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We study to what extent wormholes can mimic the observational features of black holes. It is
surprisingly found that many features that could be thought of as ‘‘characteristic’’ of a black hole
(endowed with an event horizon) can be closely mimicked by a globally static wormhole, having no event
horizon. This is the case for the apparently irreversible accretion of matter down a hole, no-hair properties,
quasi-normal-mode ringing, and even the dissipative properties of black hole horizons, such as a finite
surface resistivity equal to 377 Ohms. The only way to distinguish the two geometries on an observa-
tionally reasonable time scale would be through the detection of Hawking’s radiation, which is, however,
too weak to be of practical relevance for astrophysical black holes. We point out the existence of an
interesting spectrum of quantum microstates trapped in the throat of a wormhole which could be relevant
for storing the information lost during a gravitational collapse.
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I. INTRODUCTION

One of the most striking predictions of Einstein’s
theory of gravity is the existence of black holes. Though
these objects made their first appearance in the famous
exact spherically symmetric solution found by Karl
Schwarzschild [1] a couple of months after Einstein final-
ized his theory, it took many years, and the work of many
physicists, to crystallize the concept of black hole (see,
e.g., [2]). For a long time, a part of the physics community
was rather skeptical about the actual existence of black
holes, but the situation has changed in recent years, notably
because of several different types of astronomical obser-
vations: in x-ray binary systems, in galactic nuclei (includ-
ing our home, the Milky Way), etc. For a review of the
astronomical evidence for black holes, see [3].

Today black holes are part of the basic ‘‘toolkit’’ of
physicists and astrophysicists, and their existence in the
real universe is taken for granted. It is, however, interesting
to examine critically to what extent the current, or future,
astrophysical data can observationally prove the existence
of black holes. Indeed, black holes are sophisticated theo-
retical constructs with many different properties and each
observational evidence usually concerns only one specific
property. For instance, in many observations the ‘‘black
hole candidates’’ are mainly picked either because their
inferred mass exceeds some theoretical limit, or on the
basis of their strong external gravitational field. Several
authors have claimed that some observations have probed,
or will eventually probe, more characteristic features of
black holes, and notably the (essentially defining) exis-
tence of an event horizon. For instance, Narayan and
collaborators have argued that, in several examples, a black
hole candidate ‘‘does not have a surface, i.e. it must have
an event horizon’’ [3,4]. In a different vein, it is also
commonly argued that forthcoming gravitational wave

data from LIGO/Virgo/GEO will establish the existence
and ‘‘unique’’ properties of black holes either through the
observation of the characteristic ‘‘quasinormal mode’’
(QNM) ringing frequencies of a newly formed hole [5],
or from observational checks of the unique structure of the
black hole geometry guaranteed by ‘‘no-hair’’ theorems
[6,7].

A well-known and useful strategy for gauging the extent
to which observations can really characterize the presence
of general relativistic black holes is to consider ‘‘black hole
foils,’’ i.e. theoretical objects that mimic some aspects of
black holes, while lacking some of their defining features.
Several examples of this strategy have been considered in
the past: for instance, would-be black holes within Rosen’s
bimetric theory of gravity [8], or, more recently, some
‘‘gravstar’’ models [9].

In this note, we consider a very simple type of black hole
foil: a wormhole [10]. Though a wormhole does not have
an event horizon, and differs, in principle, in several other
important ways from a black hole, we shall show here that,
if a certain parameter entering its definition is small
enough, a wormhole is essentially astrophysically indistin-
guishable from a black hole. Our final conclusion is that the
possibly unique way of conclusively proving the presence
of a black hole (endowed with an horizon) would be to
observe its Hawking radiation [11]. Even this conclusion
needs some qualification, because we shall see that some
features of wormholes naturally tend to mimic the quantum
spectrum of black holes, so that it is possible that some (to
be defined) wormhole formation mechanisms could lead to
an Hawking-like radiation.

II. WORMHOLE METRIC

We shall consider here a very simple type of wormhole
spacetime, as described by the metric
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 ds2 � ��g�r� � �2�dt2 �
dr2

g�r�
� r2�d�2 � sin2�d�2�;

(2.1)

where g�r� � 1� 2GM
r . This metric differs from the stan-

dard Schwarzschild metric [1] only through the presence of
the dimensionless parameter �. When � � 0, we recover a
black hole of mass M with an event horizon located at the
radius r � 2GM. By contrast, when � � 0 the structure of
the spacetime is dramatically different: there is no event
horizon, instead there is a throat at r � 2GM that joins two
isometric, asymptotically flat regions. This spacetime is an
example of a Lorentzian wormhole [10]. In three dimen-
sions, a similar modification of the black hole metric was
studied in [12] in an attempt to restore Poincaré recur-
rences in black holes. The parameter � in the latter con-
struction was chosen to be exponentially small,

 �� e�4�GM2
; (2.2)

in order to reproduce the expected dependence of the
Poincaré recurrence time on the entropy of a black hole.
Though we shall leave free the value of � in this paper, and
discuss what range of values for � is compatible with
present and foreseeable observations, we will see below
that exponentially small values of the type of (2.2) seem
indeed adequate for mimicking not only the classical, but
also the quantum properties of a Schwarzschild black hole.

The event horizon of the original black hole metric is
replaced, in the wormhole metric (2.1), by a high-tension
distribution (a kind of brane) localized in a thin shell
around the center of the throat at r � 2GM. More pre-
cisely, with our simplifying choice of wormhole metric
(2.1), the stress-energy tensor distribution sustaining the
throat has vanishing energy density, but comprises radial
and tangential tensions proportional to 1=�2.

In order to globally define the wormhole spacetime (2.2)
we need to specify how the spacetime is continued through
the (geometrically regular) throat r � 2GM. The
Schwarzschild-type radial coordinate r is not well defined
at r � 2GM. We should replace it, for instance, by the
proper radial distance, say y �

R
r
2GM dr=

���
g
p

. In terms of y,
one has, to leading order, the following expressions in the
throat: g�y� � y2

16G2M2 and r�y� � 2GM � y2

8GM . Using the
coordinate y, we can now globally define the wormhole
spacetime in several different (physically inequivalent)
ways. A first possibility (which is the usual one when
considering ‘‘wormholes’’) is to decide that the variable
y varies over the full real line: �1< y<�1. A second
possibility is to impose some Z2 symmetry between y and
�y, so that y effectively varies only on a half line 0 �
y <�1 (with some Z2-symmetry boundary conditions at
y � 0). We might prefer the first possibility if we have in
mind a multibraneworld in which the collapse of a star
establishes a bridge between two previously separate bra-

neworlds. If, instead, we have in mind a unique world, we
might prefer imposing the second possibility, i.e. the idea
that the collapse of a star creates an ‘‘end-of-the-world’’
Z2-symmetric brane at r � 2GM, which is certainly a
logically allowed possibility. Note then that, in both cases,
the wormhole spacetime (2.2) is globally static, the time
Killing vector being everywhere timelike (while it became
spacelike beyond the horizon in the black hole case).

An immediate consequence of the metric (2.1) is that
time in the throat is extremely slow from the point of view
of a distant observer. Indeed, they are related by �,

 tthr � �tdist: (2.3)

The throat thus mimics what happens at the event horizon
of a black hole where time is ‘‘frozen’’ [we recall that the
old name (especially in Russia) for a black hole was a
‘‘frozen star’’]. The only difference from an actual horizon
is that time does not completely stop in the throat: if an
observer makes observations during a time of orderGM=�,
he or she will resolve the processes happening in the throat
and thus be able to distinguish a wormhole from a black
hole. Reciprocally, this preliminary remark suggests that if
an observer only looks at a wormhole during a finite time
he or she might not be able to distinguish it from a black
hole. We shall see below, in several examples, that this is
indeed the case, even for phenomena that are usually
considered as characteristically linked to the presence of
an horizon (such as no-hair properties or dissipative prop-
erties). However, we shall see that the observing time span
needed to distinguish a wormhole from a black hole is not
GM=�, as suggested by the above naive argument, but
rather GM= ln�1=��.

III. GEODESICS

As a first and simplest example of the comparative
phenomenology of wormholes versus black holes, let us
consider the motion of particles around a wormhole, and
their fall within the throat.

The (equatorial) geodesics in the metric (2.1) are de-
scribed by the equations

 

_t �
E

g�r� � �2 ;
_� �

L

r2 ;

_r2 � g�r�
�
L2

r2 � �
�
�

g�r�

g�r� � �2 E
2;

(3.1)

where � � 0 for a null-like geodesic, � � 1 for a timelike
geodesic, and where the overdot denotes the derivative
with respect to the proper time (or an affine parameter, in
the null case). E is the energy and L the angular momentum
of the test particle (for simplicity we consider a test particle
of unit mass). In terms of the new coordinate � �R ���������

g��2

g

q
dr the last equation in (3.1) takes the standard

form:
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_�2 � V�r���� � E2; V�r���� � �g�r� � �2�

�
L2

r2 � �
�
:

(3.2)

The consideration of the ‘‘effective potential’’ V�r� [or
rather V�r�y�� to understand what happens in the throat]
then allows one to understand qualitatively the dynamics of
particles in the wormhole.

As soon as one is a little bit away from the throat, the
dynamics is that for the Schwarzschild metric plus (obser-
vationally negligible) small corrections proportional to �2.
This shows that any observational feature which is not
taking place very near r � 2GM will be (for small enough
�) the same in the wormhole foil as in a real black hole.
This is for instance the case for the emissivity properties of
accretion disks, even those that crucially depend on rela-
tivistic dynamics features [like the presence of an inner-
most stable circular orbit (ISCO)].

On the other hand, there is an important difference from
the black hole case if we consider, say, circular orbits with
radius equal to (or very near) the throat radius r � 2GM.
Both for null and timelike geodesics, and for any value of
the angular momentum L,1 there exists a circular orbit
exactly located at r � 2GM. The energy and angular mo-
mentum in this case are related by E2 � �2� L2

4G2M2 � ��.
The derivative of the radial potential vanishes @�V � 0 for
r � 2GM while the second derivative @2

�V���� �
1

2�2 V0rg
0
rjr�2GM is positive. Thus, this ‘‘throat-orbiting’’

circular orbit is stable. In addition, the positive curvature
of the effective potential at r � 2GM implies that there
exist bound ‘‘elliptic’’ orbits staying near r � 2GM.

An argument often evoked for distinguishing a black
hole from other potential wells is the absence of a ‘‘sur-
face’’ in the black hole case, and the possibility for the
horizon of absorbing any amount of infalling matter [3,4].
The situation is a priori quite different in the wormhole
case because a look at the qualitative shape of the effective
potential V�r�y�� shows that, for instance, particles falling
from (just below) the ISCO must ultimately bounce back
up again from the wormhole throat.2

To study in more detail this ‘‘bounce’’ from a wormhole,
let us focus for simplicity on the case of radial timelike
geodesics, with L � 0 and therefore V�r� � ��g�r� � �2�
(with � � 1). There are 3 cases. If E2 > 1� �2 then a
particle coming from infinity falls into the wormhole.
These geodesics are similar to the radial geodesics in the
Schwarzschild metric. If �2 <E2 < 1� �2 then the geo-

desic has a turning point y � ym in which _y � 0. The
coordinate of the turning point must solve the equation
g�ym� � �2 � E2. There are exactly two solutions to this
turning-point equation, a positive one ym > 0 and its op-
posite �ym < 0. If the wormhole connects two separate
spaces, these turning points are physically distinct, and the
radial geodesic bounces back, in an oscillatory manner,
between them. In the Z2-symmetric case, the radial geo-
desic bounces between the positive turning point and y � 0
(with half the period taken in the former case). There is no
analog of these geodesics in the case of the Schwarzschild
metric. Finally, if E2 < �2 there is no solution to the
geodesic equation. Note also that for null radial geodesics
(L � 0, � � 0, so that the effective potential vanishes)
there are no oscillating solutions in the two-separate-
spaces case, the light irreversibly falls into the wormhole
as it does in the black hole. But, in the Z2-symmetric case,
light bounces back at the throat and exits from the mouth of
the wormhole.

All this suggests that present observations of accreting
(or formerly accreting) gravitational potential wells rule
out their modeling as wormholes. However, as anticipated
above from the basic scaling (2.3), it is crucial to study on
what time scale the matter which falls within a wormhole
does come out again in our universe. Let us compute the
coordinate time taken by a particle (� � 1) to go (by
geodesic motion) from a point outside the wormhole y �
l > 0 to a point inside the throat (say y � 0). The same
calculation, but now taken for � � 0, will give the coor-
dinate time taken by a light signal to join a point inside the
throat (say y � 0) to a point outside the wormhole y �
l > 0. These coordinate times are given by

 

�t �
Z l

0

Edy������������������������������������������������
�g� �2��E2 � �2 � g�

p ; � � 1

�t �
Z l

0

dy���������������
g� �2

p ; � � 0

(3.3)

Irrespectively of the type of the geodesic, this time is
dominated by the throat region, i.e. the part of the integrals
where g�y� � �2. As both integrals are logarithmically
divergent in the black hole limit, �! 0, �t�

R
dy=

���
g
p
�R

dr=g�r�, it is easily seen that the leading term when � �

0 is

 �t � 2GM ln
1

�2 : (3.4)

This result shows that, if � is small enough, it is impossible
for observations extending on some limited time scale T to
distinguish the provisory fall of matter in a wormhole from
the irreversible absorption of matter down the horizon of a
black hole. For instance, if we consider the candidate
‘‘massive black hole’’ (withM� 3	 106M
) at the center

1This includes L � 0, in which case one has an equilibrium
position at fixed r and �.

2This conclusion holds in the case where y ranges over the full
real line (in which case the effective potential is made of two
y-symmetric humps), as well as in the Z2-symmetric case where
the effective potential has only one hump, but where the particle
bounces off when it reaches y � 0.
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of our Galaxy, and assume it started accreting matter 6	
109 years ago, it could be a wormhole if �� exp��1015�.

We clearly need exponentially small values of � to
mimic observational facts. Note that this would be pre-
cisely the case if we were using the value (2.2) above, as
suggested for quite different reasons in [12]. Actually, if we
substitute here the value (2.2) for the parameter � in the
‘‘wormhole bounce time scale’’ (3.4), we get

 �t � 16�G2M3 (3.5)

which is of the order of the Hawking evaporation time
scale for a Schwarzschild black hole. We shall come back
below to this suggestive link between quantum black holes
and (classical and/or quantum) wormholes.

Before discussing other phenomenological aspects of
wormholes, let us mention a potential difficulty with the
wormhole model proposed here. In this paper we shall
content ourselves with a first-order treatment in which
the matter and fields ‘‘falling into’’ a wormhole are con-
sidered as test matter propagating in a given wormhole
background. However, the stress-energy tensor carried by
all the matter that has accreted in the past onto a wormhole
(and that is, for all practical purposes, essentially frozen
around the throat r � 2GM) will distort the background
wormhole metric. However, it is well known [10] that a
wormhole requires that the ‘‘matter’’ making it up must
violate (some form of) the positive-energy condition [we
saw that above in the fact that the energy density corre-
sponding to the metric (2.1) vanishes, while the tension
does not vanish]. As the accreted matter does satisfy the
usual positive energy conditions, it is not clear how much
accreted matter can be allowed in before risking to destroy
the wormhole throat. Actually, we should provide a more
complete definition of our wormholes as dynamical ob-
jects. For instance, one should, in principle, discuss the
dynamical structure of the ‘‘brane’’ located at y � 0, and
its possible interaction with the matter falling onto it. Even
without such a complete dynamical definition, we think
that it is interesting to explore, as we do here, how worm-
holes can be conceptually clarifying foils for black hole
dynamics.

IV. NO-HAIR PROPERTIES

As an example of the way wormholes can mimic the no-
hair properties of black holes, let us consider static axi-
symmetric (test) electric fields in a general wormhole
background ds2 � �A�r�dt2 � B�r�dr2 � r2�d�2 �
sin2�d�2�. The static Maxwell equations, @��

�������
�g
p

F��� �
0 reduce (when taking � � t) to a second-order differen-
tial equation (in r and �) for the electric potential At. One
easily separates the r and � dependence by factoring:
At�r; �� � a�r�Pl�cos��, where Pl�cos�� is a usual
Legendre polynomial. This leads to the following sepa-
rated equation for the radial factor a�r�:

 

����
A
B

s
@r

�
r2�������
AB
p @ra�r�

�
� l�l� 1�a�r�: (4.1)

Let us consider, for example, the wormhole metric A �
g� �2, B � 1=g, taken in the Z2-symmetric case. One
generically sees that a solution which is regular and
Z2-symmetric in the throat (da=dy � 0 at y � 0) will
grow like rl at infinity. Therefore we indeed have a no-
hair property paralleling the one for black holes: the only
solution which is regular at the throat, and decaying at
infinity, is the trivial one a�r� � 0 for any l.3

From this no-hair property, one deduces that if one
brings a point charge near the throat r � 2GM (but para-
metrically far away from the r� 2GM� 2GM�2 ‘‘near-
throat limit’’) this will generate an electric field which is
essentially indistinguishable (modulo corrections / �2)
from the one generated near a black hole, i.e. an electric
field which, when seen from outside, erases the informa-
tion about the location of the point charge and looks like a
spherically symmetric electric field centered on the hole
(see [13]).

V. QUASINORMAL MODE RINGING

It is often said that the observation by the LIGO/Virgo/
GEO network of gravitational wave detectors of the QNM
ringing of a newly formed (rotating) black hole will pro-
vide an excellent confirmation of the actual existence of
black holes in nature [5]. Indeed, the definition of QNM
modes depends in a crucial way on the presence of an event
horizon. Let us recall that the QNM modes are defined as
complex-frequency eigenmodes which satisfy the bound-
ary conditions of being outgoing at radial infinity, and
ingoing towards the black hole horizon. To discuss what
happens of QNM modes in a wormhole background let us
consider, for simplicity, the case of scalar field modes.
[Our physical discussion will make it clear that our con-
clusions apply to the more relevant (tensor) gravitational
excitations.]

For a mode of a scalar field of frequency !, � �
1
r  �r�e

�i!tYlm��;��, we get a radial equation in the
Regge-Wheeler-Zerilli form, i.e. an effective Schrödinger
equation:

 

� zz �U�z� � !2 ;

U�z� �
rzz
r
�
l�l� 1�

r2 �g�r� � �2�:
(5.1)

Here, a z subscript denotes a z derivative, l � 0, 1, 2,. . .
and we have used as a variable the ‘‘tortoise’’ radial

coordinate z �
R

2GM dr
���
B
A

q
�
R

2GM
dr�������������

g�g��2�
p , which is

3In the non-Z2-symmetric case, the monopolar case, l � 0, is a
special case in that there exists a source-free everywhere regular
solution parametrized by a charge Q, namely @ya�r� �

Q
���
A
p

r2 .
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usually denoted r�, and which is such that the radial part of
the metric (ds2 � �Adt2 � Bdr2) is conformal to�dt2 �
dz2. Inserting rzz � g0r�g�

�2

2 �, we get the following ex-
plicit form for the effective radial potential:

 

U�r� �
2GM

r3

�
1�

�2

2
�

2GM
r

�

�
l�l� 1�

r2

�
1�

2GM
r
� �2

�
: (5.2)

For a wormhole connecting two separate spaces, the tor-
toise radial coordinate z varies over the full real line, and
this potential is made of two separate positive humps
located at the positive and negative values of z correspond-
ing to r� 3GM. In the Z2-symmetric case, we have
only one hump, together with a suitable boundary condi-
tion at the throat located at z � 0. Let us think in terms of
the easily visualizable two-humped potential. [The
Z2-symmetric case consists anyway in retaining the
z-even solutions of the other case.]

This two-humped potential clearly has a very different
spectrum than the usual black hole effective potential
which has only one positive hump located around r�
3GM. If we look for modes satisfying the usual QNM
condition of being purely outgoing (both towards z!
�1 and towards z! �1), we will have a spectrum which
is qualitatively very different from the usual black hole
QNM spectrum. Indeed, it will now contain modes with a
real part of the frequency lower than the maximum of the
effective potential, and a very small imaginary part. These
modes are quasibound states (‘‘resonances’’) trapped
within the two-humped potential, with a small escape
probability and a long lifetime. There is no analog of these
modes in the black hole case. As for the former black hole
QNM modes, they do not seem to play any prominent role
anymore. Indeed, near, but on the left of the rightmost
hump, there will exist, for a general ‘‘wormhole QNM
mode,’’ a combination of left-moving and right-moving
modes which has nothing to do with the black hole QNM
modes which are purely left moving (i.e. away from the
summit of the potential).

Have we got here a clear observable distinction between
a wormhole and a black hole? In fact not. Indeed, the
observable way in which one hopes to detect QNM ringing
in the black hole case consists in considering the signal
emitted by a source falling into the hole, i.e. a source
starting at some large and positive value of z, and moving
leftwards towards smaller values of z. The observable
signal emitted by this source is obtained, in the time
domain, by the convolution of the retarded Green function
Gret�t� t0; z; z0� corresponding to the Klein-Gordon-like
(time-domain) Eq. (5.1) with the source, say 	�z0 �
zgeodesic�t

0��. It is true that the wormhole retarded Green
function Gret�t� t0; z; z0� is globally quite different in the
wormhole spacetime, compared to the black hole case,

because there will be a combined diffusion effect due to
the two potential humps. However, if the observer looks at
the emitted signal only over time scales much smaller than
the time it takes for a causal signal to go from a source
event [t0, zgeodesic�t0�] (located, say, near the rightmost
hump) to the leftmost hump, and then to scatter back to
the right until the observation event �t; z�, the observed
signal will be the same as that computed by using only the
diffusion effect of the rightmost hump, i.e. the retarded
Green function of a black hole spacetime. This computa-
tion, when done in the Fourier domain, will exhibit phe-
nomena linked to the usual black hole QNM modes. This
indirect, but physically clear reasoning, shows that if � is
such that the time scale (3.4) is longer than the observa-
tional time scale the signals emitted by a source falling into
a wormhole will contain the usual QNM ringing ‘‘signature
of a black hole,’’ in spite of the absence of a true horizon in
the wormhole case.

VI. DISSIPATIVE PROPERTIES

Let us now discuss whether wormholes can mimic the
dissipative properties of black holes, and notably the fact
that they can be described as membranes having a finite
electric (surface) resistivity equal to 377 Ohms [14] [as
well as a finite (surface) viscosity [15] ]. Indeed, the proof
of these properties crucially relies on the presence of an
horizon.

We might have here a good way of observationally
discriminating wormholes from black holes. For instance,
we can consider the physical situation discussed in [14].
An electric current I is passed through a black hole,
penetrating through the North pole and exiting from the
South pole.4 This generates a certain stationary electro-
magnetic field. The analysis in [14] of the regularity of the
field structure on the event horizon has shown that (even
for a nonrotating hole) the magnetic field generated by the
current must be accompanied by a correlated electric field.
It was then explicitly verified that the latter electric field is
responsible for generating an electric potential difference
between the two poles such that Ohms’ law V � RI is
satisfied, with a resistance R� 30 Ohms computable ‘‘as
if’’ the black hole horizon were a conducting surface of
resistivity equal to 377 Ohms (i.e. 4�). This electric po-
tential difference is, in principle, observable, and might
actually play a significant role in magnetic-field based
mechanisms for extracting energy from black holes
[16,17], which are believed to be important in active
galactic nuclei and other astrophysical processes.

If we pass a current I through a wormhole, we expect, at
face value, to generate only a magnetic field. More pre-
cisely, adopting the geometry of current injection of [14],

4This can be realized by sending a flux of positive charges
through the North pole, and a flux of negative charges through
the South pole.
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and solving Maxwell equations for a general spherically
symmetric wormhole background, we find a solution in-
volving a purely magnetic field strength

 Fwormhole � dA �
2I

sin�

����
B
A

s
d� ^ dr: (6.1)

This is consistent with [14], but represents only the mag-
netic part of the result

 Fblackhole � dA �
2I

sin�
d� ^

�
dt�

dr
1� 2GM=r

�
: (6.2)

If that were all, the difference between the last two
results would signal a clear physical distinction between
a wormhole and a black hole. However, (6.1) has been
derived by looking for a stationary solution of Maxwell
equations in a wormhole background. This would be rea-
sonable for a usual object through which passes a sta-
tionary current. But a wormhole is not a usual object,
and we must take into account the crucial physical fact
which played an important role above. When � is very
small, one must remember that far from leading to a sta-
tionary state the charges (of opposite signs) continuously
sent onto the poles of a wormhole will appear (on usual
external time scales) to accumulate on the North and South
poles of the r � 2GM throat, though the effect of these
localized accumulated charges will tend to uniformly
spread out into a low-multipole electric field. When think-
ing more about this rather complicated problem, one then
realizes that we can use the same arguments that we have
used already above. It consists essentially in saying that the
retarded Green function (now considered for a Maxwell
field) in a wormhole spacetime will precisely mimic (if � is
small enough) the black hole retarded Green function if
one considers a source which started falling in a finite time
ago, and an observer having also a finite observing time
window.

VII. QUANTUM EFFECTS

Let us finally consider quantum effects in a wormhole
metric, and compare them to the black hole case.

We have already seen that in a wormhole spacetime
there are classical geodesics, absent in the Schwarzschild
metric, which oscillate around the throat region. We there-
fore expect that there will be corresponding quantum
modes which are trapped within the throat. Actually, we
have already mentioned them above. Indeed, when consid-
ering, for simplicity, a quantum scalar field � propagating
in a wormhole metric, we can decompose it in modes of
frequency ! and angular momentum �l; m�. This leads to
the separated radial equation written in Eq. (5.1) above.

The effective radial potential (5.2) reaches a minimum
(positive) value minU � �2

4G2M2 
1
2� l�l� 1�� at the center

of the throat r � 2GM. Note that this minimum value is

positive, but tends to zero like the square of �. This
minimum is surrounded on both sides by much higher
positive maxima located around (we take the limit l� 1
in which these expressions simplify) r � 3GM

1��2 and of value

 

maxU �
1

27G2M2

�
l�l� 1� �

2

3

�

�
1

9G2M2

�
l�l� 1� �

5

9

�
�2:

As we already mentioned above when discussing QNM
modes, the radial Eq. (5.1) admits a discrete set of long-
lived resonances within this potential well. The lowest
(nearly real) energy levels can be obtained by looking in
the throat region r� 2GM� 2GM. There the relation
between the coordinates r and z is given by r�z� �
2GM�1� �2sinh2 z

4GM�. The effective radial potential
takes the form (for arbitrary l)
 

U�z� �
�2

8G2M2 �1� 2l�l� 1�� �
�2

4G2M2 �1� l�l� 1��

	 sinh2

�
z

4GM

�
:

The discrete spectrum for this potential can be obtained in
the WKB approximation [12],

 !n �
�

8GM ln�1=~��

�
n�

1

2

�
; n 2 Z; (7.1)

where we defined ~�2 � �2�1� l�l� 1�� and neglected
terms of order �2 (and ~�2).

For l � 0 the first discrete level appears far above the
bottom of the potential well �2

8G2M2 but far below the top of
the potential. Thus, there is a large number N 0 of discrete
levels inside this l � 0 well. This number can be estimated
as

 N 0 ’

������
27
p

4�
ln

1

�
: (7.2)

If we consider the case where � is given by (2.2), we note
that the number of bound states is of the order of N 0 �
GM2, which is of the same order as the entropy of the
Schwarzschild black hole. Note, however, that this was
only the l � 0 modes. If we consider l � 0 modes, we
will have a similar spectrum of quasibound states, and the
number of bound states for given values of l and m will be
of order (for large l and neglecting �2 terms)

 N lm ’
8

�
������
27
p

�������������������������
l�l� 1� �

2

3

s
ln�1=~��

�

�������������������������
l�l� 1� �

2

3

s
GM2: (7.3)

THIBAULT DAMOUR AND SERGEY N. SOLODUKHIN PHYSICAL REVIEW D 76, 024016 (2007)

024016-6



It would be interesting to study more carefully whether
these quasibound states could be considered as analogs of
the somewhat mysterious ‘‘black hole microstates’’ which
are supposed to be counted by the Bekenstein-Hawking
entropy (see e.g. [18] for a review). Even more interest-
ingly, as the wormhole resonances discussed here are all
unstable, it is tempting to conjecture that they might some-
how mimic the Hawking radiation. We have in mind here a
mechanism of the following sort. During the collapse
leading to the (assumed) formation of a wormhole, the
quantum field � will be left in a state where many of the
wormhole resonance modes will be excited. The modes
which have a large decay width � � �Im! (like the
ordinary QNM modes) will be radiated quite fast. But the
modes which are deep down within the double-humped
potential well will have a very small decay width � and
will slowly trickle out of the potential well, thereby gen-
erating a nearly continuous radiation emitted by the
wormhole.

However, though we anticipate that this ‘‘wormhole
radiation’’ might [especially for the choice (2.2) of �]
coarsely model Hawking’s radiation, we do not think that
it will be possible to reproduce with precision the specific
thermal-like gray-body spectrum predicted in [11]. Indeed,
this spectrum is a delicate consequence of the fact that the
modes of a quantum field which ‘‘straddle’’ the event
horizon get torn into two outgoing modes, one of which
exits at radial infinity in the form of a quasithermal
spectrum.

VIII. CONCLUSIONS

In conclusion, we considered a wormhole spacetime as a
‘‘foil’’ to a Schwarzschild black hole, to learn to what
extent the observational features of a black hole do really
depend on the presence of an event horizon. Indeed, unlike
a black hole, a wormhole geometry is globally static and
does not have an event horizon. It was clear from the start
that, as the two spacetimes have a nearly identical geome-
try for r > 2GM, they would have very similar closed
geodesics, and would therefore be practically indistin-
guishable in astronomical observations that depend only

on the external gravitational field. However, and more
surprisingly, we found that many observational features
that were thought to crucially depend on the presence of
an event horizon were well mimicked by a wormhole, if the
parameter � is sufficiently (exponentially) small. This in-
cludes the apparently irreversible accretion of matter down
a hole, no-hair properties, quasi-normal-mode ringing, and
even the dissipative properties of black hole horizons, such
as a finite surface resistivity equal to 377 Ohms [14].

Finally, we conclude that the only ways to observatio-
nally distinguish a wormhole from a black hole are: (1) ei-
ther to observe classical phenomena (such as matter
accretion) over the long ‘‘wormhole bounce’’ time scale
�t � 2GM ln 1

�2 , (2) or to observe the Hawking radiation
presently coming out of a hole. Interestingly, there is a link
between these two methods: when � takes the value (2.2)
suggested in [12], the classical wormhole bounce time
scale becomes comparable to the quantum evaporation
time of a Schwarzschild black hole �t � 16�G2M3.
However, in the case where � takes the value (2.2) both
methods are unpractical because the time scale �t �
16�G2M3 is much too large for usual astrophysical
masses, and/or the Hawking temperature is much too low
(being much smaller than the 3K cosmological
background).

It remains interesting to keep in mind that most of the
phenomenology of black holes does not really depend on
the presence of an horizon, and also (though this deserves
more study) that a wormhole could somehow mimic the
Hawking radiation, as well as may provide a simple way of
visualizing the microstates storing the information appar-
ently ‘‘lost’’ during a gravitational collapse. One would,
however, need a more detailed model of the formation of a
wormhole to address this issue.
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