the Abelian case. Just as for the ordinary
Schrödinger equation, either direct substitution in the FSE
or a dressed-loop expansion based on [28] ultimately yields
a nonlinear Schwinger-Dyson equation for � (see the
Appendix). We do not attempt to carry out this difficult
program to find �, but simply use the form already intro-
duced in the Abelian case, showing mass generation.

Even the approximate (although showing full non-
Abelian gauge invariance) form of S coming from appli-
cation of the gauge/pinch technique is extremely complex,
involving not only square roots of operators but an infinity
of terms. This S looks nothing like actions that we are used
to dealing with. Ultimately, whatever form S takes must be
dealt with on its own terms. However, just as in the Abelian
case it can be helpful to look for an approximate but
familiar form. We make the same sort of mass expansion,
saving only the first two terms, and argue that for QCD the
leading term, of O�M�, is equivalent to a gauged nonlinear
sigma (GNLS) model, which is commonly used as a de-
scription of gauge-invariant dynamical mass generation in
Yang-Mills theory (see, for example, [21,29]). This sigma
model contains the massless scalar poles, actually pure-
gauge parts of center vortices, that are responsible for
confinement. The second term, of O�1=M�, is (after gauge
completion) the conventional Yang-Mills action. But as in
the Abelian case, the mass is wrong by a factor

���
2
p

, so we
suggest using the replacement of Eq. (2).

In Sec. IV we give the final conjecture for the non-
Abelian exponent S and d � 3 action Id�3 � 2S, and the
main consequences following from it. The conjectured
action is the sum of a GNLS model and a conventional
Yang-Mills action, with the correct free-field mass and a
poorly known renormalization constant Z. We suggest a
method or two for estimating Z, probably with no more
than 25% accuracy.

The fourth step is to examine the consequences of this
final two-term action. We have already noted that this
action has center vortices as classical local minima (clas-
sical maxima of the FSE wave functional), and thus could
provide a description of confinement in the FSE, which
was one of our principal goals. Moreover, by appealing to
known d � 3 gauge dynamics, we can estimate the d � 4
coupling strength in terms of the renormalization constant
Z. In d � 3 the coupling g2

3 has dimensions of mass, and
there is a unique [for given SU�N�] dynamically deter-
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mined ratio M=g2
3, which has been estimated by a number

of authors [30–40]. Knowing only this ratio we can esti-
mate the d � 4 QCD coupling �s�M

2�, getting a value
around 0:4Z. For Z ’ 1 this is reasonably close to an early
d � 4 estimate [21] using the gauge technique and pinch
technique but somewhat low compared to phenomenologi-
cal estimates [25] of 0:7� 0:3. Another application is to
the d � 2� 1 FSE, studied in, among other works, [2,18].
Our present techniques suggest that the corresponding d �
2 FSE exponent S is again a sum of a gauge-invariant mass
term and the usual Yang-Mills action. Greensite [2] specu-
lated that this S just had the conventional Yang-Mills term.
However, as noted there and in [18], this would lead to the
wrong conclusion that in d � 2� 1 all representations of
SU�N� were confined, when in fact the adjoint and other
representations with N-ality � 0 mod N are screened, not
confined. But with the addition of the mass term, confine-
ment can come about through center vortices, and this form
of confinement correctly predicts screening for these
representations.

The paper ends with Sec. V, giving conclusions. The
Appendix reviews some background material on the FSE,
including applications of the pinch/gauge technique to the
gauge FSE.

II. DESCRIBING MASS GENERATION IN THE FSE:
THE ABELIAN CASE

Notation: Throughout this paper we will always use the
canonical gauge potential Aa

i � ~x� multiplied by the cou-
pling g, with the notation

 Aai � ~x� � gAa
i � ~x�: (3)

Here a is a group index for gauge group SU�N�, and i � 1,
2, 3 index the spatial components. All vectors are three
dimensional, so we will now drop the vector notation and
just use, e.g., k for a three-momentum. We also use the
anti-Hermitian matrix form

 Ai�x� �
�
g
2i

�
�aAa

i �x� (4)

where the �a are the Gell-Mann matrices for SU�N�,
obeying

 Tr 1
2�a

1
2�b �

1
2�ab: (5)

The Aai have engineering mass dimension 1 in any dimen-
sion. The time component A0

i is missing from the FSE. In
this paper we will not need to indicate gauge-fixing and
ghost terms necessary to define the d � 3 functional inte-
grals that yield physical expectation values.

In the first step we begin with a simple quadratic (in the
gauge potentials) form for S that is consistent with gluon
mass generation. This quadratic form S2 is Abelian, show-
ing U�1�N

2�1 local gauge invariance:

 S2 �
1

2g2

Z
Aai �ijAaj �x� (6)

where the integral is over three-space, and �ij is a product
of two factors:

 �ij � Pij�: (7)

The factor Pij is a transverse projector,

 Pij � �ij �
@i@j
r2 ; (8)

that is required for Abelian gauge invariance. The free-field
value of �, called �0, describes free massless particles:

 �0 �
�����������
�r2

p
�

�����
k2

p
(9)

where k is a three-momentum. To describe dynamical mass
generation we will use, in this paper, the simple form

 � �
������������������������
�r2 �M2

p
(10)

in which the gluon mass M is the on-shell value of a
running mass. Putting these equations together we have

 S2 �
1

2g2

Z
Aai

�������������������
M2 �r2

p
PijAaj : (11)

One can easily check that S2 is an exact solution to the
FSE for an Abelian Hamiltonian with a gauge-invariant
mass term:
 

H �
Z �
�

1

2
g2

�
�
�Aai

�
2
�

1

2g2

�
1

2
�Faij�

2 �M2Aai PijA
a
j

��

�
Z �1

2
��a

i �
2

�
� V; (12)

where Faij � @iAaj � @jA
a
i are the Abelian field strengths.

Here the mass term is put in by hand; in the non-Abelian
version, we imagine that this mass term summarizes the
effects of non-Abelian condensates.

A. Equations of motion and solitons for S2

One goal in this Abelian example is to find center-
vortex–like solitons as extrema of S2. It may not be
entirely obvious how to proceed, because this action has
the square root of an operator, and leads to subtleties
concerning positivity, locality, and self-adjointness. For
example, we will see that the operator

�������������������
M2 �r2
p

effec-
tively vanishes on center-vortex solitons, although �r2 is
formally positive; this would falsely suggest that the action
of such a soliton is zero. Consider the following alternative
description of S2, found by expanding the square root in
powers of�r2=M2 and assuming that integration by parts
with no boundary terms is allowed at all orders:
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 S2 �
M

2g2

Z
Aai PijA

a
j �

1

4g2

�
Z X

N�0

CN�1M�1�2N	@1 . . . @NFaij�x�

2 (13)

where @k � @=@xk and the CN are the coefficients of xN in
the power-series expansion of

������������
1� x
p

. This redefinition of
the square root gives the same generalized Euler-Lagrange
equations as the naive equations following from the origi-
nal form of Eqs. (6), (7), and (10), because these equations
assume that integrating by parts gives no contributions (as
would be appropriate for functions that fall off at least
exponentially).

Saving only the first two terms in the mass expansion of
S2 based on Eq. (13) should fail to satisfy the Abelian FSE
based on the Hamiltonian of Eq. (12). It is instructive to
work out this failure and its consequences. The FSE reads

 

�g2

2

Z ��S2

�Aai

�
2
�
g2

2

Z �2S2

�Aai �A
a
i
�H � E (14)

where E is the vacuum energy. Since the second-derivative
term on the left-hand side of this equation only contributes
to E, we drop it and renormalize E to zero. The mass
expansion of S2 suggests that the remaining quadratic
term in the FSE is in error at O�1=M2�. A simple calcu-
lation confirms this; Eq. (14) with the action replaced by
the first two terms (the mass term and the N � 0 term) of
Eq. (13) becomes

 

�g2

2

Z ��S2

�Aai

�
2
�H � �

1

4g2

Z 1

2M2 �@jF
a
ij�

2: (15)

At least qualitatively this error term in the FSE [the
right-hand side, of O�1=M2�, the same relative order as
the N � 1 term in Eq. (13)] can be thought of as increasing
the kinetic field-strength term �Faij�

2 by a factor involving a
mean-square momentum of the type hk2i=M2; such an
increase helps restore the balance between kinetic and
mass terms in the expanded Hamiltonian which was dis-
rupted by the usual infrared expansion of Eq. (16). Such a
renormalization is not quantitatively trivial, since momenta
relevant for solitons such as center vortices are of O�M�.

In order to study these generalized Euler-Lagrange
equations, it is very helpful to have S2 in a formally local
form. We note that, term by term, all but the first term of
this alternative form of S2 are both local and manifestly
gauge invariant, and need no change. As for the first term,
we replace (in a familiar way) the nonlocal part by scalar
fields:

 S2 �
M

2g2

Z
	Aai � @i�

a
2 �
1

8Mg2

Z
	Faij


2 � . . . : (16)

Now keeping only a finite number of terms in the mass
expansion of S2 yields a local action, although of course
the infinite sum may introduce nonlocalities.

It is useful to restate the local form of S2 in a compact
way, by undoing the power-series expansion and integra-
tion by parts:
 

S2 �
M

2g2

Z
	Aai � @i�

a
2

�
1

2g2

Z
Aai Pij	

�������������������
M2 �r2

p
�M
Aaj : (17)

The scalar fields �a are to be integrated over, which may
be thought of as projection of a simple mass term �Aai �

2

onto its gauge-invariant part by integrating over all gauge
transformations. Because the�a appear quadratically, such
an integration is the same as solving the classical field
equations. The field equations for the �a are identical
with a constraint following from the field equations for
the Aai .

Varying S2, one finds the gauge-potential equations of
motion:

 M�Aai � @i�
a� � 	

�������������������
M2 �r2

p
�M
PijAaj � 0: (18)

The divergence yields the �a equations:
 

r2�a � @iA
a
i ! �a �

1

r2 @iA
a
i � ’

a with

r2’a � 0: (19)

Rewrite Eq. (18) as

 

�������������������
M2 �r2

p
PijAai � M@i

�
�a �

1

r2 @jA
a
j

�
� M@i’a:

(20)

Multiplication by
�������������������
M2 �r2
p

leads to
 

�M2 �r2�PijAaj � M
�������������������
M2 �r2

p
@i’a ! r2Aai � @i@jA

a
j

� M2

�
Aai � @i

1

r2 @jA
a
j

�

�M
�������������������
M2 �r2

p
@i’

a

! r2Aai � @i@jA
a
j �M

2�Aai � @i�
a�

� M	M�
�������������������
M2 �r2

p

@i’a: (21)

Term by term, every term on the right-hand side of the
third equation in Eq. (21) vanishes, if we use r2’a � 0.
Since in R3 there are no fields ’a solving r2’a � 0 that
are regular everywhere and vanish at infinity, one may be
tempted to make the stronger statement that ’a must
vanish. But the description of center vortices requires a
nonzero ’a, singular on a closed Dirac hypersurface of
codimension 2 (a closed string in d � 3), so it is more
accurate to say that term by term the expansion of the right-
hand side of the third equation in Eq. (21) vanishes almost
everywhere. However, we will soon see that this is not true
for the unexpanded form. If we nonetheless drop this term
with the square-root operator, the final equations of motion

JOHN M. CORNWALL PHYSICAL REVIEW D 76, 025012 (2007)

025012-4



are the usual equations [41] for center vortices, the same as
would be obtained from the d � 3 Euclidean action

 

1

2g2

Z �
M2�Aai � @i�

a�2 �
1

2
�Faij�

2

�
: (22)

This action is just the potential V occurring in the Abelian
Hamiltonian of Eq. (12), written in local form; it is the
Abelian form of the d � 3 infrared-effective action used
[21,41] to describe mass generation, and it has center
vortices as classical solitons.

If the term M	M�
�������������������
M2 �r2
p


@i’a is left unexpanded,
things are slightly different, although there are still center
vortices characterized by long-range pure-gauge parts and
field strengths vanishing exponentially as exp��M��,
where � is the distance from the Dirac string. A center
vortex is always fully determined by ’a. We present our
results in the gauge @iAai � 0, in which case�a � ’a. The
well-known expression [41] for the center vortex @i�a is

 @i�a�x� � 2�Qa�ijk@j
I

�
dzk

Z d3k

�2��3
1

k2 e
ik��x�z� (23)

where the closed contour � is the Dirac string, and Qa is
one of the N � 1 generators of the Cartan subalgebra,
normalized so that exp�2�iQ� is in the center of SU�N�.
Now the third equation in Eq. (21) easily gives

 Aai �x� � 2�Qa�ijk@j
I

�
dxk

Z d3k

�2��3

�
M

k2
������������������
k2 �M2
p eik��x�z�: (24)

In the usual d � 3 vortex, an extremum of the action in
Eq. (22), the factor M�k2 �M2��1=2 would be replaced by
M2�k2 �M2��1.

This unusual square root does not change the fact that
the field strengths show exponential decrease; in fact

 Bai �
1

2
�ijkF

a
jk � 2�Qa

I
�
dzi

M2

2�2jx� zj
K1�Mjx� zj�:

(25)

There is, of course, still the long-range pure-gauge part
associated with �a, which we can isolate by the decom-
position

 

M

k2
������������������
k2 �M2
p �

1

k2 �
1

k2

�
M������������������

k2 �M2
p � 1

�
: (26)

The second term on the right-hand side is short ranged. The
short-distance behavior is more singular than that of the
conventional vortex, but leads only to a logarithmic singu-
larity in the value of S2, the same as for the conventional
vortex. In both cases the singularity is multiplied by a
power of M, which removes the singularity because the
running mass vanishes at short distances. So the vortex
extrema of S2 differ in detail from the usual center vortex,

but have the hallmark features of a long-range pure-gauge
part and field strengths vanishing like exp��M��.

B. Mass expansion of S2

Another goal of this section is to replace S2, which is
either given in Eq. (13) as an infinite sum involving de-
rivatives of arbitrarily high order or in Eq. (17) in terms of
square roots of operators, by a tractable and recognizable
action. The first two terms of the expansion, written ex-
plicitly in Eq. (16), fit these criteria, but suffer from a
serious defect. The coefficient of the second term, the usual
gauge action, is wrong by a factor of 2; as written, it
describes gauge bosons of mass

���
2
p
M. This wrong coeffi-

cient arises from the expansion
������������
1� x
p

� 1� �x=2� �
. . . . We can see the same thing happening with a mass
expansion of the Fourier kernel of Eq. (26). Expand the
square root in the curly brackets of this equation in powers
of k2=M2 to get

 

M

k2
������������������
k2 �M2
p �

1

k2 �
1

k2 � 2M2 � . . . : (27)

This is exactly the kernel of the usual d � 3 vortex, but
with the wrong mass

���
2
p
M. This is not the only way of

expanding; for example, rewriting the Fourier kernel in a
different form and expanding the square root occurring in it
gives

 

M

k2
������������������
k2 �M2
p �

M
������������������
k2 �M2
p

k2�k2 �M2�

�
M2

k2�k2 �M2�
�

1

2�k2 �M2�
� . . . : (28)

The first term on the right-hand side is the standard center
vortex with the correct mass M, and all other terms have
this mass as well. However, these other terms give the
wrong coefficient for the exponential falloff of the field
strengths at large distance.

There are no such results for square-root operators in the
non-Abelian case, which is, as expected, much more com-
plicated. So we will, in the spirit of the Abelian expansion
given in Eq. (16), look for a way to approximate the
complicated non-Abelian result by a two-term form, the
first of which is a (gauge-invariant) mass term and the
second is the usual Yang-Mills action. In the Abelian
case, such a two-term action as an approximation to the
infinite sum of Eq. (13) suggests that the derivatives in this
sum, beyond those in Faij, be approximated by averages so
that this equation is effectively

 S2 �
M

2g2

Z
Aai PijA

a
j �

1

4Mg2

Z X
N�0

CN�1

�
k2N

M2N

	

�	Faij�x�

2

�
M

2g2

Z
Aai PijA

a
j �

Z

4Mg2

Z
	Faij�x�


2 (29)

CONJECTURE ON THE INFRARED STRUCTURE OF THE . . . PHYSICAL REVIEW D 76, 025012 (2007)

025012-5



where k2N stands for the multiple derivatives. If this is
justified, the infinitely many terms of Eq. (13) are indeed
replaceable by a mass term plus a renormalized conven-
tional gauge action. But because the gluonic mass de-
scribed by this S2 must be M, the same as in the original
S2, there will have to be an equal renormalization of the
mass term in Eq. (29) above. In later sections we will
explore an approximation to the square root that is moti-
vated by these remarks, involving the replacement

 

�������������������
M2 �r2

p
!

Z
M
�M2 �r2� (30)

for some renormalization constant Z, supposed to be near
unity. We have no reliable techniques for calculating Z, so
we will resort to a simplistic approach of making a least-
squares fit of the operator

�������������������
M2 �r2
p

by the operator
�Z=M��M2 �r2�, which leads to Z ’ 1:1� 1:2.

Before engaging in this mass expansion we must under-
stand the gauge structure of the non-Abelian exponent S.

III. THE NON-ABELIAN CASE: GAUGE
COMPLETION AND MASS EXPANSION

We can be nowhere near as complete in the non-Abelian
case as we were above, and ultimately will be forced to
resort to a large-mass expansion.

In the non-Abelian case, the quadratic term S2 with
which we began is supplemented with an infinity of terms,
involving spatial integrals over n � 3 spatial gauge poten-
tials multiplied by an n-point function �n depending on
the spatial and discrete coordinates of the gauge potentials:

 g2S �
1

2!

ZZ
Aai �ijA

a
j �

1

3!

ZZZ
Aai A

b
jA

c
k�

abc
ijk � . . . :

(31)

The n-point function of this expansion is related to the n�
1-point function through ghost-free Ward identities, as
arise in the pinch technique [21,23]. These Ward identities
can be ‘‘solved’’ using the gauge technique, a well-known
technique whose main points of interest we describe in the
Appendix, and the result is that it is possible, in principle,
to find an approximate but exactly gauge-invariant expres-
sion for the entire series of n-point functions describing the
wave functional exponent S. The approximation involves
dropping terms that are important for ultraviolet momenta
but not for infrared momenta. In practice, the gauge tech-
nique gets harder and harder with increasing n, and we give
explicit results only for n � 3. Each n-point function
depends only on the two-point function, but in a compli-
cated way that is not understood beyond n � 3. Ultimately
the two-point function is determined by a nonlinear
Schwinger-Dyson equation that can (again in principle)
be derived either by direct substitution in the FSE or by a
dressed-loop expansion [28,42,43]. [The diligent reader
may want to try the FSE for the ordinary Schrödinger
equation for a quartic plus quadratic potential, truncated

at n � 6, to see how the FSE reduces to a set of equations
for n-point functions with n � 3 in terms of the two-point
function. Even in the extreme nonperturbative case of a
vanishing quadratic term, quite accurate results are ob-
tained.] Using a dressed-loop expansion for S is equivalent
to a direct solution of the FSE (of course, either the
dressed-loop expansion or the FSE must be truncated at a
certain number of loops, but this truncation has nothing to
do with a truncation in the coupling g2; all-order non-
perturbative effects arise even at one-dressed-loop order
in QCD).

Gauge invariance requires that the lowest-order (qua-
dratic) term has the transverse form already given in the
Abelian action of Eq. (11). This form is used in the Ward
identities for the three-point function as detailed in the
Appendix, where we show that both the Ward identities
and the FSE for the determination of this three-point
function involve only the two-point function �ij. It is
plausible that there exists a three-point function satisfying
these equations that is a functional solely of the two-point
function �ij. The gauge technique provides such a three-
point function, as given in Eqs. (A8) and (A9). The gauge
technique by itself does not furnish a unique solution,
which must be found by recourse either to the FSE itself
or to the dressed-loop expansion. However, in the infrared
limit of momenta small compared to the mass M the
solution is unique.

A. Mass expansion: The leading term

In general, the gauge technique leads to quite compli-
cated expressions, and we will explore only a simplified
version of it. The main simplification is to look at the
leading terms in an expansion in inverse powers of M. In
the leading term, of O�M�, all two-point functions � are
replaced just by M itself, which gets rid of many
momentum-dependent terms. This expansion, with the
help of Eqs. (A8) and (A11), yields the leading term of
the three-point function as

 �abc
ijk �k1; k2; k3� � fabc

M
6

�k1ik2j�k1 � k2�k

k2
1k

2
2

� c:p:
�

�O�1=M�: (32)

As discussed in the Appendix this three-point function,
with its longitudinally coupled massless poles, corresponds
exactly to the three-point term of the order-by-order clas-
sical solution to the GNLS model.

One can proceed in principle this way, by looking at the
pinch/gauge-technique solution for the four-point function
(see [44]) and taking the large-mass limit, then the five-
point function, etc. We will not detail such an investigation
here, but will point out some features that strongly suggest
the all-order solution. The structure of the Ward identities
shows that the leading term of every n-point function is
O�M�, with all other dimensions taken up by momenta, and
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that the gauge-technique solution involves longitudinally
coupled massless poles whose number grows with n. We
leave the straightforward details to the reader to show that
the GNLS term of S is the exact solution of a FSE
Hamiltonian consisting of just this term itself, as given in
Eq. (A12) below, multiplied by M. Of course, there is no
such term in the underlying QCD Hamiltonian, but there
would be one in the infrared-effective Hamiltonian of
QCD, derived by d � 4 techniques [21,29]. We therefore
suggest that the action of the gauged nonlinear GNLS
model, expressed in nonlocal form [as in the originally
stated form of S2, in Eq. (11)], is the all-order perturbative
solution to the leading mass terms of the gauge-technique
approach.

[Greensite and Olenı́k [18] have conjectured that in
certain instances operators such as r�2 should be replaced
by D�2, where Di � @i � Ai is the covariant derivative.
Their lattice calculations show that D�2 is a finite-range
operator, with no massless poles; this is reasonable, be-
cause it contains gauge-potential condensate terms, but it is
not obvious where the long-range pure-gauge excitations
responsible for confinement, such as we have in Eq. (A14),
are. We will not follow this line of reasoning here.]

B. The second-leading term

The next-leading term is of O�M�1�. We already know
that the term of this order in the Abelian case is the
conventional Abelian action F2

ij. It is obvious without
any calculation that the Abelian action will, at a minimum,
be gauge completed to the full Yang-Mills action with its
three- and four-point vertices. These come from the three-
and four-point functions in the expansion of S as given in
Eq. (31). The desired terms of the Yang-Mills action are
straightforwardly found either by direct solution of the FSE
or from the dressed-loop expansion, which always contain
all the terms of the action of the underlying theory divided
by some sum of two-point functions �. For example, we
show in the Appendix that the three-point function has the
term
 

�abc
ijk �k1; k2; k3� � 	��1� ���2� ���3�
�1

� fabc	�ij�k1� k2�k� c:p:
 � . . . (33)

where the term in square brackets is the free Yang-Mills
three-point vertex and each ��i� is replaced by M to find
the leading term in the mass expansion. There is a plethora
of other terms, which either cancel among themselves or
give total divergences. Of course, higher-order gauge-
invariant terms may arise from higher-order coefficient
functions in the gauge-potential expansion of S,
Eq. (A2), but we will not consider them, since they are
necessarily accompanied by higher powers of 1=M.

In the Abelian case the O�1=M� term is of the correct
functional form, but with a coefficient twice as small as it
should be, and the same problem arises for the non-Abelian

case. This results in a gauge mass of
���
2
p
M instead of M, as

pointed out in Sec. II. In the next section we consider a
modification of the straightforward mass expansion of the
type of Eq. (30) that forces the correct mass.

IV. THE FINAL CONJECTURE AND ITS
CONSEQUENCES

A. Heuristic mass expansion

What we have so far in the gauge-completed mass
expansion to second order is the sum of a GNLS and a
Yang-Mills term, but with the wrong mass. What we need
is an approximation to this two-term action that has the
correct mass, in part because solitons are described in this
momentum range and decay at a rate  exp��M��. In any
event, it is clear that the first two terms in any sensible
infrared expansion consist first of a gauge-invariant mass
term and second of a standard Yang-Mills action.

Rather than stick to a strict expansion in powers of
r2=M2, we conjecture that, as in the Abelian case, we
can replace � �

������������������������
�r2 �M2
p

by a leading term �Z=M��
��r2 �M2�, where Z is a coefficient of O�1�.

The mathematical motivation for least-square fits of
operators is well known. Consider a normal operator P,
expressed in terms of its eigenvalues and eigenfunctions:

 P �
X
jni�nhnj: (34)

Any function of P, call it f�P�, is expressed by replacing
�n by f��n�. With the operator norm TrPyP, we define a
relative root mean square distance between two operators
f�P� and g�P� by

 

�
Tr	f�P� � g�P�
	f�P� � g�P�
y

Trf�P�f�P�y

�
1=2

�

�R
d�����jf��� � g���j2R

d�����jf���j2

�
1=2
; (35)

where

 ���� �
X
���� �n� (36)

is the density of eigenvalues. One could also modify this
density by multiplying it by a non-negative function q���
to emphasize a certain range of eigenvalues, so that the
weight in the integral is ����q���.

The eigenvalues of P � �r2 are the squared momenta
k2, positive for real k. We really want our approximation of
� to be fairly good for imaginary k, so the above discus-
sion is not very useful. Moreover, the operators involved
are not in trace class, so divergences arise. Instead, we take
a rather simpleminded point of view, asking what is the
best fit, in the least-squares sense, of the function Z�1� x2�

to the function
��������������
1� x2
p

in the interval 0 � x � 1. Here x2

represents r2=M2, and positive values for this operator
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suggest that we are applying it to a special class of func-
tions representable by Laplace transformation, with the
Laplace-transformation weight peaked around M. This is
indeed the property of the functions that enter into FSE
center vortices, as exemplified in the Abelian center vortex
of Eq. (25).

For a uniform weight over 0 � x � 1 we find the nor-
malized least-squares integral Ils�Z�:

 Ils�Z� �
�R1

0 dx	Z�1� x
2� �

��������������
1� x2
p


2R
1
0 dx�1� x

2�

�
1=2
: (37)

Minimizing on Z gives Z � 45�
128 ’ 1:10, and the minimum

value of Ils is about 0.22. If we replace x2 by x in the
integrand of Eq. (37), which corresponds to a different
weight, we get Z � 1:2. Both values are near unity, as
expected, and the value Ils ’ 0:22 suggests the relative
accuracy of this least-squares fit.

B. The final conjecture: Relating d- and d�
1-dimensional dynamics

The final form of the conjecture, expressed in terms of
the d � 4 variables g2, M, is then
 

�2S � �Id�3 !
2MZ

g2

Z
d3xTr	U�1DiU


2g

�
Z

Mg2

Z
d3xTrG2

ij �O�M�3�: (38)

We now compare this to the canonical d � 3 form of the
conjectured action, which is

 Id�3 � �
Z
d3x

�
1

2g2
3

TrG2
ij �

m2
3

g2
3

Tr	U�1DiU
2
�
: (39)

Here Gij is the non-Abelian field strength, Di � @i � Ai is
the covariant derivative, and the unitary matrix U is the
GNLS field, as before; the gluon mass is m3 and the d � 3
coupling, with dimensions of mass, is g2

3. Equating Id�3

with 2S leads to

 

ZM

g2 �
m2

3

2g2
3

; g2 �
2Zg2

3

M
: (40)

These equations yield m3 � M, as expected, plus

 g2 �
2Zg2

3

m3
: (41)

(Note that the d � 3 quantities scale properly at large N if
their d � 4 counterparts do.) Presumably the d � 4 cou-
pling g2 that occurs in these formulas is actually the
running coupling g2�M2� evaluated at the gluon mass scale.

We can now make an estimate of a pure d � 4 quantity
in terms of a pure d � 3 quantity, from Eq. (41) and earlier
d � 3 results. In d � 3 one quantity of particular interest is
the dimensionless ratio m3=g2

3. This ratio has been esti-
mated in a number of continuum and lattice studies [30–

38], and we can see whether this d � 3 dynamical quantity
can correctly predict the running coupling g2�M2� at the
gluon mass scale. Or we can reverse the problem and use
estimates of the running coupling to predict m3=g2

3. There
is no particular reason to think that the dynamics of the
action defined by the exact vacuum wave functional, before
truncation to two terms of a mass expansion, should be
precisely that of d � 3 QCD. Nonetheless, if our conjec-
ture is to be believed there should not be gross
discrepancies.

In SU�2� gauge theory various authors [30–38] give a
valuem3=g

2
3 ’ 0:32, and one SU�3� lattice study [39] gives

a value of 0.48. The quantitym3=g
2
3 should be linear inN of

SU�N� for large N, and the factor 3=2 nicely converts the
SU�2� values to the SU�3� value, so we use 0.48 as the
SU�3� value. We then find a value for the strong coupling
(with no quarks) �s�M2� ’ 0:33Z that is in fairly good
agreement with the one-dressed-loop approximation found
in the original paper on dynamical gluon mass generation
[21]. This paper gives a one-dressed-loop equation for the
running charge with dynamical gluon mass generation. At
the momentum scale of the gluon mass M,

 �s�M2� �
g2

4�
�

12�

	11N � 2Nf
 ln	5M
2=�2�


’ 0:4; (42)

where the numerical value is based on the estimates M �
0:6 GeV, � � 0:3 GeV, and the absence of quarks (Nf �
0). Of course, these numbers for M and � are themselves
uncertain, if only because Eq. (42) is a one-dressed-loop
equation.

According to this one-dressed-loop equation, accounting
for three light flavors multiplies the no-quark value by
11=9 ’ 1:2. If we assume that this correction applies to
the FSE result of this paper, which as it stands does not
account for quarks, our estimate of �s�M2� increases to
about 0:4Z.

Several papers have extracted values of �s�0� ’ 0:7�
0:3 from various scattering data sensitive to low-
momentum effects [25] that could diverge if there were
no gluon mass. The three-quark value that we give of 0:4Z
is a little smaller, but in quite reasonable agreement con-
sidering the approximation that is inherent in a two-term
truncation of the FSE exponent S and our lack of knowl-
edge of Z.

It has been argued [40] that m3=g2
3 for SU�N� is very

closely approximated by the simple analytic function

 

m3

g2
3
�

N
2�

; (43)

the present author [21] has argued for a ratio that should be
fairly close to 15N=�32��, which differs from the above by
only a few percent. One then has a simple analytic formula
for �s�0�. Using the value from Eq. (43) in Eq. (41) yields
the amusing, if not very accurate, formula
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 �s�M2� �
Z
N
’

1

N
: (44)

We can play the same game in one less dimension for the
d � 2� 1 FSE, beginning with an exponent S for the wave
functional that is the trivial dimensional reduction of what
we began with in d � 3� 1. The result is a d � 2 action
with, as in d � 3� 1, a mass term and a kinetic term. This
is not the standard d � 2 QCD action, which is a free-field
theory. We compare this to a conjecture made long ago by
Greensite [2], arguing that S for the FSE was just the usual
Yang-Mills action in one less dimension. Unfortunately, as
[18] notes, if Greensite’s 1979 conjecture is applied in d �
2� 1, the effective action is the familiar d � 2 free-field
QCD, which would lead to confinement of all representa-
tions of SU�N�, not just those with N-ality nonzero. This is
not the right behavior for d � 2� 1. But in our case, once
again the action is the Yang-Mills term plus a GNLS model
mass term; this action has [42] center vortices; they are
pointlike objects in d � 2. A condensate of these solitons
leads to confinement, but only of group representations that
have N-ality 6�0 mod N; other representations (such as the
adjoint) are blind to the long-range parts of center vortices.
This is the correct behavior for d � 2� 1 gauge theories.
However, if the mass term were not present in Id�2, this
action, which is supposed to carry all the information about
d � 2� 1 gauge theories, would reduce to the standard
Yang-Mills action in d � 2. The conventional treatment of
d � 2 gauge theories, which (in the absence of dynamical
matter fields) are free-field theories, finds confinement
through the long-range free gluon propagator, and all
representations are confined. But with the mass term, the
gluon propagator is short ranged and confinement comes
from the pure-gauge long-range parts of center vortices.

It is far from trivial to calculate the properties of the
center-vortex condensate in d � 2, and so we cannot relate
the d � 3 coupling to the string tension that would be
found from the d � 2 effective action.

V. SUMMARY AND CONCLUSIONS

We have conjectured that to a reasonable approximation
the dominant quasi-infrared part of the vacuum wave func-
tionals for the d � 3� 1 and d � 2� 1 FSE are actions in
one less dimension consisting of a Yang-Mills term and a
GNLS model term, showing gauge-invariant dynamical
mass generation. Two main conclusions follow:

(1) Given the usual entropy-dominance argument, these
wave functionals show confinement through center
vortices, such that only group representations with
N-ality 6�0 mod N are confined.

(2) In d � 3� 1 we can appeal to earlier works esti-
mating the ratio m3=g2

3 in the d � 3 action of the
FSE to make the estimate �s�M2� ’ 0:4Z, where Z
is a renormalization constant that we have very
crudely estimated to be in the neighborhood of

1.1–1.2. This can be compared to an earlier estimate,
based on the original work on dynamical gluon mass
generation, of �s�M2� ’ 0:4.

Both these estimates have three light flavors of quarks.
This is to be compared to phenomenological estimates
[25], also with three light quarks, of �s�0� ’ 0:7� 0:3.

It would be interesting to verify this structure of the FSE
vacuum wave functionals through lattice computations.
Simulations of the FSE are not much different from those
of the usual gauge theory, as can be understood from [8],
and as in these, one can look explicitly for gluon masses in
gluon propagators, using a gauge-fixed form of the action,
or for center vortices themselves, as reviewed in [45].
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APPENDIX: GAUGE COMPLETION AND THE
MASS TERM

The principal problem in the FSE for gauge theory is to
enforce gauge invariance. The canonical momentum and
Hamiltonian are represented by

 �a
i ! �ig

2 �
�Aai

;

H �
Z
d3x

�
�

1

2
g2

�
�
�Aai

�
2
�

1

2g2 �B
a
i �

2

� (A1)

where Bai is the chromomagnetic field strength. The gen-
erator of infinitesimal gauge transformations is
Dab
j ��i�=�A

b
j �, and this must annihilate  . The exponent

S in  has the form given in Eq. (31), repeated here for
convenience:

 g2S �
1

2!

ZZ
Aai �ijA

a
j �

1

3!

ZZZ
Aai A

b
jA

c
k�

abc
ijk � . . . :

(A2)

Invariance of S under infinitesimal gauge transformations
is trivial for the two-point function �ij; this quantity must
be conserved, so that in Fourier space

 �ij�k� � ��k�Pij�k�; Pij � �ij �
kikj
k2 : (A3)

For the free theory �0�k� � k.
Gauge invariance is more complicated for higher-point

functions. Annihilating  with the generator of gauge
transformations yields a set of ghost-free Ward identities
(these Ward identities also apply to the pinch-technique
[21,23] construction of gauge-invariant Green’s functions).
For example, the Ward identity for the three-point function
is
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 k1i�
abc
ijk �k1; k2; k3� � fabc	�jk�2� ��jk�3�
 (A4)

where �jk�2� � �jk�k2�, etc.
Now turn to the FSE itself. The equation determining the

three-point function has the general form

 �il�1��
abc
ljk ��jl�2��

bac
lik ��kl�3��

cab
lij � fabc�ijk:

(A5)

The right-hand side �ijk comes from the cubic term in H,
plus another term from the five-point function. The Ward
identity for �ijk is determined by the above equation plus
the Ward identities for the two- and three-point functions
as already given, and multiplying both sides of Eq. (A5) by
k1i yields

 k1i�ijk � �2
jk�3� ��2

jk�2�: (A6)

For free particles, with � � �0, this is satisfied by the
usual free three-point vertex

 �0
ijk � i�k1 � k2�k�ij � c:p: (A7)

The reader can verify that the FSE equation (A5) has a
solution of the form
 

�abc
ijk �k1; k2; k3� � 	��1� ���2� ���3�
�1fabc

�

�
�ijk �

�
��1�

k1i

k2
1

	�jk�2� ��jk�3�


� c:p:
��

(A8)

which respects the Ward identity of Eq. (A4), by virtue of
the massless pole terms of Eq. (A8). It should now be clear
that these longitudinally coupled massless excitations will
occur, as a result of enforcing gauge invariance, for every
n-point function. We will shortly identify these with cou-
plings of the GNLS field introduced in our conjecture for
the infrared-effective action.

So far the vertex function �ijk is undetermined. As [8]
argues, one can carry out a program of expressing all
higher-point functions in terms of the two-point function,
and then the FSE (or the equivalent dressed-loop expan-
sion) becomes a nonlinear, nonperturbative equation for
this two-point function �. The idea, known also as the
gauge technique, is to find an infrared-effective approxi-
mation to �ijk that exactly satisfies the Ward identity (A6)
for any �. One can, at least in principle, find such infrared-
effective approximations for four- and higher-point func-
tions as functionals of �. In fact, a very general form for
the ‘‘solution’’ to the Ward identity for the three- and four-
point functions is known [27,44] for arbitrary dependence
of � on momentum. The word solution is enclosed in
quotes because it is not unique; any completely conserved
term can be added to the solution for �ijk, for example. But
the point is that purely conserved terms are of higher order
in momenta than the terms saved in the gauge technique.

The general solution of [27] is

 �ijk � �ij�k1 � k2�k �
k1ik2j

2k2
1k

2
2

�k1 � k2�l�lk�k3�

� 	Pil�k1��lj�k2� � Pjl�k2��li�k1�

k3k

k2
3

� c:p:

(A9)

where the first term on the right is the free vertex �0
ijk and

�ij�k� � Pij�k���k� is the transverse pinch-technique
[21,23] self-energy, related to �ij by

 �2
ij � Pij	�2

0 ��f�g
 (A10)

where �2
0 � k2 is the free gluon contribution.

In the simple case studied by us, � � M2, and the
resulting expression for �ijk is

 �ijk � �ij�k1 � k2�k �
M2

2

k1ik2j�k1 � k2�k

k2
1k

2
2

� c:p:

(A11)

Combining the pinch technique and the gauge technique
by ‘‘solving’’ the Ward identities insures exact gauge
invariance, but is nonetheless an approximation (expected
to be valid in the infrared regime). Ultimately it yields a
dressed-loop equation for a single transverse operator
�ij�k� � Pij�k���k�. We will not explore this difficult
program further here.

The order-by-order appearance of massless longitudinal
poles in the gauge completion process is directly mirrored
in the order-by-order solution of the classical GNLS
model. Because the notation is more compact, we tempo-
rarily switch to the anti-Hermitian matrix notation of
Eq. (4). The local GNLS model, normalized appropriately,
has the action [29]

 IGNLS �
�M

g2

Z
d3xTr	U�1DiU


2 (A12)

where U is a unitary matrix transforming as U ! VU
under the gauge transformation

 Ai ! VAiV
�1 � V@iV

�1: (A13)

The classical equations forU express this quantity in terms
of the Ai [29], with the result
 

U � e!;

! �
�1

r2 @ � A�
1

r2

��
Ai; @i

1

r2 @ � A
�

�
1

2

�
@ � A;

1

r2 @ � A
�
� � � �

�
(A14)

showing the appearance of massless scalars. More gener-
ally, since U�1DiU is a gauge transformation of Ai, func-
tional integration over the U is equivalent to projecting out
the gauge-invariant part of the mass term [8,11]. Note that
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the term linear in Ai of the GNLS model field U�1DiU is
the transverse part of Ai. This linear term is the Abelian
mass term that began our investigations. All higher-order
terms of! in Eq. (A14) are non-Abelian. One can straight-
forwardly verify that the three-point function of Eq. (A11)
corresponds precisely to the three-point term found by

using the expansion of Eq. (A14) in the GNLS model
action. Because the GNLS action is fully gauge invariant,
it gives one solution to the all-orders ghost-free Ward
identities, and this solution is what is emerging from direct
calculations using the gauge technique.
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