
How does Casimir energy fall?
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Doubt continues to linger over the reality of quantum vacuum energy. There is some question whether
fluctuating fields gravitate at all, or do so anomalously. Here we show that, for the simple case of parallel
conducting plates, the associated Casimir energy gravitates just as required by the equivalence principle,
and that therefore the inertial and gravitational masses of a system possessing Casimir energy Ec are both
Ec=c

2. This simple result disproves recent claims in the literature. We clarify some pitfalls in the
calculation that can lead to spurious dependences on the coordinate system.
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The subject of quantum vacuum energy (the Casimir
effect) dates from the same year as the discovery of re-
normalized quantum electrodynamics, 1948 [1]. It puts the
lie to the naive presumption that zero-point energy is not
observable. On the other hand, it continues to be sur-
rounded by controversy, in large part because sharp
boundaries give rise to divergences in the local energy
density near the surface (see Refs. [2–4]). The most trou-
bling aspect of these divergences is in the coupling to
gravity. Gravity has its source in the local energy-
momentum tensor, and such surface divergences promise
serious difficulties. The gravitational implications of zero-
point energy are an outstanding problem in view of our
inability to understand the origin of the cosmological
constant or dark energy [5–7].

As a prolegomenon to studying such issues, we here
address a simpler question: How does the completely finite
Casimir energy of a pair of parallel conducting plates
couple to gravity? The question turns out to be surprisingly
less straightforward than one might suspect. Previous au-
thors [8–12] have given disparate answers, including gravi-
tational forces, or gravitationally modified Casimir forces,
that depend on the orientation of the Casimir apparatus
with respect to the gravitational field of the earth. We will
here resolve some of this confusion with a convincingly
calculated result consistent with the equivalence principle.
That is, the renormalized Casimir energy couples to gravity
just like any other energy. In our opinion, this fact is
evidence that vacuum energy must be taken seriously in
gravitational theory and that the problem of boundary
divergences must be resolved by a better understanding
of the modeling and renormalization processes.

We start by recalling the electromagnetic Casimir stress
tensor between a pair of parallel perfectly conducting
plates separated by a distance a, with transverse dimen-
sions L� a, as given by Brown and Maclay [13]:

 hT��i �
Ec
a

diag�1;�1;�1; 3�; (1)

where the third spatial direction is the direction normal to
the plates. This is given in terms of the Casimir energy per
unit area, Ec � ��

2
@c=�720a3�. Outside the plates,

hT��i � 0. Omitted here is a constant divergent term that
is present both between and outside the plates, and also in
the absence of plates, which cannot have any physical
significance. Because the electromagnetic field respects
conformal symmetry, there is no surface divergent term
such as is present for a minimally coupled scalar field
subject to Dirichlet conditions on the plates, or more gen-
erally for curved surfaces [14]. (Henceforth we will set @ �
c � 1.)

Now we turn to the question of the gravitational inter-
action of this Casimir apparatus. It seems to us that this
question can be most simply addressed through use of the
gravitational definition of the energy-momentum tensor, as
a variation of the matter part of the action,

 Wg � �Wm �
1

2

Z
�dx�

�������
�g
p

�g��T
��: (2)

Following Schwinger (note the factor of 2 in the defini-
tion), for a weak field we define g�� � ��� � 2h��. To
first order we can ignore

�������
�g
p

. The gravitational energy,
for a static situation, is therefore given by (�W �
�
R
dt�E)

 Eg � �Em � �
Z
�dx�h��T��: (3)

We then replace T�� here by the one-loop expectation
value of the electromagnetic stress tensor (1).

Calloni et al. [9] and Bimonte et al. [12] use the Fermi
metric

 g00 � ��1� 2gz�; gij � �ij; (4)

in terms of the gravitational acceleration g. This is evi-
dently appropriate for a constant gravitational field. We
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will discuss its relation to the field due to the earth below.
Let the apparatus be oriented at an angle � with respect to
the direction of the gravitational field. The Cartesian coor-
dinate system attached to the earth is denoted by �x; y; z�,
where, as noted above, z is the direction of �g. The
Cartesian coordinates associated with the Casimir appara-
tus are ��; �; ��, where � is normal to the plates, and � and
� are parallel to the plates. (See Fig. 1.) The center of the
apparatus is located at (�0, � � 0, � � 0).

Now we calculate the gravitational energy from Eq. (3):

 Eg �
Z
�dx�gzT00 �

gEc
a
L2a�0 cos�; (5)

up to an additive constant, independent of �0. (Any con-
stant added to the gravitational potential gz simply shifts
the value of this constant.) Thus, the gravitational force per
area A � L2 on the apparatus is

 

F
A
� �

1

A

@Eg
@z0
� �gEc � �

	
2a

Ec; (6)

because z0 � �0 cos�. Note that, on the earth’s surface, the
dimensionless number 	 � 2ga=c2 is very small. For a
plate separation of 1 �m, 	 � 2� 10�22, so the effects
that we are considering are very small compared to the
gravitational forces on the plates. (However, Calloni et al.
[9] discuss the possibility of experimentally observing this
force.)

It is a bit simpler to use the energy formula (3) to
calculate the force by considering the variation in the
gravitational energy directly, that is,

 �Eg � �
Z
�dx��h��T��: (7)

It is easy to verify that this gives the correct force on a mass
point, F � mg. If we use this formula to calculate the
gravitational force on the rigid Casimir apparatus, by con-

sidering a virtual displacement upward by an amount �z0,
we find the same �-independent result (6).

Alternatively, we can start from the definition of the
gravitational field [15],

 �Wg �
Z
�dx��T��h��; (8)

which can again be checked to yield the correct force on a
mass point. For the constant field (4) the force on a Casimir
apparatus is obtained from the change in the energy density
T00; that is, recalling that z0 � �0 cos�,

 �T00 �
Ec�z0

a
1

cos�
	��� � �0� a=2� � ��� � �0� a=2�
;

(9)

where the � functions arise from the step functions at the
boundaries. This yields from Eq. (8) the same result (6).

Our answer is consistent with the principle of equiva-
lence, and with the second analysis of Jaekel and Reynaud
[16], who state that the inertia of Casimir energy (at least in
two dimensions) is Ec=c2. However, it is only 1

4 that found
by Bimonte et al. [12], which is also the first force formula
[Eqs. (7) and (8)] provided by Calloni et al. [9]. Our Eq. (6)
does, however, reproduce the second formula [Eq. (9)]
given in Ref. [9], which those authors describe as the one
that should be observable. We discuss this situation further
below.

We now digress to consider whether the constant-field
approximation (4) is adequate for an apparatus suspended
above the earth or some other pointlike mass. Should we
instead use the perturbation of the Schwarzschild metric?
One might expect that the resulting curvature corrections
are of order L

R� 1, at worst, relative to the main term,
where R is the earth’s radius. The point, however, is that
naive attempts to do the calculation in curved space change
the answer by factors like 2, and also differ among them-
selves, and the resolutions of the fallacies are sufficiently
instructive to justify our belaboring the point.

The Schwarzschild metric in isotropic coordinates [17]
and for weak fields (GM=r� 1) is

 ds2 � �

�
1�

2GM
r

�
dt2 �

�
1�

2GM
r

�
dr2: (10)

If we expand a short distance z above the earth’s surface,
we find the nonzero components of the gravitational field
to be h00 � h11 � h22 � h33 � GM=R� gz, in terms of
the acceleration of gravity, g � GM=R2. (It is important to
recognize that the constant GM=R is irrelevant in the
following, and that correspondingly the results do not
depend on the origin of z.) The virtue of isotropic coor-
dinates is that the spatial line element (apart from an
overall factor) has the usual Cartesian form dr2 � dx2 �
dy2 � dz2. Now when we compute the gravitational energy
from Eq. (7) each component of the Casimir stress tensor
contributes with equal weight:

FIG. 1. Relation between two Cartesian coordinate frames:
one attached to the earth �x; y; z�, where �z is the direction of
gravity, and one attached to the parallel-plate Casimir apparatus
��; �; ��, where � is in the direction normal to the plates. The
parallel plates are indicated by the heavy lines parallel to the �
axis. The x � � axis is perpendicular to the page.
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 �Eg � gA�z0

Z �0�a=2

�0�a=2
d��T00 � T11 � T22 � T33�; (11)

which gives the force

 �
1

A

�Eg
�z0
�
F
A
� �2gaT00 � �2gEc; (12)

since T � T

 � 0. This is twice the previous result (6).
Note that again the result is independent of �. The same
result is obtained if we start from Eq. (8).

We should be able to obtain the same result using the
original Schwarzschild coordinates, where h00 � �gz,
h�� � �gz, and all other components of h�� are zero.
However, now if we use the first method (7), the result is
F=A � �4gEccos2�, so now the force depends on the
orientation of the apparatus. Even if � � 0, the magnitude
differs from Eq. (12) by an additional factor of 2. (It
thereby fortuitously agrees with the result in Ref. [12] for
that angle.)

What is going on here? The reason we get different
answers in different coordinate systems is that our starting
point (3) is not gauge invariant. Under a coordinate rede-
finition, which for weak fields is a gauge transformation of
h�� [15], h�� ! h�� � @��� � @���, where �� is a vec-
tor field, Eq. (3) is invariant only if the stress tensor is
conserved, @�T

�� � 0 (in the weak-field context).
Otherwise, there is a change in the action, �Wg �

�2
R
�dx���@�T

��. Now in our case (where we make the
finite size of the plates explicit, but ignore edge effects on
T�� because L� a)
 

T�� �
Ec
a

diag�1;�1;�1; 3��� � �0 � a=2�

� �a=2� � � �0���� L=2��L=2� ��

� ��� L=2��L=2� ��: (13)

Taking the divergence of Eq. (13) gives corresponding �
functions on the surfaces and leads immediately to
 

�Eg �
6Ec
a

Z
d�d�	�� ��0 � a=2; �; ��

� �� ��0 � a=2; �; ��


�
2Ec
a

Z
d�d�	����;�L=2; �� � ����; L=2; ��


� ��$ ��: (14)

This transformation entirely accounts algebraically for the
difference between the forces in isotropic and
Schwarzschild coordinates, but it does not yet explain
physically why there are two different answers, nor tell
us which, if either, is correct.

There seem to be two possible ways to proceed. First, it
is clear that the energy-momentum tensor of the complete
physical situation must be conserved, and therefore the
expression (3) would be gauge invariant if we included a

physical mechanism holding the plates apart against the
Casimir attraction. That road probably leads to compli-
cated, model-dependent calculations. The alternative is to
find a physical basis for believing that one coordinate
system is more realistic than another. Fortunately, that
problem apparently has a natural solution. The crux of
the difficulty is that the relations between coordinate incre-
ments and physical distances depend upon the distance
from the gravitating center in the most common coordinate
systems.

Of course, a perfect coordinate system is not possible in
a curved space, but the kind that comes closest to repre-
senting distances accurately all along a timelike worldline
is a Fermi coordinate system, the general-relativistic ex-
trapolation of an inertial coordinate frame. Such a system
has been given by Marzlin [18] for a resting observer in the
field of any static mass distribution. Here we give a simple
rederivation for the case at hand. Starting from the iso-
tropic metric (10), first eliminate the constant term by
rescaling the coordinates, t! �1� GM

R �t, r! �1� GM
R �r,

and expand to first order:

 ds2 � ��1� 2gz�dt2 � �1� 2gz�dr2: (15)

But we need r to measure physical displacements even
when z � 0, so we write

 x � x0 � gx0z0; y � y0 � gy0z0;

z � z0 �
g
2
�z02 � x02 � y02�:

(16)

Then to first order in coordinates we obtain the Fermi
metric (4). The corresponding gravitational force is there-
fore given by Eq. (6), after all.

Now we can use the method described above to trans-
form the energy in isotropic coordinates to that in Fermi
coordinates. We use Eq. (14) to compute the additional
gravitational energy, in terms of the gauge field �� that
carries us from isotropic coordinates to Fermi coordinates,

 hF�� � hI�� � @��� � @���: (17)

Here hI00 � �gz, hIij � �gz�ij, hF00 � �gz, hFij � 0,
hI;F0i � 0. The gauge field turns out to be

 �� �
1
2g�

1
2�

2 cos�� �� sin�� � f��; ��;

�� �
1
2g��� cos�� 1

2�
2 sin�� � g��; ��;

�� �
1
2g�� cos�� � sin���� h��; ��;

(18)

where the functions f, g, and h are irrelevant. Now from
Eq. (14) we obtain a �Eg�z0� that yields an additional
force, �F=A � gEc. When this is added to the isotropic
force (12), we obtain the result given in Eq. (6):

 

FI � �F
A

� �2gEc � gEc � �gEc �
FF

A
: (19)
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The conceptual reason why other coordinates give dif-
ferent answers is that under the virtual displacement in-
volved in defining @

@z0
one is stretching the apparatus as well

as moving it. Correcting for the spurious changes in L and
a restores the Fermi result in all cases. The importance of
distinguishing a from the physical gap was noted by Sorge
[11] in studying a related problem.

As noted above, Calloni et al. [9] find a result 4 times
ours, which is the only result from Ref. [9] cited in the later
paper [12] with which it shares authors. However, Ref. [9]
states that that force formula has two parts, in the ratio of
3=1, and that only the smaller piece is ‘‘Newtonian,’’ or ‘‘to
be tested against observation.’’ Our understanding of what
that means is the following. Start from Eq. (2) and consider
a general coordinate transformation, x0� � x� � �x�, so
that g0���x0� � g���x� � �g���x�, where

 �g�� � �x
@
g�� � g��
@�x�

@x�
� g��

@�x�

@x�
: (20)

For a rigid translation, �x
 is a constant, so only the first
term in Eq. (20) is present, which gives the result (6).
However, if we do not make this restriction, we obtain
from Eq. (2) (after integration by parts) a surface-term
correction to the force:

 

Z
�
�dx�

�������
�g
p

f
 �
�Wm

�x

�
Z
@�
d��

�������
�g
p

T�
; (21)

where the force vector density is [9] �r�T�
 or

 

�������
�g
p

f
 � �@��
�������
�g
p

T�
� �
1
2

�������
�g
p

T��@
g��: (22)

Note that the surface term identically cancels the first term

in f
. Now if � refers to all space, the surface term
vanishes (as we have shown explicitly). But if � is just
the space volume between the plates, and we include this
correction for the Fermi metric (4) for which

�������
�g
p

� 1�
gz, we obtain an additional term �3gEc cos�. Adding this
to the previous result (6), we obtain the result of Ref. [12] if
� � 0. However, in general the result depends on the angle
between the apparatus and the vertical. Is this consistent
with the equivalence principle (the scalar nature of mass)?
A similar angle dependence will now occur with the iso-
tropic Schwarzschild metric. Why should one trust the
formula (22) over the more fundamental variational prin-
ciple when boundaries are present? Omission of the surface
term resolves the discrepancy, giving the equivalence-
principle result (6).

While the present paper was under review, a preprint
[19] by Bimonte et al. appeared which, in its revised
version, modifies some of the claims of Ref. [12] so as to
remove most of the contradictions between Ref. [12] and
other papers. Because understanding the significance of
Ref. [12] was the principal impetus to the present work, we
have left the body of our paper unchanged in response to
this development.
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