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The conical singularity in flat spacetime is mostly known as a model of the cosmic string or the wedge
disclination in solids. Another, equally important, function is to be a representative of quasiregular
singularities. From all these points of view it seems interesting to find out whether there exist other similar
singularities. To specify what ‘‘similar’’ means I introduce the notion of the stringlike singularity, which
is, roughly speaking, an absolutely mild singularity concentrated on a curve or on a 2-surface S
(depending on whether the space is three- or four-dimensional). A few such singularities are already
known: the aforementioned conical singularity, its two Lorentzian versions, the ‘‘spinning string,’’ the
‘‘screw dislocation,’’ and Tod’s spacetime. In all these spacetimes S is a straight line (or a plane) and one
may wonder if this is an inherent property of the stringlike singularities. The aim of this paper is to
construct stringlike singularities with less trivial S. These include flat spacetimes in which S is a spiral, or
even a loop. If such singularities exist in nature (in particular, as an approximation to gravitational field of
strings), their cosmological and astrophysical manifestations must differ drastically from those of the
conventional cosmic strings. Likewise, being realized as topological defects in crystals, such loops and
spirals will probably also have rather unusual properties.
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I. INTRODUCTION

Consider the spacetime M1:

 d s2 � �dt2 � dz2 � d�2 � �2d�2;

t; z 2 R; � > 0; � � �� a
(1)

(the last formula means that � parametrizes the circle and
is defined modulo a only). When a � 2� the spacetime is
merely the Minkowski space L4 in which the timelike plane
� � 0 is deleted. However, if a takes any other nonzero
value, M1 becomes a quite nontrivial spacetime often
referred to as a ‘‘straight cosmic string.‘‘ M1 is evidently
singular and it is the singularities of this type that are
discussed in this paper under the general name of ‘‘string-
like singularities’’ (the words ‘‘this type’’ need some elu-
cidation of course and it will be given in due course). These
singularities are important in many ways:

Cosmology. It is widely believed that the phase transi-
tions in the early universe could result in formation of
cosmic strings—infinitely long and at the same time very
thin solutions of the combined system of Einstein, Higgs
and gauge field equations (see, e.g., [1] for reviews and
references). No exact solutions of that system are known,
but Vilenkin [2] argued that in some approximation a
universe with a static cylindrically-symmetric cosmic
string, when in addition the metric is invariant under boosts
along the string, is described by a spacetime U that co-
incides with M1 at sufficiently large �: � > �0. In this
sense M1 is an approximation—useful when �0 can be
neglected—of the singularity-free string spacetime U; the
latter can be called a ‘‘thickening’’ of M1.

The singularities considered in this paper are defined by
two properties: they (in the sense yet to be elaborated) are
surfaces of codimension 2 and the spacetimes harboring
them are regular (flat in most cases). So, they can be

regarded as generalization of M1 to less symmetric case
(each of them must of course lack some of the symmetries
mentioned above, e.g., the ‘‘spinning string’’ M�

4 is not
boost-invariant, while all curved singularities are not
cylindrically-symmetric), and that is why they are called
stringlike.

All timelike singularities discussed below admit thick-
ening, but it may happen that for some particular type the
thickenings cannot describe cosmic strings, because, say,
the properties of the matter required (by the Einstein
equations) for their existence are unrealistic. With this
reservation, however, every new class of stringlike singu-
larities must be of great importance to the cosmic string
theory, being an approximation to the gravitational field of
(closed, curved, accelerated, etc.) strings.

Solid state physics. The spacetime (1) bears much re-
semblance to what is called wedge disclination in con-
densed matter physics (see, e.g., [3]). Another stringlike
singularity is similar to screw dislocation (see Sec. II C).
Though the analogy between the spacetime singularities
and the defects from the theory of elasticity is delusive
sometimes (see Sec. III C and Appendix B), it can be
stretched further—Puntigam and Soleng used the
Volterra construction to classify the stringlike singularities
[4]. This suggests that, vice versa, the properties of string-
like singularities might be important in condensed matter
physics.

Relativity. What makes the stringlike singularities espe-
cially interesting is, in my view, their relation to the most
fundamental problems of general relativity. Whether so
mild singularities exist in nature is, in a sense, a more
important question than, say, whether there is a singularity
inside the Schwarzschild horizon. Indeed the singularities
in discussion satisfy (see definition 2) the condition—let
us call it absolute mildness—that there be a finite open
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covering of the spacetime M,

 M �
[

i�1;...m

Ui (2)

such that every Ui can be extended to a nonsingular space-
time Mi (that is, there are isometries !i mapping Ui to
!i�Ui� � Mi). In fact, the absolutely mild singularities
are—at least in flat spacetimes—a subclass of quasiregu-
lar ones [5,6], the difference being essential only in exotic
situations, when infinitely many quasiregular singularities
accumulate in a spacetime (see Appendix B of [5]). The
peculiarity of these types of singularities is that however
close one of them is approached the geometry remains
perfectly nice. This makes their presence in relativity ruin-
ous for its predictive force: even if a spacetime is initially
globally hyperbolic its evolution cannot be predicted from
the Cauchy surface, because at any moment a singularity
(say, a ‘‘branching’’ singularity discussed in Sec. III B) can
form, nullifying all our predictions. At the same time it is
absolutely unclear how to exclude such singularities from
the theory. Unless forbidden by some ad hoc global postu-
late the same branching singularity would apparently
present in any geometrical theory, regardless of the dy-
namical equations for the geometry, its relation to the
matter source, or the properties of that source.

1. Remark. The seriousness of the problem is often
underestimated. For example, in their pioneering paper
on quasiregular singularities [5] Ellis and Schmidt speak-
ing through Salviati say: ‘‘We know lots of examples of
quasiregular singularities, all constructed by cutting and
gluing together decent space-times; and because of this
construction, we know that these examples are not physi-
cally relevant.’’ The argument is emphatically untenable:
any spacetime can be constructed by cutting and gluing
together some other decent spacetimes and any of them can
be constructed otherwise. The spacetimes with the singu-
larities in discussion are absolutely no different in this
respect from the others. Correspondingly, no reasons are
seen to regard M1 and suchlike less physically relevant
than any other spacetime.

To sum up, there are many reasons for studying string-
like singularities and, in particular, those occurring in flat
spacetimes (supposedly they are the simplest). The first
question that one may ask is: What form do they have? So
far only a few such singularities have been considered in
the literature and all of them (with a possible exception of
the ‘‘branching disclination,’’ discussed in Sec. III B) have
very dull form: they are flat surfaces of codimension 2. In
other words, they (or rather their thickenings) correspond
to straight strings moving at constant velocities. The main
aim of the present paper is to provide examples of flat
spacetimes with different stringlike singularities including
those corresponding to curved—and even closed—strings
and strings moving with acceleration. This will be done in

Sec. III after some general consideration in Sec. II, where I
define stringlike singularities and (roughly) classify them.

II. GENERAL CONSIDERATION

A. Stringlike singularities

In trying to build a curved or otherwise unusual string-
like singularity, one immediately comes up against the
problem of definition. It is customary, for example, to refer
to the singularity in the spacetime [from now on the word
spacetime stands for smooth connected (pseudo-)
Riemannian manifold]

 M�
10 : ds2 � dz2 � d�2 � �2d�2;

� > 0; � � �� a; a � 0; 2�
(3)

as to the ‘‘straight line’’ while the singularity in M1 is, in
these terms, a ‘‘plane’’ or ‘‘a straight line at rest.’’ But what
exactly is meant by that? The metric, and hence the space-
time, cannot be extended to the z-axis, straight or not. But
if the z-axis is missing,1 then just what is straight or bent?
In fact, this naive question has no good answer at present,
being a particular case of a notoriously hard problem of
assigning in a natural way a topology (never mind geome-
try) to singularities [8]. Fortunately, when the condition (2)
is satisfied, it is possible to give at least a tolerable working
definition to the relevant entity.

Consider to this end the set � of geodesics
����: ��1; 0� ! M which cannot be extended to the zero
value of the affine parameter �. Denote, further, by �i the
subset of � which consists of the geodesics lying, at least
when j�j is sufficiently small, inUi [hereUi is a member of
the covering (2)]. Below we are only interested in space-
times and coverings such that

 � �
[

i�1;...m

�i (4)

(this does not follow automatically from (2) as can be seen
by example of Misner’s space). Though the geodesics � 2
�i do not have the endpoints ��0�, their images !i � � in
Mi do. We shall denote such endpoints by s with corre-
sponding indices:

 s�;i � !i � ��0�:

Since � may lie in more than one Ui, it may happen that
two different points s, s0 2

S
iMi are generated by the

same geodesic. We shall write s1 	 s2 in such cases:

 s	 s0 , 9i1; i2; �: s � s�;i1 ; s0 � s�;i2 :

It would be natural to identify s and s0 and to associate the
singularity with the quotient of S� �

S
s�;i over 	, but

unfortunately in the general case 	 is not an equivalence

1One can try to retain it in the spacetime by developing
‘‘distributional geometry,’’ see [7] and references therein.
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relation. Therefore, we introduce the equivalence relation
	– as the transitive closure of 	:

 s1 	
– s2 , s1 	 sk1

	 sk2
. . .	 skm 	 s2

and use 	– in checking whether a candidate set represents
the entire singularity.

2. Definition. Let conditions (2) and (4) hold in a space-
time M. Then a set S � S� is said to represent the singu-
larity of M if for any s 2 S� there is s0 2 S such that
s0 	– s.

S is considered as subspace of
S
Mi (not just a set of

points) and correspondingly it can be straight, or curved,
timelike or not, etc. So, the definition seems to capture the
idea of a singularity being of a particular form.

3. Remark. The price to be paid is some arbitrariness.
First, depending on the choice of Ui, the same singularity
can be represented by different sets. Furthermore, one can
argue that geometrically it would be more consistent to
consider the singularity itself, defined, say, as S�= 	

– ,
rather than a set representing it. On the other hand, in
considering strings, i.e., thickenings of the singularities,
S seems to be more adequate. The difference between the
two objects is exemplified by the ‘‘spinning string,’’ see
Sec. II C. S in that case is a plane, while S�= 	

– is a
cylinder.

Now we can at last delineate our subject more
specifically.

4. Definition. A singularity is stringlike if it can be
represented by a surface of codimension 2.

5. Notation. In what follows three-dimensional space-
times with stringlike—represented by curves in this occa-
sion—singularities are denoted M10 , M20 , etc. Some of
them differ only in the signature in the sense that they are
obtained by the same, explicitly prescribed, manipulations
applied either to the Euclidean space E3 or to the
Minkowski space L3 (by the ‘‘same’’ manipulations I
mean that their verbal descriptions become the same after
the words z-axis and t-axis are interchanged; hence the
notation # in the figures—it stands for ‘‘z or t’’). To such
spacetimes the same numbers will be given and they will
be denoted by M�

k0 and M�
k0 , correspondingly. The four-

dimensional spacetimes will be denoted similarly but with-
out primes: M1, M2, etc. And the correspondence rule is:
given an M�
�

k0 one obtains its four-dimensional version

(i.e., M�
�
k ) by simply multiplying the former by the

relevant axis. For example,

 M 1 �M�
10 � E1 or M�

4 �M�
40 � L1; etc:

The first family of stringlike singularities was con-
structed by Ellis and Schmidt [5] who produced them
from the sets of fixed points F of discrete isometries �
acting on the Minkowski space (see Appendix A,) much as
one obtains the usual two-dimensional cone by identifying
the points on a plane related by a rotation by some fixed
angle. The point is that the spacetime �L4 �F �=� is

singular (the geodesics which in the Minkowski space
terminated at F now have no endpoints) and its singularity
(which is irremovable due to the nature of F , cf. Sec. 5.8 in
[8]) is represented by F . Three � were considered in [5]—
rotation, boost, and boost� rotation—to obtain in each
case a stringlike singularity represented by a plane. So, it
might have appeared that

(i) The problem of determining all the elementary
stringlike singularities in flat space is essentially
equivalent to finding all the discrete subgroups of
the Lorentz group which have two-dimensional sur-
faces F as their sets of the fixed points [5], and

(ii) All such singularities are straight, i.e., F are planes
[9].

In fact, however, neither is true. Counterexamples to (ii)
are built in the next section (an obvious one is the double
covering of E3 �F , where F is an arbitrary curve), and
that (i) is not the case is seen from the fact that even the
spacetime (1) with a > 1 cannot be obtained in that manner
(instead of L4 one could have started from a covering of
L4 �F in this case, but the relevant isometries have no
fixed points).

The reasons why the requirements to the isometries can
be weakened will become evident from examples in
Sec. II C (roughly speaking one can produce the desired
singularities from the discontinuing set of an isometry
rather from its set of the fixed points), to which we shall
turn after introducing (or, rather, formalizing—it is well
known and widely used) a more visual method of con-
structing spacetimes.

B. Cut-and-paste surgery

Given V is an open subset of a spacetime one can
construct a new spacetime W in the following way. Pick
a pair p1;2 of different points in the boundary B � BdV
and let O1;2 be disjoint neighborhoods of p1;2. Either of the
neighborhoods can be split into three disjoint sets

 Oj_ � Oj \ V; Bj � Oj \B;

Oj^ � Oj � Bj �Oj_; j � 1; 2

(see Fig. 1). Suppose now there is an isometry �: O1 ! O2

such that

 ��O1_� � O2^; ��B1� � ��B2�; ��O1^� � O2_:

Then an equivalence relation  can be defined

 p  q , p � q; or ��q�; or ��1�q�

and the spacetime W constructed by identifying equivalent
points:

 W � �V [O1 [O2�= � �V [B1 [B2�=  :

Pictorially speaking W is obtained by first attaching to V
two parts of its boundary, B1 and B2, and by then gluing
these parts together (remarkably, as long as B1 and B2 are
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kept fixed the choice of the points p1;2 and their neighbor-
hoods O1;2 does not affect the result; they only are needed
to guarantee the smoothness of W). The isometry � has to
be explicitly pointed out sometimes because there may be
more than one way of gluing B1 to B2.

6. Example. Take V to be the region 0< �̂ < a in

 M̂: ds2 � dẑ2� d�̂2� �̂2d�̂2; ẑ; �̂2 R1; �̂ > 0

(5)

and glue its boundaries B1 and B2 (i.e., the surfaces �̂ � 0
and �̂ � a, respectively) with the translation �: �̂ � �̂�
a (in Sec. II C we shall glue the same surfaces with other
isometries as well). The result is the conical space M�

10 ,
see (3).

7. Remark. Of course the spacetime W can be described
as well in terms of quotient spaces—it is, for instance, a
quotient of its universal covering ~W. Vice versa, given ~W
we can build W by cutting a fundamental region from ~W
and gluing appropriately its boundaries. So, it is just a
matter of convenience, which language to use. In particu-
lar, the Ellis-Schmidt singularities, see Appendix A, are
also easily constructed by cut-and-paste surgery.

Below we shall construct spacetimes much like in ex-
ample 6. Denote by Mn the Minkowski or Euclidean
n-dimensional space

 M n � Ln; En n � 3; 4

(which exactly will be indicated explicitly, when impor-
tant). Pick an �n� 1�-dimensional simply connected sur-
face H �Mn such that

(i) H is invariant under an isometry �0 (the isometry is

understood to act in some neighborhood of H), and
(ii) S � H �H is an �n� 2�-dimensional surface and

M �Mn � S is non-simply connected with the fun-
damental group �1 � Z (so, in the three-
dimensional caseH can be, for example, a half-plane
or a disk but not an infinite cylinder; in example 6 H
is the half-plane � � const). The universal covering
ofM will be denoted by M̂ and the natural projection
M̂ ! M by �.

Take V to be Mn �H. The spacetime V is extendible and
we shall consider it (not as a spacetime in itself, or a part of
M, but) as a part of M̂ and to indicate this the coordinates in
V will be labeled with hats. The boundary of V in M̂ is two
disjoint copies of H, which we denote by B1 and B2.

Further, �1�M� is generated by a single element—the
homotopy class of a curve ‘which circles F once. Thus an
isometry � acting on M̂ is defined by the conditions that for
any x 2 M̂, first, ��x� � ����x�� and, second, there is a
path 	 from x to ��x� such that��	� is a loop homotopic to
‘ (in example 6, � is the translation �̂ � �̂� 2�).
Evidently, B2 � ��B1� and we construct the desired
spacetime M from V by gluing B1 and B2 with the
isometry

 � � �0 � �

(gluing them with � � �we would get merelyM). In other
words, we scissor H from Mn, move in a special way one
bank of the cut with respect to the other (the motion is
devised so as to keep the boundary of the cut, i.e., S, at
place) and glue the banks together again. The spacetime M̂
was introduced in this procedure only for giving a rigorous
sense to the notion of banks.

C. Examples

Let H be the half-plane �� � 0; � > 0� in the three-
dimensional Minkowski space. Then S is the z-axis, M̂ is
the spacetime

 d s2 � �dt̂2 � d�̂2 � �̂2d�̂2; t̂; �̂ 2 R1; �̂ > 0;

and V is the region 0< �̂ < 2� bounded by the half-
planes B1 and B2, which are defined by the equations �̂ �
0 and �̂ � 2�, respectively. If one glued B1 to B2 with
�: �̂ � �̂� 2�, one would just restore the initial
Minkowski space. But if the same surfaces are glued
with the isometry

 �: �̂ � �̂� 2�; t̂ � t̂� t̂0

(i.e., � � �0 � �, where �0 is the translation by t̂0 in the
t̂-direction), the result [10] is a singular spacetime M�

40 . Its
four-dimensional counterpart M�

4 � E1 �M�
40 discov-

ered in [11,12] is often called ‘‘the spinning string.’’
Topologically M�

4 is equivalent to the straight string
M1. They both are everywhere flat and their singularities

FIG. 1. The tear-shaped regions are O1 and O2. If O1, O2 are
chosen otherwise (namely, to be the sectors �
 <�< 
 and
�0 � 
 < �<�0 � 
), then B1 and B2 are half-planes
bounded by the #-axis. Gluing them with an appropriate isome-
try one obtains all (but M3 and M5) singular spacetimes listed
in this section and Appendix A.
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are both represented by flat planes. Nevertheless the two
spacetimes differ significantly in some respects. For one, in
M�

4 chronology is violated. Another difference is that a
tetrad parallel transported along ‘ returns rotated in M1

but not so in M�
4 . As we discuss below, there is also a

more local difference.
One also can repeat the procedure just described, start-

ing this time from E3 instead of L3 and, correspondingly,
shifting B1 —before it is glued to B2 —in the z-direction
instead of the t-direction

 �: �̂ � �̂� 2�; ẑ � ẑ� ẑ0: (6)

In this case the result is the spacetimes M�
40 and M�

4 ,
called screw dislocations for their similarity to the corre-
sponding distortion [13]. M�

4 differs both from M1 and
M�

4 though its singularity is also represented by a plane.
Finally, one can start from L4 (in this case Bj are given

by the same equations, but now they are three-dimensional
half-spaces) and choose � to be a combination of � with a
boost in the z-direction [14]. Thus obtained spacetime M5

has a number of curious properties. For example, it is not
even stationary, even though its every simply connected
region is static.

Sometimes stringlike singularities can be built by
‘‘superposing’’ elementary ones. Take, for example, V to
be the sector 0< �̂ < a in M̂ and � to be the superposition
of translations: by a in the �̂-direction, by t̂0 in the
t̂-direction, and by ẑ0 in the ẑ-direction. The result is the
spacetime [13,14]
 

ds2 � ��dt̂� a�1 t̂0d�̂�2 � �dẑ2 � a�1ẑ0d�̂�2 � d�̂2

� �̂2d�̂2; �̂ � �̂� a; (7)

which combines the properties of the three spacetimes.

D. The strength of the singularities

In discussing singular spacetimes it is often hard to
decide whether a particular property should be considered
as a characteristic of the singularity or of the ‘‘regular part’’
of the spacetime. For example, it seems natural to classify
the stringlike singularities according to their holonomies
[4,14]. On the other hand, example 8 below suggests that
such a classification may be misleading. Fortunately, the
simplicity of the spacetimes at hand, allows a quantity to be
found which seemingly relates just to the singularity. The
cost is that the corresponding classification is quite
rough—the singularities are divided only into three cate-
gories. One of them contains the singularities from
Appendix A and the other contains those from Sec. II C.

Let s� be a singular point, ���� be a geodesic defining
this point as was discussed above, and fe�i�g be an ortho-
normal frame in ���1�. Now if a curve 	���: ��1; �2� !
M starts from some point of �,

 	��1� � ���1�;

it is possible to assign to it the ‘‘b-length’’B�	�. To this end
one defines fe�i�g��� to be the frame in 	��� obtained by
parallel transportation of fe�i�g, first, along � to the point
���1� and then along 	. Then B�	� (it is the length of 	 in
the generalized affine parameter, see [8]) is defined as
follows:

 B�	� �
Z �2

�1

�X
i

h@�; e�i�i2
�

1=2
d�:

Now we can attach a number

 ��s�� � lim
�!0

inf
noncontractible 	 through ����

B�	�

to every point s�. Of course the value of ��s�� for a given
s� may depend on � and fe�i�g, but not when

 ��s�� � 0: (*)

The property ( � ) holds for all (equivalent) � and all fe�i�g
if it holds for some.

The spacetimes in which ( � ) is true for all s 2 S will be
called disclinations after the spacetime M1, which is often
called so (by analogy with the theory of elasticity). In fact,
all spacetimes constructed in example 6 and Appendix A
are disclinations. On the contrary, the spacetimes M


4 ,
M5 all are characterized by the opposite property: ( � )
holds in none of s 2 S. I shall use the word dislocation2 as
a common name for all such spacetimes.

Absolutely mild singularities are often referred to as
‘‘topological.’’ However, when it concerns the disclina-
tions such a name may be a bit misleading. What makes
these singularities ‘‘true’’ (i.e., irremovable) is the purely
geometrical requirement that the metric should be non-
degenerate. In a hypothetical theory in which this require-
ment is relaxed3 there would be no singularity at all except
maybe a ‘‘coordinate singularity’’ like that on the horizon
of the Schwarzschild black hole or in the origin of the polar
coordinates. Indeed, the spacetime (3), for instance, can be
extended to R2 � S1 by simply letting � vary over the
entire real axis. The only pathology is that g � 0 at � � 0.

Dislocations in this sense are stronger singularities. As is
seen from the definition, S cannot be retained in the space-
time even at the cost of the metric degeneration (as long,
that is, as only continuous metrics are allowed).

III. UNCONVENTIONAL SINGULARITIES

In this section a few stringlike singularities are con-
structed with rather unusual properties. To my knowledge
none of them, except M


10, have been considered in the
literature.

2At variance with Puntigam and Soleng, who divided the
spacetimes into disclinations and dislocations according to their
global properties [4].

3Such a theory would differ significantly from general
relativity.
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A. Curved, closed, and accelerating dislocations

In the Euclidean space M3 � E3 consider the surface H,

 � � bz mod 2�; � > �0 > 0; b � 0:

H is a half of a helicoid without the core, see Fig. 2, and is
bounded by the spiral

 S : � � bz mod 2�; � � �0:

With these M3 and H let us carry out the procedure
described in the end of Sec. II B. The boundary of M3 �

H in M̂ consists of B1 and B2 � ��B1� (two disjoint
copies of H) and there is an obvious isometry

 �0: �̂ � �̂� bẑ0; ẑ � ẑ� ẑ0 (8)

that maps B2 to itself. So, gluing it to B1 with � � �0 � �
we obtain a spacetime M�

60 with a singularity represented
by the spiral S. (In other words, we have made a cut in E3

along the helical surface, rotated the lower bank of the
slit—let it be B1 for definiteness—counterclockwise
shifting it at the same time upward so that B1 slides over
B2, and pasted the banks together again into a single
surface.) The singularity S satisfies the relation

 ��s� �
����������������������������������������
�2�0 sin1

2bẑ0�
2 � ẑ2

0

q
8 s 2 S;

being thus a dislocation. I shall call it spiral (not to be
confused with helical).

To realize the structure of the spiral dislocation it is
instructive to depict M�

60 in the coordinates z, �, � as in
Fig. 2. These coordinates are invalid, of course, on B1;2;
that is why a smooth curve in M�

60 looks discontinuous in
the picture. It is easy to see that at bẑ0 � 2� the geometry
of the space outside the cylinder � � �0 is exactly the
same as in (the three-dimensional version of) the Gal’tsov-
Letelier (GL) space4 (7) with a � bẑ0 � 2�. The relation

of the two spacetimes becomes even more evident when
the spacetime is considered which is obtained exactly as
M�

60 but with the surface H0,

 H0: � � bz mod 2�; 0< �< �0;

taken instead of H. In contrast to H, H0 is bounded by S
and the z-axis. Thus the spacetime [see Fig. 3(a) ignoring
for the moment the ‘‘ripples’’ on S] has two singularities,
of which S is spiral and S0 (the former z-axis) is of the GL
type. At � > �0 the spacetime is just E3, so the spiral
singularity shields the GL one. And in exactly the same
sense two equal spiral singularities can shield each other.
The spacetime of this type is built by taking H to be the
central part of a helicoid, see Fig. 3(b).

The most striking feature of M�
60 is of course the form of

the singularity. From all the preceding examples it might
seem that stringlike singularities in flat spacetime by some
reason have to be straight. And now we see that this is not
the case—they may well be curved. Note that S does not
need to be a perfect spiral—instead of H we could take
another surface as long as it is invariant under the isometry
(8) and its boundary, exemplified by the undulate line in
Fig. 3(a), will represent a singularity of exactly the same
type. Moreover, S can even make a loop. Indeed, pick a
closed curve S � E3 bounding a surface H invariant under
the rotation

 �0: � � ���0:

(H and S needn’t be a surface of revolution and a circle,
respectively, if �0 � 2�=m, m 2 N). Proceeding as be-
fore (i.e., making an incision along H and gluing the banks
together after rotating one of them by �0), we obtain a
space M�

70 with a closed stringlike singularity, see
Fig. 4(a). M�

70 can be viewed as a limit case of the spiral
singularity corresponding to b � 1. Another limit, b �
�0 � 0 is the space M�

80 depicted in Fig. 4(b). It is a pure
screw dislocation, but curved. This space is built exactly as

FIG. 2. The spacetime M�
60 . The thick directed line is con-

tinuous.

FIG. 3. (a) A spiral singularity shielding a GL one. (b) Two
equal spiral singularities shielding each other.

4The difference in presentation yields an interesting by-
product: the Gal’tsov-Letelier space is not defined at a � 0,
while M�

60 is a nice spacetime for any ẑ0
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M�
5 with the only difference that instead of the entire half-

plane � � 0 one takes H to be the part of that half-plane
lying above the graph of a periodic function ��z�,

 ��z� � 0; ��z� � ��z� ẑ0�:

A different family of dislocations, M�
60;70;80 , is obtained

when the surgery employed in constructing M�
60;70;80 is

applied to L3 instead of E3. Correspondingly, their four-
dimensional versions M�

6;7;8 are obtained by interchanging
the z- and t-axes in M�

6;7;8. Of these, especially interesting
is M�

6 , see Fig. 2 with # � t. At � > �0 it is just a
spinning string, but taken as a whole it has two important
distinctions. First, M�

6 in a large range of its parameters b,
ẑ0, and �0 is causal. And, second, the singularity there is
represented by a straight line moving in quite a bizarre
manner: it circles around nothing.

Yet another accelerated singularity—let us call it M9 —
results from choosing H to be the 3-space x >

���������������
t2 � c2
p

,
y � 0 in M � L4 and �0 to be boost in the x-direction. The
singularity in M9 is represented by a straight line parallel
to the z-axis and moving with a constant acceleration in the
x-direction. If such a string passes between two observers,
which initially are at rest w.r.t. each other, either of them
would suddenly discover that the other has acquired some
speed in the x-direction, even though no apparent forces
were involved.

B. Curved disclination

In an arbitrary spacetime M, pick a surface S of codi-
mension 2 such that curves wrapping around it are non-
contractible in M� S. Consider the i-fold covering of
M� S. Irrespective of what M, S and i are chosen (i

must be finite, though) the covering has a stringlike singu-
larity represented by S. It is easy to see that this ‘‘branch-
ing singularity’’ is a disclination corresponding to � � id
in terms of Appendix A. As such, the singularities of this
type have received surprisingly little attention in the litera-
ture, however, implicitly they are present in a number of
known spacetimes.

Let � be an isometry sending an open subset O1 of a
spacetimeM to a subsetO2 disjoint withO1. To construct a
new spacetime M0, pick a two-sided hypersurface H lying
inO1 together with its closureH, removeH and ��H� from
M and glue the corresponding banks of the two thus
obtained slits as is shown in Fig. 5(a). Then M0 has a
singularity represented by S � H �H which is just a
branching dislocation5—the gray region in the figure
being nothing but the double covering of O1 � S.

8. Example. When H is a spacelike disc in the
Minkowski space and � is a timelike translation combined
with the time reflection, M�

10 � M0 is the Deutsch-Politzer
space. It contains closed causal curves and due to its
simplicity is used extensively in time machine theory
[15]. Its Euclidean analog M�

10 is a ‘‘loop-based worm-
hole’’ constructed (in terms of ‘‘delta function Riemann
tensor’’) in [16]. For its thickened version see [17] (curi-
ously, in M�

10 the singularity cannot be thickened [18]).
If nothing else, the branching singularity is a wonderful

source of counterexamples. It shows, in particular, that in
the general case:

(1) The presence of a stringlike singularity puts no
restrictions on the stress-energy tensor of the hosting
spacetime.

(2) A stringlike singularity can take any form and
change it arbitrarily (though in a smooth manner,
of course) with time. It also can appear and disap-

FIG. 5. (a) B1 is glued to B2 and B01 to B02. The thick curve is,
in fact, continuous (and closed). (b) The thick vertical lines are
slits.

FIG. 4. (a) A loop singularity with �0 �
2
3�. (b) Curved screw

dislocation.

5To give a precise meaning to the word ‘‘banks’’ and to make
the procedure rigorous in every way, one should consider M�
H� ��H� as a region in a covering of M� S � ��S� and
proceed as in Sec. II B.
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pear at will (for example, S can be a circle in the
�t; x�-plane multiplied by the z-axis). So, there are
no ‘‘laws of motion’’ for a general singularity (and,
in particular, it does not have to be a plane, contrary
to what is asserted in [9]).

(3) Holonomies do not characterize stringlike singular-
ities, even disclinations. Indeed, in constructing
M10 we could vary � (combining, say, the trans-
lation with a rotation) and obtain spacetimes with
different holonomies even though the singularities
remain the same.

Incidentally, the first two facts mean that the Cosmic
Censorship Conjecture can be proved only if general rela-
tivity is complemented by an additional global postulate,
like hole-freeness (cf. [5]).

C. Mixed singularities

Remove from the Euclidean plane E2 the region

 0< x< 1; y � 0

[the gray strip in Fig. 5(b)] and glue its vertical boundaries:

 �0; y�� �1; y�

to obtain a new 2D spacetime Me. One might think that
M4

e � L2 �Me is a spacetime with a stringlike singular-
ity of yet another type, which could have been called ‘‘edge
dislocation’’ for its similarity to the corresponding distor-
tion in solid state science (and that is, indeed, how M4

e—
or, rather, its part—was called in [4], see Appendix B). In
fact, however, this is not the case, because Me is extend-
ible and hence its singularities, formally speaking, are not
even absolutely mild. It is easy to find an inextendible
extension of Me: such is, for example, the spacetime
Mext

e obtained by making a pair of slits

 x � 0; 1; y � 0

in E2 and gluing their banks as is shown in Fig. 5(b). It is
seen that there is a singularity in Mext

e , but this is just a
branching singularity discussed above (the only difference
between Mext

e and a 2D loop-based wormhole is that the
slits are semi-infinite in the former and finite in the latter).

The interrelation between the edge dislocation and the
branching singularity suggests (again by analogy with the
solid state physics) that the latter can ‘‘transform’’ into a
screw dislocation forming thus a mixed singularity. And
this is the case. To build an example, remove the plane y �
0 from E3 and attach two banks—each is a copy of the
plane—to the cut as explained in Sec. II B. On one of the
banks draw a curve f which is the graph of a smooth
monotone function z�x�:
 

z �

8<
:
�1 x <�3;

0 jxj< 1;

1 x > 3;

z�x� � 1� z�x� 3� at x 2 �0; 3�

see Fig. 6(a). This curve splits the bank into two regions
which I denote A1 and A2. On the other bank draw two
lines—one is f and the other is obtained from it by a
horizontal shift x! x� 1

2 . The bank thus is split into
four regions denoted A0

1, A0
2, A3 and A0

3. To assemble
the spacetime M�

110 , remove all three copies of f and paste
each Am to the corresponding A0

m, m � 1; . . . 3 (� for
m � 3 is a combination of the shift �x; z�� �x� 3; z� 1�
and reflection y � �y). As can be easily seen, M�

11 has a
stringlike singularity represented by f. The singularity is
mixed: in particular, it is a (branching) disclination at x �
2 and a screw dislocation at x � 4.

The last example is built as follows. In E3 pick two
intersecting straight lines l1 and l2 and attach a half-plane
to either of them as shown in Fig. 6(b). Together these half-
planes B1;2 and the angles T 1;2 bounded by the lines l1;2
form a surface B that divides the space into two disjoint
regions V and V 0. There are two obvious rotations, one of
which (denoted �1) maps B1 to B2 and the other—�2—
maps T 1 to T 2. The spacetime M120 is obtained by
throwing away V 0 and pasting B1 to B2 with �1 and T 1

to T 2 with �2. The singularity in M12 is represented by a
plane l1 � t-axis and yet it is none of the singularities
considered in Sec. II. In particular, it is neither a disclina-
tion nor a dislocation, since ��s� � 0 at s � l1 \ l2 and �

0 otherwise.
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APPENDIX A

Denote by F a straight line or a plane (depending on
whether n � 3 or 4) which is the set of fixed points of an
isometry � : Mn !Mn:

 F � fp 2Mn: ��p� � pg:

Let M̂ be the universal covering of M �Mn �F . Define

FIG. 6. (a) Each Am is glued to A0
m. (b) V0 is the part of the

space separated from us by B. The curves with arrows make in
fact a single smooth path.
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 �̂ k: M̂ ! M̂

to be a lift of � � � (here k 2 Z, since every point of the
fiber defines a new lift). If, for example, � is the rotation by
a in E3, then M̂ is given by (5) and �̂k: �̂ � �̂� a� 2�k.

It is the quotients M � M̂=�̂k that Ellis and Schmidt
tested for absolutely mild singularities. Indeed, the con-
struction of M is a generalization of that producing a cone
or the Misner space, so it is reasonable to expect (though
not guaranteed) that M has a stringlike singularity repre-
sented by F .

One spacetime of that kind is M�
10 , which already has

been constructed in example 6. The four-dimensional
spacetime M1 with a stringlike singularity (in this case
M1 �M�

1 �M�
1 ) is obtained as the product M�

10 � L1.
Two more spaces of this type were found in [5]; let us
denote them M2 and M3. The spacetime M2 is obtained
by taking F to be a spacelike surface in the Minkowski
space and � to be a boost in the direction perpendicular to
F . [Interestingly enough not all k are equally appropriate
in this case: one particular k0 (that for which M̂=�̂k0

�

M=�) must be excluded, because the quotient is non-
Hausdorff.] Finally, M3 is built exactly as M2 but with
F being null and � being, correspondingly, the combina-
tion boost� rotation which leaves all points of F fixed.
Clearly, all three spacetimes M1;2;3 have stringlike singu-
larities represented by the planes F .

APPENDIX B

In their paper [4] Puntigam and Soleng employed the
Volterra process to obtain flat spacetimes with unusual
holonomies and thus with singularities. Two of them (see
entries 1 and 2 of Table 2) are called ‘‘edge dislocation.’’
The goal of this appendix is to demonstrate that these two
spacetimes (they are isometric) are, in fact, regions in the
spacetime L2 �Me considered in the beginning of
Sec. III C.

The spacetimes in discussion are L2 �MPS, where the
metric of MPS is
 

ds2 � dx02 � dy2 � 2
�1

2�r2 dx0�x0dy� ydx0�

�

�
�1

2�r2

�
2
�x0dy� ydx0�2; r2 � x02 � y2:

To analyze the structure of MPS let us first rewrite the
metric in a more transparent way:

 

ds2� �1��2x02�dy2��1��y�2dx02� 2�x0�1��y�dx0dy

�� 2�=r2; � �
1

4�
�1: (B1)

It is easy to see now that the metric diverges at r � 0 and
degenerates at �y � 1, i.e., on the circle

 �y� ��2 � x02 � �2: (B2)

Its domain consists thus of two disjoint regions (since the
metric must be nondegenerate). Restricting ourselves to the
larger region (i.e., to the exterior of the circle) we conclude
that the spacetime MPS is the manifold

 N � R2 � f�y� ��2 � x02 � �2g

endowed with the metric (B1). In the coordinates x0, y the
manifold N has the appearance shown by gray in Fig. 7(a).
It is instructive, however to introduce a new coordinate x

 x�x0; y� � x0 � 2 � arctg y=x0; �x0; y� 2 N0; (B3)

where N0 is N without the semi-axis fx0 � 0; y < 0g.
9. Remark The cut is necessary to make arctg well

defined, but it is made in the domain of the function x,
not in the spacetime being discussed.

In the coordinates x, y the metric takes the form

 d s2 � dy2 � dx2; (B4)

while N0 becomes the surface shown in Fig. 7(b) (and N
ensues when B1 is glued to B2).
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