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Hard thermal effective action in QCD through the thermal operator
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We derive in a simple way the well-known hard thermal effective action for QCD through the
application of the thermal operator to the zero temperature retarded Green’s functions. This derivation
also clarifies the origin of important properties of the hard thermal effective action, such as the manifest
Lorentz and gauge invariance of its integrand, by relating them directly to the properties of the
corresponding zero temperature effective action in the hard regime.
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I. INTRODUCTION

The high temperature limit of thermal QCD is of much
interest because of its relevance in the study of the physical
properties of the quark-gluon plasma [1,2]. Several impor-
tant features in this regime are embodied in the leading
hard thermal effective action, whose overall coefficient is
proportional to 72, where T denotes the equilibrium tem-
perature. Such leading contributions to the effective action
arise at one loop from diagrams where the internal mo-
mentum is hard (being of the order T) and is much larger
than any external momenta. The hard thermal effective
action in QCD, which enjoys various symmetry properties
(at the integrand level) such as manifest Lorentz and gauge
invariance [3,4], has also been studied from various points
of view [5-10].

The purpose of this note is to present a simple derivation
of this action which may explain the origin of these inter-
esting symmetry properties. The derivation is based on an
interesting relation between Feynman graphs at finite tem-
perature and the corresponding zero temperature graphs
[11,12], which holds both in the imaginary time as well as
in the real time formalisms [1,2,13]. This relation, known
as the thermal operator representation, arises as a conse-
quence of the fact that the thermal propagator for a bosonic
field can be related to the zero temperature one through a
simple thermal operator which carries the entire tempera-
ture dependence and has the explicit form

O(E) =1+ ng(E)(1 — S(E)). (1)

Here E = VK> + m?, S(E) is a reflection operator that
takes E — —E, and ny(E) represents the bosonic distribu-
tion function. (For a fermionic field a similar relation holds
with ng — —ng [12].) This relation between the finite
temperature Feynman graphs and the zero temperature
ones is calculationally quite useful and allows us to study
directly many questions of interest such as the cutting rules
at finite temperature [14]. Furthermore, the relation be-
tween the retarded thermal Green’s functions and the for-
ward scattering amplitudes for on shell thermal particles
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[15] has been clarified through the application of the
thermal operator representation to the corresponding zero
temperature forward scattering amplitudes [16]. In this
paper, we further demonstrate the simplicity and the utility
of the thermal operator representation by deriving the hard
thermal effective action for QCD from the zero tempera-
ture retarded amplitudes in the hard regime. This deriva-
tion directly associates the origin of the interesting
properties of the hard thermal effective action, such as
Lorentz and gauge invariance of the integrand, to those
of the zero temperature effective action.

The paper is organized as follows. In Sec. II, we show
that in the hard region at zero temperature, the forward
scattering amplitudes are Lorentz and gauge covariant and
obey simple Ward identities. These features, together with
the fact that the leading one loop contributions are qua-
dratic in the hard internal momentum, are sufficient to
determine uniquely all the hard n-point gluon amplitudes
in terms of the hard gluon self-energy. An explicit example
of how this works for the 3-point gluon amplitude is
discussed in more detail in the appendix. In Sec. III, we
are thus able to write down a generating functional (effec-
tive action) for all the hard n-point gluon amplitudes at
zero temperature. Through the application of the thermal
operator, it is then immediate to arrive at the well-known
form of the hard thermal effective action. In this way, the
symmetry properties of the action, such as Lorentz and
gauge invariance, can be directly understood in terms of
the properties of the zero temperature retarded amplitudes.
We conclude with a brief summary in Sec. IV.

II. HARD FORWARD SCATTERING AMPLITUDES
AT ZERO TEMPERATURE

The forward scattering amplitude associated with the
retarded gluon self-energy at one loop, Hj‘j’y(p), can be
described as in Fig. 1, where “R” denotes a retarded
propagator while the cut line with momentum k represents
an on shell particle scattering in the forward direction [16].
In the hard region where the internal momentum k >> p,

with k* = 0, we can expand the denominator (of the re-
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FIG. 1.

Forward scattering graphs for the retarded gluon self-energy at one loop. Wavy and dashed lines denote, respectively, gluon

and ghost particles. Color and Lorentz indices are suppressed for simplicity.

tarded propagator where k is to be understood as k; + i€)
in the graph as
1 1
(k+ p)?

»?

k- p)?

The important thing to note here, for later use, is that this
expansion does not involve any factor of p?> in the
denominator.

Similarly, expanding the numerator of the graph in
powers of the external momentum, we find that the leading
hard contribution to the gluon self-energy, I14,(p) =
811 ,,(p), in the SU(N) Yang-Mills theory can be written
as [16]

T @)

2 2
I, 2gN[(2 58.02)
k,p,+k, k,k,
e =y e o B

where we have defined

8.+ (k) = 0(ko)8(k?). “)

There are several things to note from the structure of the
gluon self-energy in (3). The quantity in the parenthesis is

manifestly Lorentz covariant being of zero degree in the
J

d*k
2m)’
[

Fal daz:ay

Witia b (D1 P2 ooy Pn) =

where 7y represents the forward scattering amplitude for an
on shell particle of momentum k. For large values of k, we
can again expand the denominators in y [see (2)] in powers
of p?/(2k - p), where p denotes a linear combination of the
external momenta. Furthermore, we can also expand the
numerator in powers of p;,/ |k| The first term in the
expansion comes from the leading term in each of the
retarded propagators of the form 1/(k - p) and a numerator
independent of p,. The contributions to y from these
superleading terms, which are of degree one in k, however
vanish by symmetry under k — —k. The next term in the
expansion which does provide the leading quadratic con-
tribution to the n-point gluon amplitude comes from terms
in y which are functions of degree zero in k [15].

In the hard regime, to leading order, these amplitudes
obey simple linear Ward identities. This follows as a con-
sequence of the fact that diagrams with external (open)
ghost lines, which appear in the Becchi-Rouet-Stora-

internal momentum. Consequently, the integrand is qua-
dratic in k for large values of the internal momentum and,
as we will show shortly, this leads to the leading contribu-
tion of order T2 at high temperature. To apply the thermal
operator, we need to carry out the integration over k; [12]
in which case (3) takes the form

I1,,(p) = 2¢°N f

Q2m)? 2Ek
k,p, +k k,k
X (=P g ) ()
k-p (k- p)
where E, = |k| and we have defined 1€M = (1, —k). [We

use a metric with signature (+, —, —, —).] It is worth
remarking here that the self-energy in (5) is gauge inde-
pendent and satisfies the Ward identity

(6)

Next, let us consider the retarded n-point gluon forward
scattering amplitude at one loop. As discussed in [16], this
is described by graphs with a single on shell cut propagator,
all other propagators in a graph being retarded/advanced.
Thus, one can write such an amplitude in the form [com-
pare with (3)]

ptI,,(p) =0

8+ (K)o, (K p1s -0 P, W

Tyutin identities, have one less power of & in the numerator
compared with the corresponding diagrams involving only
external gluon lines. As a result, the first term in the
expansion of such a graphs is also naively quadratic in k
much like the leading contribution for the gluon amplitude.
However, in the case of graphs with external ghost lines,
these leading contributions cancel by an eikonal identity
when all graphs are added. Therefore, the contribution of
the amplitude becomes subleading compared to the gluon
amplitude. In the appendix, we illustrate how such a can-
cellation takes place for the one loop ghost-ghost-gluon (3-
point) amplitude. As a consequence, the leading terms in
the n-point gluon amplitude obey simple Ward identities.
For example, to leading order, the 3-point gluon amplitude
satisfies the relation

Fabc

MVA

(P1, P2 p3) = igf*[I1,,(py) — I, ()] (8)
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showing that it is related to the hard self-energy. Similarly,
the Ward identities relate the 4-point gluon amplitude to
the 3-point amplitude as

piTe (p1, pa, p3, pa) = iglf T4 (p1, P2 p3 + pa)

+ frAersee (pr, pa + pas p3)

+ fadel_‘ZCV@A(pl + P4, P2, PS)]
©)

The above properties are sufficient to determine uniquely
to leading order all the n-point gluon amplitudes in terms
of the hard gluon self-energy at zero temperature. This is
discussed in detail in the appendix for the 3-point gluon
amplitude, but similar arguments hold for all n-point gluon
amplitudes. [We would like to emphasize here that, in
general, the solution to the Ward identities such as (8) is
not unique since the transverse part of the amplitude is not
fully determined by the identity. However, in the hard
region, the fact that the leading term has an integrand of
zero degree in k and that the denominators have the form
k - p as in (2) is sufficient to determine all the amplitudes
uniquely.]

III. THE HARD EFFECTIVE ACTION AND ITS
PROPERTIES

The simple Ward identities satisfied by the hard n-point
gluon amplitudes can be written in a compact form as

, SITA] SI'[A]

SAL(x) (60, SAL, (x)

fahcAc )

=0, (10)

where ITA] denotes the generating functional (effective
action) and fo’ is the covariant derivative. Relation (10)
implies that the effective action, I'TA], is invariant under an
infinitesimal non-Abelian gauge transformation with pa-
rameter w“(x), namely, under
A4 — Aa(w)
P u

= A4 + Db, T[A]—T[A@] (11)

the infinitesimal change in the effective action is given by

_ AN ST[A]_
dw* BAZ

5 OITA]

ST[A@)] /
T y2
SAL,

Sw?

=0, (12)

w=0

where we have used a compact notation suppressing all the
intermediate integrations.

Using (7) and performing the k, integration, we can
write the effective action to leading order in the form

] = [ as f @m 26,

From our earlier discussion, we note that y has the follow-
ing characteristics:

(1) It is gauge invariant.

(2) ItisaLorentz invariant function of zero degree in k ,

(A, k). (13)
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with ky = |&|.

(3) The integrand involves denominators with products
of factors of the form k - p where p is some linear
combination of external momenta.

As we have discussed earlier, in the hard region, all the
n-point gluon amplitudes are determined uniquely from the
hard gluon self-energy. Therefore, any effective action
satisfying the properties listed above and yielding the
correct one loop hard gluon self-energy would correspond
to the unique hard effective action. Comparing with the
hard gluon self-energy in (5), it follows that the hard
effective action at zero temperature can be written in the
form

&N
Q)

where the gauge covariant potential, introduced in [10], has
the form

~ 1 ~, a B 1 ~ a
Aﬂ(x’k):<ﬁk FV,LL) :AM_<ﬁaﬂk'A>,
(15)

I[A] = f & d3";4a(x DA R, (14)

and F{,, denotes the non-Abelian field strength tensor

F, = 0,A5 — 0,A5 + gf”bCAZAf,. (16)
The gauge covariant non-Abelian potential, A4 (x, k), is in
general a nonlocal function, where the nonlocality arises
from retarded line integrals along the direction of k.
Once the hard effective action (14) is determined at zero
temperature, the hard thermal effective action can be de-
termined by applying the thermal operator in the following
manner. It is worth recalling [12,16] that the thermal
operator acts on functions of energy in the integrand before
the spatial momentum integrations are carried out.
Furthermore, in spite of the fact that the perturbative
expansion of the covariant potential in (15) involves re-
tarded propagators, the thermal operator leaves such propa-
gators invariant [16] so that the covariant gauge potential is
unaffected by the application of the thermal operator. As a
consequence, the only term in the integrand on which the
thermal operator (1) acts nontrivially is the energy denomi-
nator (coming from the on shell cut propagator)
O0(E k)ﬁ = —(1 + 2ng(Ey)). (17)
Thus, the application of the thermal operator immediately
leads to the temperature dependent hard thermal effective
action as

2
N
[B[A] = (2 -
x / d*x f d%@ Al (x, &) AR, D)
k

(18)
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Since E, = |k|, the radial momentum integration can be
carried out using the standard integral (with the Boltzmann
constant set to unity)

00 00 k
dkkng(Ey) = dk = , 19
,[0 ng(Er) ﬁ) KT — (19)

which yields the hard thermal effective action

272
Bra1 = 8 TN [ u (9L pui & Anag, £
e = £ ]dx/4ﬂ_ﬂﬂ(x,k),7[ o, ).
(20)

Here d() represents the angular integration over the unit

vector k. Finally, integrating this expression by parts, we
can recast it in the well-known form of the hard thermal
effective action [3,4]

2 porA
_ My g (AR kKT Neb
rea)==2 [ prli s Fb., @D

where we have identified mj, = g>T>N/6 as the square of

the thermal gluon mass.

It is now straightforward to extend the above result for
the pure Yang-Mills theory to QCD with quarks in the
fundamental representation. To this end, we recall that
the thermal operator representation works also for theories
involving fermions [12]. In this case, as we have pointed
out earlier, the thermal operator, relating the propagator at
zero temperature to that at finite temperature, has a form
similar to the one given in (1), with ng(E) — —ngp(E),
where np denotes the fermionic distribution function.
Because of the linearity of the Ward identities in the hard
regime, the contribution of the hard quark loops to an
amplitude, which is additive, independently satisfies sim-
ple Ward identities like those given in Egs. (8) and (9) [4].
As shown in the appendix, these identities together with the
fact that the leading order terms in the integrand are
Lorentz covariant functions of degree zero in the internal
loop momentum are sufficient to determine uniquely all the
higher n-point gluon amplitudes in the hard regime in
terms of the corresponding gluon self-energy. Given the
above properties of hard amplitudes as well as the trans-
versality condition in (6), it follows that the integrand for
the self-energy with a hard quark loop at zero temperature
necessarily has a structure similar to the one given in (3),
up to an overall multiplicative factor which can be calcu-
lated easily. Consequently, adding this contribution to that
of the pure Yang-Mills theory in (3), the hard thermal
effective action for QCD, which can be obtained by apply-
ing the thermal operator, has a similar form to the one
given in (21) with the square of the thermal gluon mass
given by

272 1
m&D=§€<N+§M> (22)

where N, denotes the number of quark flavors.

PHYSICAL REVIEW D 76, 025009 (2007)
IV. CONCLUSION

In this work, we have used the forward scattering de-
scription for the retarded amplitudes in QCD to construct
the hard effective action at one loop at zero temperature.
By applying the thermal operator to the zero temperature
amplitudes, we have derived in a simple way the hard
thermal effective action for QCD. This approach empha-
sizes that various relevant features of this action, such as
Lorentz invariance of the integrand in (21) as well as its
gauge invariance, simply arise because the leading hard
zero temperature amplitudes (and the effective action)
precisely have such properties. (The angular integration
breaks Lorentz invariance at finite temperature, as ex-
pected, since the rest frame of the heat bath defines a
preferred reference frame. An alternative form with a
Lorentz noninvariant integrand has been given in [5].)
The above properties of the hard thermal effective action
turn out to be very convenient in the study of the energy-
momentum tensor for the quark-gluon plasma, as well as in
the analysis of the high temperature behavior of gauge field
theories in a curved space-time [17]. Furthermore, the
effective action (21) is also useful in implementing the
resummation procedure [3] which is necessary for a con-
sistent perturbative expansion in hard thermal QCD.
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APPENDIX: HARD AMPLITUDES FROM WARD
IDENTITIES

For definiteness, we discuss here in more detail some of
the properties of the hard 3-point amplitudes at one loop.
First, let us look at the ghost-ghost-gluon vertex,
Vab<(py, p, p3), at one loop and show how the leading
terms cancel in this case. Let us examine the forward
scattering graphs associated with such a vertex correction
at one loop shown in Fig. 2, where p; + p, + p; = 0.

In the hard regime (apart from an overall color factor
<) these graphs have a common numerator (p, - k)k,,.
The presence of quadratic terms in k in the numerator
means that the leading terms, as in (2), of the two retarded
propagators (in the graph with k> = 0) are sufficient to give
us the leading terms of degree zero in k. However, when the
three graphs are summed, this contribution cancels as a
consequence of the eikonal identity

1 1 1

ko) Gk py) G pE )

(AD)

Therefore, the ghost-ghost-gluon amplitude has a sublead-
ing contribution compared with the 3-point gluon ampli-
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FIG. 2. Examples of forward scattering graphs associated with the retarded ghost-ghost-gluon vertex at one loop. Color and Lorentz

indices are suppressed for simplicity.

tude, which as a result, satisfies the simpler Ward identity
(8).

Let us next show that the Ward identity (8), together with
the fact that to leading order the integrand of the 3-point
gluon amplitude, yz”;'A(k, P, P2, P3), is a function of zero
degree in k, is sufficient to determine the hard 3-point
gluon amplitude in terms of the hard gluon self-energy in
(3). We note that if we factor out an overall color factor of

fab¢, the Lorentz structure of the leading terms in 'yz”,f)‘
(which are of degree zero in k and have the dimension of an

inverse mass) can be parameterized in general as
Bk, k, k) + Z(Clipi,ukvk)\ + Coikypivky + Cyik kyupin)
7

+ (Elk/.L M + EZkVTI/.LA + E3k/\n,u,1/)r (Az)
where the coefficient functions B, Cy;, Cy;, Cs;, Eq, E,, E3
are Lorentz invariant functions of k and p;. The important
point to note from (A2) is that it is at most linear in p; as
well as in the metric tensor. [It is worth remarking here that
while a Lorentz structure such as D;;p;, p;,k, is allowed in
principle, for such a term to be of degree zero in k and have
the inverse dimension of mass, the coefficient D;; must
contain a denominator of the form p? where p denotes a
linear combination of the external momenta. However, as
we have pointed out earlier, such terms do not arise in the
expansion (2) of the retarded propagator. This is why the
numerator can at most be linear in the external momenta.]

Given the general Lorentz structure (A2), let us next
consider the Ward identity (8) by contracting the amplitude
with p2, which leads in the integrand to the Lorentz
structure

<Bk' p3t ZCE»ipi : p3>k,u,k1/ + Z(Clik' p3+ Ey83)pik,

+ 3 (Coik p3 + E83)pivky + Esk: p3n,. (A3)

We can now compare this structure to the ones on the right-
hand side of the Ward identity in (8) coming from the
structure of the self-energy in (3). Comparing the coeffi-
cients of the metric tensor on both sides, the last term in
(A3), namely, Ej, is uniquely determined. Likewise, the
Ward identity (8) where we contract with p{’ or p4 deter-
mines respectively E; and E, uniquely. Similarly, match-
ing the second and the third structures in (A3) with the
corresponding structures coming from the self-energy
(along with the other two identities) uniquely determines
>.iCiiPius 2.iCaiPivs Y iC3ipiy- Finally, comparing the
k,k, terms on both sides of the Ward identity (8) then
uniquely determines B. In this way, the leading 3-point
gluon amplitude is uniquely determined in terms of the
hard gluon self-energy. One can follow this argument to
show that the leading higher point gluon amplitudes are
recursively determined uniquely by the hard gluon self-
energy. This fact allows us to determine the effective action
for gluon amplitudes in the hard region in a unique form.
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