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We study the formation of black holes by spherical domain wall collapse as seen by an asymptotic
observer, using the functional Schrödinger formalism. To explore what signals such observers will see, we
study radiation of a scalar quantum field in the collapsing domain wall background. The total energy flux
radiated diverges when backreaction of the radiation on the collapsing wall is ignored, and the domain
wall is seen by the asymptotic observer to evaporate by nonthermal ‘‘pre-Hawking radiation’’ during the
collapse process. Evaporation by pre-Hawking radiation implies that an asymptotic observer can never
lose objects down a black hole. Together with the nonthermal nature of the radiation, this may resolve the
black hole information loss problem.
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I. INTRODUCTION

Black holes embody the long-standing theoretical chal-
lenge of combining general relativity and quantum me-
chanics, with various proposals being advocated over the
years to resolve paradoxes associated with black hole
formation, evaporation, and information loss. Resolution
of these issues has become even more timely with the
possible formation and evaporation of black holes in par-
ticle accelerators in the framework of higher dimensional
models that have recently garnered much attention. The
process of black hole formation is generally discussed from
the viewpoint of an infalling observer. However, in all
physical settings it is the viewpoint of the asymptotic
observer that is relevant. More concretely, if a black hole
is formed in the Large Hadron Collider, it has to be
observed by physicists sitting on the CERN campus. The
physicists have clocks in their offices and they watch the
process of formation and evaporation in this coordinate
frame. They must address questions such as: At what time
did a black hole form? Is any information lost into the
black hole? How long did it take for the black hole to
evaporate? What is the spectrum of the decay products?

The process of gravitational collapse has been studied
extensively over the last few decades, from many different
viewpoints, including 1� 1 dimensional models and mod-
ifications of general relativity (e.g. see [1]). Unlike a large
subset of this work, our analysis is in 3� 1 dimensions and
within conventional general relativity. We model the gen-
eral problem by choosing to study a collapsing spherical
shell of matter, more specifically a vacuum domain wall.
The physical setup of the problem and the functional
Schrödinger formalism are described in Sec. II.

A crucial aspect of our analysis is that we address the
question of black hole formation and evaporation as seen
by an asymptotic observer. Initially, when the domain wall

is large, the space-time is described by the Schwarzschild
metric, just as for a static star. From here on, the wall and
the metric are evolved forward in time, always using the
Schwarzschild time coordinate. We emphasize that all our
discussion, unless explicitly stated, refers to the
Schwarzschild time t and this defines the time slicing of
the space-time. As is well known, the Schwarzschild co-
ordinate system breaks down at a black hole horizon, and
there is danger that our analysis will also break down at
some point during the gravitational collapse. However, we
do not encounter any such difficulties, suggesting that our
calculation is self-consistent. A second danger is that the
coordinate system may provide an incomplete description
of the gravitational collapse space-time. This remains a
possibility. However, we find that Schwarzschild coordi-
nates are sufficient to answer the very specific set of
questions we ask from the asymptotic observer’s view-
point. Namely, does the asymptotic observer see objects
disappear into a black hole in the time that he sees the
collapsing body evaporate? And, is the spectrum of the
radiation received ever truly thermal (even in the semiclas-
sical approximation)?

In Sec. III we verify the standard result that the forma-
tion of an event horizon takes an infinite (Schwarzschild)
time if we consider classical collapse. This is not surprising
and is often viewed as a limitation of the Schwarzschild
coordinate system. To see if this result changes when
quantum effects are taken into account, we address the
problem of quantum collapse using a minisuperspace ver-
sion of the functional Schrödinger equation [2] in Sec. IV.
We find that even in this case the black hole takes an
infinite time to form, contrary to some speculations in the
literature [3].

In Sec. V we consider the possible radiation associated
with the collapsing shell by considering the interaction of a
quantum scalar field and the classical background of a
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collapsing domain wall. We treat the problem using the
functional Schrödinger picture, which we relate to the
standard Bogoliubov treatment carried out in Sec. VI.
Here we find that the shell, even as it collapses, radiates
away its energy in a finite amount of time. With some
assumptions about the metric close to the incipient horizon,
we conclude that the evaporation time is shorter than what
would be taken by objects to fall through a black hole
horizon. This leads us to the conclusion that the asymptotic
observer will see the evaporation of the collapsing shell
before he can see any objects disappear.

We discuss our results from the point of view of an
infalling observer in Sec. VII, where we attempt to recon-
cile the fact that such an observer will not see substantial
radiation with the observations made by an asymptotic
observer. Our conclusions are summarized in Sec. VIII,
where we elucidate a possible resolution of the information
loss problem suggested by our results, together with a
discussion of possible loopholes and future directions.

II. SETUP AND FORMALISM

To study a concrete realization of black hole formation
we consider a spherical Nambu-Goto domain wall that is
collapsing. To include the possibility of (spherically sym-
metric) radiation we consider a massless scalar field, �,
that is coupled to the gravitational field but not directly to
the domain wall. The action for the system is

 S �
Z
d4x

�������
�g
p

�
�

1

16�G
R�

1

2
�@���2

�

� �
Z
d3�

��������
��
p

� Sobs; (1)

where the first term is the Einstein-Hilbert action for the
gravitational field, the second is the scalar field action, the
third is the domain wall action in terms of the wall world-
volume coordinates, �a (a � 0, 1, 2), the wall tension, �,
and the induced world-volume metric

 �ab � g��@aX
�@bX

�: (2)

The coordinates X���a� describe the location of the wall
and Roman indices go over internal domain wall world-
volume coordinates �a, while Greek indices go over space-
time coordinates. The term Sobs in Eq. (1) denotes the
action for the observer.

We will begin first with the Wheeler-de Witt equation in
order to explore and contrast quantum vs classical collapse
of the domain wall, but we will eventually utilize the
functional Schrödinger formalism to study both collapse
and radiation in this system.

The Wheeler-de Witt equation for a closed universe is

 H� � 0; (3)

where H is the Hamiltonian and ��X�; g��;�;O� is the
wave functional for all the ingredients of the system,

including the observer’s degrees of freedom denoted by
O. Note that the wave functional � is a functional of the
fields but not of the space-time coordinates. We will sepa-
rate the Hamiltonian into two parts, one for the system and
the other for the observer

 H � Hsys �Hobs: (4)

Any (weak) interaction terms between the observer and the
wall-metric-scalar system are included in Hsys. The ob-
server is assumed not to significantly affect the evolution of
the system and similarly for the system vis-à-vis the ob-
server. The total wave functional can be written as a sum
over eigenstates

 � �
X
k

ck�
k
sys�sys; t��k

obs�O; t�; (5)

where k labels the eigenstates, ck are complex coefficients,
and we have introduced the observer time t via

 i
@�k

obs

@t
� Hobs�

k
obs: (6)

With the help of an integration by parts, and the fact that
the total wave functional is independent of t, the Wheeler-
de Witt equation implies the Schrödinger equation

 Hsys�
k
sys � i

@�k
sys

@t
: (7)

For convenience, from now on we will denote the system
wave function simply by � and drop the superscript k and
the subscript ‘‘sys.’’ Similarly H will now denote Hsys, and
the Schrödinger equation reads

 H� � i
@�

@t
: (8)

A general treatment of the full Wheeler-de Witt equation
is very difficult and we shall utilize the frequently em-
ployed strategy of truncating the field degrees of freedom
to a finite subset. In other words, we will consider a
minisuperspace version of the Wheeler-de Witt equation.
As long as we keep all the degrees of freedom that are of
interest to us, this is a useful truncation. With this in mind,
we only consider spherical domain walls and assume
spherical symmetry for all the fields. So the wall is de-
scribed by only the radial degree of freedom R�t�. The
metric is taken to be the solution of Einstein equations for a
spherical domain wall. The metric is Schwarzschild out-
side the wall, as follows from spherical symmetry [4]

 ds2 � �

�
1�

RS
r

�
dt2 �

�
1�

RS
r

�
�1
dr2 � r2d�2;

r > R�t�;
(9)

where RS � 2GM is the Schwarzschild radius in terms of
the mass M of the wall, and

 d�2 � d	2 � r2sin2	d
2: (10)
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In the interior of the spherical domain wall, the line ele-
ment is flat, as expected by Birkhoff’s theorem,

 ds2 � �dT2 � dr2 � r2d	2 � r2sin2	d
2;

r < R�t�:
(11)

The interior time coordinate T is related to the observer
time coordinate t via the proper time � of the domain wall.

 

dT
d�
�

�
1�

�
dR
d�

�
2
�

1=2
(12)

and

 

dt
d�
�

1

B

�
B�

�
dR
d�

�
2
�

1=2
; (13)

where

 B � 1�
RS
R
: (14)

The ratio of these equations gives

 

dT
dt
�
�1� R2

��
1=2B

�B� R2
��

1=2
�

�
B�

�1� B�
B

_R2

�
1=2
; (15)

where R� � dR=d� and _R � dR=dt. Integrating Eq. (15)
still requires knowing R��� (or R�t�) as a function of
� (or t).

Since we are restricting our minisuperspace to fields
with spherical symmetry, we need not include any other
metric degrees of freedom. The scalar field can also be
truncated to the spherically symmetric modes (� �
��t; r�).

By integrating the equations of motion for the spherical
domain wall, Ipser and Sikivie [4] found that the mass is a
constant of motion and is given by

 M � 1
2�

���������������
1� R2

�

q
�

����������������
B� R2

�

q
�4��R2; (16)

where it is assumed that max�R�> 1=4�G� [4]. This
expression for M is implicit since RS � 2GM occurs in
B. Solving for M explicitly in terms of R� gives

 M � 4��R2�
���������������
1� R2

�

q
� 2�G�R� (17)

and with the relations between T and � given above we get

 M � 4��R2

24 1���������������
1� R2

T

q � 2�G�R

35; (18)

where RT denotes dR=dT.
We now discuss the classical collapse of the domain

wall.

III. CLASSICAL TREATMENT OF DOMAIN WALL
COLLAPSE

A naive approach to obtaining the dynamics for the
spherical domain wall is to insert the spherical ansatz for
both the wall and the metric in the original action. This
would lead to an effective action for the radial coordinate
R�t�. However, it is known that this approach does not give
the correct dynamics for gravitating systems. We find that
this approach does not straightforwardly lead to mass
conservation as given in Eq. (16). So we take the alter-
native approach of finding an action that leads to the
correct mass conservation law. The form of the action
can be deduced from Eq. (18) quite easily

 Seff � �4��
Z
dTR2�

���������������
1� R2

T

q
� 2�G�R� (19)

which can now be written in terms of the external time t

 Seff � �4��
Z
dtR2

24
����������������
B�

_R2

B

s

� 2�G�R

�����������������������������
B�

1� B
B

_R2

s 35 (20)

and the effective Lagrangian is

 Leff � �4��R2

24
����������������
B�

_R2

B

s
� 2�G�R

�����������������������������
B�

1� B
B

_R2

s 35:
(21)

The generalized momentum � can be derived from
Eq. (21)

 � �
4��R2 _R����

B
p

�
1������������������

B2 � _R2
p �

2�G�R�1� B����������������������������������
B2 � �1� B� _R2

p �
: (22)

The Hamiltonian (in terms of _R) is

 H � 4��B3=2R2

�
1������������������

B2 � _R2
p �

2�G�R���������������������������������
B2 � �1� B� _R2

p �
:

(23)

To obtainH as a function of �R;��, we need to eliminate
_R in favor of � using Eq. (22). This can be done but is

messy, requiring solutions of a quartic polynomial. Instead
we consider the limit when R is close to RS and hence B!
0. In this limit the denominators of the two terms in
Eqs. (22) (also in (23)) are equal and

 � 	
4��R2 _R����
B
p ������������������

B2 � _R2
p ; (24)

where

 � � ��1� 2�G�RS� (25)

and
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 H 	
4��B3=2R2������������������
B2 � _R2
p (26)

 � ��B��2 � B�4��R2�2�1=2: (27)

The Hamiltonian has the form of the energy of a relativistic

particle,
������������������
p2 �m2

p
, with a position dependent mass.

The Hamiltonian is a conserved quantity and so, from
Eq. (26),

 

B3=2R2������������������
B2 � _R2
p � h; (28)

where h � H=4�� is a constant. (Up to the approximation
used to obtain the simpler form of the Hamiltonian in
Eq. (26), the Hamiltonian is the mass.)

Solving Eq. (28) for _R we get

 

_R � 
B
�
1�

BR4

h2

�
1=2
; (29)

which, near the horizon, takes the form

 

_R 	 
B
�
1�

1

2

BR4

h2

�
(30)

since B! 0 as R! RS.
The dynamics for R� RS can be obtained by solving the

equation _R � 
B. To leading order inR� RS, the solution
is

 R�t� 	 RS � �R0 � RS�e

t=RS ; (31)

where R0 is the radius of the shell at t � 0. As we are
interested in the collapsing solution, we choose the nega-
tive sign in the exponent. This solution implies that, from
the classical point of view, the asymptotic observer never
sees the formation of the horizon of the black hole, since
R�t� � RS only as t! 1. This result is similar to the well-
known result (for example, see [5]) that it takes an infinite
time for objects to fall into a preexisting black hole as
viewed by an asymptotic observer [6]. In our case there is
no preexisting horizon, which is itself taking an infinite
amount of time to form during collapse. To see if this
conclusion will change when quantum effects are taken
into account (e.g. Sec. 10.1.5 of [3]) we now explore the
quantum dynamics of the collapsing domain wall.

IV. QUANTUM TREATMENT OF DOMAIN WALL
COLLAPSE

The classical Hamiltonian in Eq. (27) has a square root
and so we first consider the squared Hamiltonian

 H2 � B�B�� B�4��R2�2; (32)

where we have made a choice for ordering B and � in the
first term. In general, we should add terms that depend on
the commutator �B;��. However, in the limit R! RS, we
find

 �B;�� �
1

RS
:

Estimating H by the mass M of the domain wall, the terms
due to the operating order ambiguity will be negligible
provided

 M�
1

RS
�
m2
P

M
;

where mP is the Planck mass. Hence the operator ordering
ambiguity can be ignored for domain walls that are much
more massive than the Planck mass.

Now we apply the standard quantization procedure. We
substitute

 � � �i
@
@R

(33)

in the squared Schrödinger equation,

 H2� � �
@2�

@t2
: (34)

Then

 � B
@
@R

�
B
@�

@R

�
� B�4��R2�2� � �

@2�

@t2
: (35)

To solve this equation, define

 u � R� RS ln

�������� RRS � 1

�������� (36)

which gives

 B� � �i
@
@u
: (37)

Equation (34) then gives

 

@2�

@t2
�
@2�

@u2 � B�4��R
2�2� � 0: (38)

This is just the massive wave equation in a Minkowski
background with a mass that depends on the position. Note
that R needs to be written in terms of the coordinate u and
this can be done (in principle) by inverting Eq. (36).
However, care needs to be taken to choose the correct
branch since the region R 2 �RS;1� maps onto u 2
��1;�1� and R 2 �0; RS� onto u 2 �0;�1�.

We are interested in the situation of a collapsing wall. In
the regionR� RS, the logarithm in Eq. (36) dominates and

 R� RS � RSe
u=RS :

We look for wave packet solutions propagating toward RS,
that is, toward u! �1. In this limit

 B� eu=RS ! 0

and the last term in Eq. (38) can be ignored. Wave packet
dynamics in this region is simply given by the free wave
equation and any function of light-cone coordinates (u
 t)
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is a solution. In particular, we can write a Gaussian wave
packet solution that is propagating toward the
Schwarzschild radius

 � �
1�������
2�
p

s
e��u�t�

2=2s2
; (39)

where s is some chosen width of the wave packet in the u
coordinate. The width of the Gaussian wave packet re-
mains fixed in the u coordinate while it shrinks in the R
coordinate via the relation dR � Bdu which follows from
Eq. (36). This fact is of great importance, since if the wave
packet remained of constant size in R coordinates, it might
cross the event horizon in finite time.

The wave packet travels at the speed of light in the u
coordinate—as can be seen directly from the wave equa-
tion (38) or from the solution, Eq. (39). However, to get to
the horizon, it must travel out to u � �1, and this takes an
infinite time. So we conclude that the quantum domain
wall does not collapse to RS in a finite time, as far as the
asymptotic observer is concerned, so that quantum effects
do not alter the classical result that an asymptotic observer
does not observe the formation of an event horizon.

The above analysis shows that the collapsing wall takes
an infinite time to reach R � RS. The analysis leaves room
for processes by which the wave packet can jump from the
�RS;1� region to the �0; RS� region, without ever going
through RS. Note that this is different from tunneling
through a barrier. In that case, the wave function is nonzero
within the barrier, and a small part of it leaks over to the
other side of the barrier. In the present case, RS occurs at
u � �1 and so, if there is any barrier, it is infinitely far
away. If there is to be a jump from outside to inside RS, it
does not show up in the present description using the
Wheeler-de Witt equation.

We have obtained the massive wave equation (38), by
first squaring the classical Hamiltonian, Eq. (27). This
procedure eliminated the square root occurring in the
Hamiltonian. It is possible that some other quantization
procedure will yield different conclusions. In this context,
we note, in fact, that we need not square the Hamiltonian to
get rid of the square root provided we work in the near
horizon limit. In that case

 H � ��B��2 � B�4��R2�2�1=2 	 
B�; (40)

where the sign is chosen to makeH non-negative. Then the
Schrödinger equation again yields wave packets propagat-
ing at the speed of light in the �t; u� coordinate system and
with the horizon located at u � �1.

V. RADIATION-SEMICLASSICAL TREATMENT

If an external observer never sees the formation of an
event horizon, we need to explore what radiation might be
observed that characterizes gravitational collapse. To do so
we consider a quantum scalar field in the background of the
collapsing domain wall. We do not consider gravitational

radiation since this is excluded by our restriction to spheri-
cally symmetric modes in minisuperspace. In this section,
we approach the problem using the functional Schrödinger
equation since (i) we have already set up this approach and
used it in the previous section, (ii) we believe the approach
is more suited to treating the backreaction problem, and
(iii) it allows us to calculate the total radiation of which
Hawking radiation may only be a subset. To connect with
earlier work, we discuss the problem of Hawking radiation
using the conventional Bogoliubov transformations in
Sec. VI.

The action for the scalar field is

 S �
Z
d4x

�������
�g
p 1

2
g��@��@��: (41)

We decompose the (spherically symmetric) scalar field
into a complete set of real basis functions denoted by
ffk�r�g

 � �
X
k

ak�t�fk�r�: (42)

The exact form of the functions fk�r� will not be important
for us. We will be interested in the wave function for the
mode coefficients fakg.

In the functional Schrödinger picture, we wish to find the
wave functional ���; t� by solving a functional
Schrödinger equation. This is equivalent to finding the
wave function of an infinite set of variables,  �fakg; t�, by
solving an ordinary Schrödinger equation in an infinite
dimensional space. The procedure (detailed below) is to
find independent eigenmodes, fbkg, for the system for
which the Hamiltonian is a sum of terms, one for each
independent eigenmode. Then the wave function factorizes
and can be found by solving a time-dependent Schrödinger
equation of just one variable.

Since the metric inside and outside the shell have differ-
ent forms, we split the action into two parts

 S � Sin � Sout; (43)

where

 Sin � 2�
Z
dt
Z R�t�

0
drr2

�
�
�@t��

2

_T
� _T�@r��2

�
; (44)

 Sout� 2�
Z
dt
Z 1
R�t�
drr2

�
�
�@t��2

1�RS=r
�

�
1�

RS
r

�
�@r��

2

�
;

(45)

_T is given by Eq. (15), which with Eq. (29), gives

 

_T �
dT
dt
� B

�
1� �1� B�

R4

h2

�
1=2
: (46)

As R! RS, _T � B! 0. Therefore the kinetic term in Sin

diverges as �R� RS��1 in this limit and dominates over the
softer logarithmically divergent contribution to the kinetic
term from Sout. Similarly the gradient term in Sin vanishes
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in this limit and is subdominant compared to the contribu-
tion coming from Sout. Hence,
 

S� 2�
Z
dt
�
�

1

B

Z RS

0
drr2�@t��

2

�
Z 1
RS
drr2

�
1�

RS
r

�
�@r��

2

�
; (47)

where we have changed the limits of the integrations to RS
since we are working in the regime R�t� � RS. This ap-
proximation is valid provided the contribution from r 2
�RS; R�t�� to the integrals remains subdominant, and also
the time variation introduced by the true integration limit
(R�t�) can be ignored. These requirements are not arduous.

Now, we use the expansion in modes in Eq. (42) to write

 S �
Z
dt
�
�

1

2B
_akMkk0 _ak0 �

1

2
akNkk0ak0

�
; (48)

where M and N are matrices that are independent of R�t�
and are given by

 M kk0 � 4�
Z RS

0
drr2fk�r�fk0 �r�; (49)

 N kk0 � 4�
Z 1
RS
drr2

�
1�

RS
r

�
f0k�r�f

0
k0 �r�: (50)

Using the standard quantization procedure, the wave
function  �ak; t� satisfies

 

��
1�

RS
R

�
1

2
�k�M�1�kk0�k0 �

1

2
akNkk0ak0

�
 � i

@ 
@t
;

(51)

where

 �k � �i
@
@ak

(52)

is the momentum operator conjugate to ak.
So the problem of radiation from the collapsing domain

wall is equivalent to the problem of an infinite set of
coupled harmonic oscillators whose masses go to infinity
with time. Since the matrices M and N are symmetric and
real (i.e. Hermitian), it is possible to do a principal axis
transformation to simultaneously diagonalize M and N
(see Sec. 6-2 of Ref. [7] for example). Then for a single
eigenmode, the Schrödinger equation takes the form

 

�
�

�
1�

RS
R

�
1

2m
@2

@b2 �
1

2
Kb2

�
 �b; t� � i

@ �b; t�
@t

;

(53)

where m and K denote eigenvalues of M and N, and b is
the eigenmode.

We rewrite Eq. (53) in the standard form

 

�
�

1

2m
@2

@b2 �
m
2
!2���b2

�
 �b; �� � i

@
@�

 �b; ��; (54)

where

 � �
Z t

0
dt
�

1�
RS
R

�
(55)

and

 !2��� �
K
m

1

1� RS=R
�

!2
0

1� RS=R
: (56)

We have chosen to set ��t � 0� � 0.
To proceed further, we need to choose the background

space-time, i.e. the behavior of R�t�. The classical solution
in Eq. (31), tells us that 1� RS=R� exp��t=RS� at late
times. We are mostly interested in the particle production
during this period. At early times, the behavior depends on
how the spherical domain wall was created and we are free
to choose a behavior for R�t� that is convenient for calcu-
lations and interpretation. To be able to interpret particle
production at very late times it is easiest to have a static
situation. This can be obtained if we artificially take the
collapse to stop at some time, tf. Eventually we can take
tf ! 1 to go over to the eternal collapse case. So our
choice for R will be

 1�
RS
R
�

8><>:
1 t 2 ��1; 0�
e�t=RS t 2 �0; tf�
e�tf=RS t 2 �tf;1�

(57)

as depicted in Fig. 1. This choice does have the issue that
the derivative of R has discontinuities at t � 0 and t � tf.
However, we shall show below that these discontinuities do
not affect particle production.

With the chosen behavior of R, the space-time is static at
early times and the initial vacuum state for the modes is the
simple harmonic oscillator ground state,

  �b; � � 0� �
�
m!0

�

�
1=4
e�m!0b

2=2: (58)

Then the exact solution to Eq. (54) at later times is [8]

1 − R S /R

t

1

t f

e− t f /R S

FIG. 1. Model for R�t�.
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  �b; �� � ei����
�
m

�
2

�
1=4

exp
�
i
m
2

�
�


�

i


2

�
b2

�
; (59)

where 
� denotes the derivative of 
��� with respect to �,
and 
 is given by the real solution of the ordinary (though
nonlinear) differential equation

 
�� �!
2���
 �

1


3 (60)

with initial conditions

 
�0� �
1������
!0
p ; 
��0� � 0: (61)

The phase � is given by

 ���� � �
1

2

Z �

0

d�0


2��0�
: (62)

In Appendix A we discuss the behavior of 
 as �! RS
(t! 1). Also note that the solution for 
 and 
� is
continuous.

Consider an observer with detectors that are designed to
register particles of different frequencies for the free field

 at early times. Such an observer will interpret the wave
function of a given mode b at late times in terms of simple
harmonic oscillator states, f’ng, at the final frequency,

 �! � !0e
tf=2RS : (63)

The number of quanta in eigenmode b can be evaluated by
decomposing the wave function (Eq. (59)) in terms of the
states, f’ng, and by evaluating the occupation number of
that mode. To implement this evaluation, we start by writ-
ing the wave function for a given mode at time t > tf in
terms of the simple harmonic oscillator basis at t � 0.

  �b; t� �
X
n

cn�t�’n�b�; (64)

where

 cn �
Z
db’
n�b� �b; t� (65)

which is an overlap of a Gaussian with the simple harmonic
oscillator basis functions. The occupation number at eigen-
frequency �! (i.e. in the eigenmode b) by the time t > tf, is
given by the expectation value

 N�t; �!� �
X
n

njcnj
2: (66)

In Appendix B we evaluate the occupation number in the
eigenmode b and the result is given in Eq. (B12)

 N�t; �!� �
�!
2���

2
p

��
1�

1

�!
2

�
2
�

�
�
�!


�
2
�

(67)

for t > tf.
By calculating _N, it can be checked that N remains

constant for t < 0 and also t > tf. Hence all the particle

production occurs for 0 � t � tf. There is a possibility that
the particle production is due to discontinuities in the
derivative ofR at t � 0, tf. However, as we shall see below,
the particle number grows with increasing tf, while the
discontinuity at t � 0 is fixed, and that at t � tf gets
weaker. This indicates that particle production occurs
only during 0< t < tf and is a consequence of the gravi-
tational collapse.

Now we can take the tf ! 1 limit. In Appendix A we
have shown that 
 remains finite but 
� ! �1 as t >
tf ! 1, provided !0 � 0. However, we are interested in
the behavior of N for fixed frequency, �!. Since �! �
!0e�tf=2RS , tf ! 1 also implies !0 ! 0. From the dis-
cussion in Appendix A, we also know that 
! 1 as!0 !
0. Hence we find

 N�t; �!� �
�!
2���

2
p �

et=�2RS����
2
p ; t > tf ! 1: (68)

This is confirmed by our numerical evaluation of N as a
function of time t > tf for several different values of !
(see Fig. 2).

Therefore the occupation number at any frequency di-
verges in the infinite time limit when backreaction is not
taken into account. This implies that backreaction due to
particle creation will have important consequences for
gravitational collapse.

We have also numerically evaluated the spectrum of
mode occupation numbers at any finite time and show
the results in Fig. 3 for several different values of t. The
similar shapes of the different curves suggest that there
might be a simple relationship between them. By rescaling
both axes we find that the curves roughly (though not
completely) collapse into a single curve as shown in
Fig. 4. Hence, knowing the spectrum at time ti approxi-
mately gives us the spectrum at all times via

 ��1�t�N�t; �!=�0�t�� � ��1�ti�N�ti; �!=�0�ti��; (69)

where we can determine the function ��t� by considering
the time variation of N�t; 0�, and �0 by Eq. (63). The result
is

2 4 6 8
t /RS

20

40

60

N ω
−

RS=1,5,10,20

FIG. 2. N versus t=RS for various fixed values of �!RS. The
curves are lower for higher �!RS. At late times the behavior is
given by Eq. (68).
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 ��t� � 1��
2
p �et=2RS � e�t=2RS � 2�; (70)

 �0�t� � et=2RS : (71)

We can compare the curve in Fig. 4 with the occupation
numbers for the Planck distribution

 NP�!� �
1

e�! � 1
; (72)

where � is the inverse temperature. It is clear that the
spectrum of occupation numbers is nonthermal. In particu-
lar, there is no singularity inN at! � 0 at finite time, there
are oscillations in N, and the rescaling law of Eq. (69) is
not applicable to a thermal distribution. As t! 1, the
peak at ! � 0 does diverge and the distribution becomes
more and more thermal. Even at finite times, at small
frequencies

 NP�!� ��1� 	
1

�!
(73)

and the rescaling law amounts to rescaling the temperature
by a factor ��0.

Now, from Eq. (54), since the time derivative of the
wave function on the right-hand side is with respect to �,
! is the mode frequency with respect to � and not with
respect to time t. Equation (55) tells us that the frequency
in t is (1� RS=R) times the frequency in �, and at time tf,
this implies

 !�t� � e�tf=Rs �!; (74)

where the superscript (t) on ! refers to the fact that this
frequency is with respect to time t. This rescaling of the
frequency implies that the temperature for the asymptotic
observer (with time coordinate t) can be obtained by find-
ing the ‘‘best fit temperature’’ ��1 and then rescaling by
(1� RS=R). So the temperature seen by the asymptotic
observer is

 T � e�tf=RS��1�tf�: (75)

(The temperature T is not to be confused with the time
coordinate within the spherical domain wall, also denoted
by T in Sec. II.) By using the scaling in Eq. (71), it is easy
to see that ��1 grows as e�tf=2RS at late times and so T is
constant. We can fit a thermal spectrum to the collapsed
spectrum of Fig. 4, as shown in Fig. 5 to obtain

 T 	
0:19

RS
�

2:4
4�RS

� 2:4TH; (76)

where TH � 1=4�RS � :08=RS is the Hawking tempera-
ture. Since there is ambiguity in fitting the nonthermal
spectrum by a thermal distribution, we can only say that
the constant temperature T and the Hawking temperature
are of comparable magnitude.

The occupation number N�t; !� can be related to the
asymptotic flux of radiation following standard procedures
(e.g. Chapter 8 of Ref. [1]) and will result in the usual
greybody factors.

We thus see that in the context of the Schrödinger
formalism there is evidence of Hawking-like, but nonther-
mal radiation emitted during gravitational collapse before
any event horizon is formed. There are several possible
sources that one can imagine for this radiation, including
radiation due to a time-dependent metric, and also
Hawking emission [9]. Since the Schrödinger method in
principle accounts for all such sources of radiation, it is
worth reexamining the original Hawking calculation, done
using the Heisenberg picture and Bogoliubov machinery,
in the context of our above results.

100 300
ω
_

RS

10

20

30

40
N t/RS=6,7,8

FIG. 4. The same as Fig. 3 but with the axes rescaled as in
Eq. (69). This graph shows that the spectrum at different times is
approximately self-similar.

100 200
ω
_

RS

0.2

0.4

Ln(1+1/N) t/RS=8

FIG. 5. ln�1� 1=N� versus �!RS for t � 8RS. The dashed line
shows ln�1� 1=NP� versus �!RS where NP is a Planck distribu-
tion. The slope gives ��1 and the temperature in Eq. (76).

100 300
ω
-

RS

10

20

30

40
N t/RS=6,7,8

FIG. 3. N versus �!RS for various fixed values of t=RS. The
occupation number at any frequency grows as t=RS increases.
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VI. HAWKING’S CALCULATION

In Hawking’s pioneering paper [9], he considered a
collapsing body. By matching asymptotic field operators,
he could find the Bogoliubov coefficients, and then the
particle emission rate. The result is the famous Hawking
thermal radiation at temperature

 TH �
�

2�
; (77)

where � � 1=2RS is the surface gravity.
Since Hawking radiation is calculated in the t! 1 limit

(asymptotic field operators), the result does not provide an
answer to our original question: what will an experimen-
talist observe at a finite time? So we must recalculate the
radiation from a collapsing domain wall which is close to,
but still larger than, the Schwarzschild radius. Stated in a
slightly different way—does the experimentalist see
Hawking radiation before the event horizon is formed?

As Hawking showed, the mode functions of a massless
scalar field in the black hole space-time have a ‘‘phase
pileup’’ near the event horizon [9]. In other words, if we
retrace the mode functions from I� back in time up to I�,
the phase of the mode function diverges on I� at the point
v0 in Fig. 6, where the coordinate v is defined by

 v � t� r� RS ln

�������� r
RS
� 1

��������: (78)

The radial part of the ingoing mode functions on I� are
(Eq. (2.11) of [9])

 f!0 �
F!0 �r�������������
2�!0
p

r
ei!

0v: (79)

The relevant part of the outgoing mode function at fre-
quency ! when extended back to I� is given in Eq. (2.18)
of [9]

 p�2�! �
P�!�����������
2�!
p

r
exp

�
�i

!
�

ln
�
v0 � v
CD

��
; v < v0;

(80)

and zero for v > v0, where P�! , C, D are constants, and
� � 1=2RS. The expression in Eq. (80) is only valid for
small v0 � v, and for large !0 (geometrical optics limit).

The overlaps of p�2�! with f!0 and �f!0 determine the
Bogoliubov coefficients. This is equivalent to taking the
Fourier transform of p�2�! . Following Hawking’s calcula-
tion, the Bogoliubov coefficients for large !0 are (see
Eq. (2.19), (2.20) of [9]; also see [5])

 ��2�!!0 	
P�!
2�
�CD�i!=�ei�!�!

0�v0

������
!0

!

s
�
�
1�

i!
�

�
���i!0��1�i!=�; (81)

 ��2�!!0 	 �i�
�2�
!��!0�: (82)

Even though the expression for ��2�!!0 is only valid for
large !0, Hawking argues on analyticity grounds that the
singularity at !0 � 0 should be present. So to obtain ��2�!!0
it becomes necessary to go around the pole at !0 � 0 to
negative values of !0. The choice of deformation of the
contour around the pole is determined on the grounds of
analyticity, and the result is

 j��2�!!0 j � j�
�2�
!��!0�j � exp

�
�
�!
�

�
j��2�!!0 j: (83)

From here, the calculation of the thermal flux of Hawking
radiation follows.

Now consider an observer who only sees the collapsing
object for a finite time (see Fig. 6). The last ray detected by
such an observer emerges from I� at v � v1 < v0. For
this observer, the phase of the mode functions have a
tendency to pile up but there is no divergence as in
Eq. (80) because v � v1 < v0. As far as this observer is
concerned, the behavior in Eq. (80) holds for v � v1,
while for v > v1 the backtracked mode functions vanish.
The Fourier transform of p�2�! now gives the Bogoliubov
coefficients the following !0 dependence

 ��2�!!0 	
Z v1

dv exp
�
�i!0v� i

!
�

ln�v0 � v�
�
: (84)

Following Ref. [5], for !0 > 0 we rotate the integration
contour to the negative imaginary axis (v! �iy) and for
!0 < 0 to the positive imaginary axis (see Fig. 7). Simple
manipulations for !0 > 0 then give

+
O

r
=

0

−

v0

v1

i0

i−

r = 0 i+

u1

FIG. 6. Space-time of a blackhole with null rays originating at
I� and going to I�. The last ray that makes it to I� is emitted
at v0. An observer, O, far from the collapsing wall will attempt
to detect a flux of radiation over a finite but large time interval.
The last ray to get to the observer originates at I� at v1 < v0

and arrives at I� at u � u1. We are interested in finding the
particle flux in the section of I� between the points marked i0

and u1.
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 j��2�!!0 j � e�!=2�

��������Z 10 dye�!
0y�!	=��y2 � �2�i!=2�

��������;
where � � �v0 � v1� and 	 � tan�1��=y�. Similarly, for
!0 < 0 we get

 j��2�!!0 j 	 e��!=2�

��������Z 10 dye�j!
0jy�!	=��y2 � �2�i!=2�

��������:
Since ��2�!!0 � ��2�!��!0� the above expressions yield both
Bogoliubov coefficients.

The crucial difference between Hawking’s asymptotic
result and the finite time result is the factor exp�
!	=��
within the integral. Because of this factor, the relation in
Eq. (83) does not hold and thermality is lost. However, if
this extra factor is nearly unity, we can expect the spectrum
to be nearly thermal. The integral is cut off exponentially
for y > 1=!0 and hence we estimate that the spectrum will
be nearly thermal provided !!0�=�� 1. Hence the spec-
trum is thermal at low frequencies and gets closer to being
thermal as time goes on (�! 0), both of which seem
plausible on physical grounds.

It is difficult however, to go beyond these qualitative
statements in attempting to compare our results with what
one might derive in the Hawking approach, in particular, to
determine possibly how much of the effect we obtain might
be due to Hawking radiation, as opposed to particle crea-
tion by a changing metric. This is because the spectrum
depends on a sum over all !0, while the Hawking analysis
is done in the geometrical optics limit, at large frequencies.

Hence to find the spectrum in this approach, we need a
more complete solution to the equations of motion for all
the modes of the scalar field in the domain wall back-
ground. Such solutions are more difficult to obtain (as
described in [1] for example).

VII. INFALLING OBSERVER

So far we have considered the wall collapse from the
point of view of an asymptotic observer. From the point of
view of an infalling observer, the time coordinate is � of
Sec. II and the collapse appears to proceed differently. For
example, if we ignore radiation, the classical equation of
motion can be written from the conservation of M in
Eq. (17). Then, as the wall approaches the Schwarzschild
radius,

 R2
� 	

�
M

4��R2
S

� 2�G�RS

�
2
� 1: (85)

The right-hand side is a nonzero constant, implying that the
wall is collapsing with constant velocity in the � coordi-
nate. This shows that the collapse into a black hole occurs
in a finite time interval for the infalling observer. Further,
Hawking has argued [9] that the infalling observer does not
detect significant Hawking radiation since the emission is
dominantly at low frequencies compared to 1=RS, while
the infalling observer can only have local detectors of size
less than RS. Thus the infalling observer would appear to
see event horizon formation in a finite time, with no
significant radiation emanating from the black hole.

These paradoxical views of the asymptotic and infalling
observers need to be reconciled, and the conventional way
to reconcile them is summarized in the space-time diagram
of an evaporating black hole shown in Fig. 8. The diagram
is drawn so that the asymptotic observer sees evaporation
in a finite time and the infalling observer falls into the black
hole in a finite time also.

We have to note that the diagram in Fig. 8 does not
follow from a rigorous solution to the problem of radiation
from a collapsing object with backreaction included. There
are some analyses of this problem in �1� 1�-dimensional
models [10,11] whose connection with the �3�
1�-dimensional problem is unclear (e.g. [12]). Thus, the
diagram in Fig. 8 is a conjectured diagram that is widely
used in the literature. While this diagram may well be the
correct one once the full problem of gravitational collapse
with backreaction is solved, we have to emphasize that it
also has some puzzling features that indicate that it may not
be the best conjecture to make in the absence of a back-
reaction analysis.

The conventionally drawn space-time of an evaporating
black hole has features that are not consistent with our
findings. Since the asymptotic observer sees Hawking-like
radiation from the collapsing wall prior to event horizon
formation, the mass of the collapsing wall must be decreas-
ing, and at the point denoted by F in Fig. 8 the entire

FIG. 7 (color online). The integration contour in the calcula-
tion of the Bogoliubov coefficients runs from v � �1 to v � 0
in the complex v plane. In Hawking’s calculation v0 � v1 � 0,
and the branch cut starts at the origin. For!0 < 0, the integration
contour is rotated to the upper imaginary axis, and for !0 > 0 to
the negative imaginary axis. In Hawking’s case, this relates the
Bogoliubov coefficients �!!0 and �!!0 as pedagogically de-
scribed in Ref. [5]. (As pointed out to us by F. Dowker, care is
required in comparing the calculations in [5,9] since Hawking
considers modes e�i!

0v while Townsend considers e�i!
0v. We

are following Hawking’s calculation.) In our case, these very
rotations can also be done. However, the branch cut starts at
v0 � v1 > 0 and the simple relation between the Bogoliubov
coefficients needed for thermal emission is not obtained.
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energy of the wall has been radiated to I�. However, in the
space-time of Fig. 8, it is at precisely this instant that the
asymptotic observer sees infalling objects disappear into
the event horizon, even though there is nothing left of the
collapsing wall to form the singularity. A space-time re-
gion such as the triangular region behind the event horizon
only seems reasonable if not all of the collapsing shell
energy has been lost to I� up to the point F, and there is
some energy-momentum source left behind to crunch up in
the singularity. Also, if the space-time near the event
horizon is described by the Schwarzschild metric, there
is infinite gravitational redshift of signals escaping to in-
finity, while the diagram shows that signals escape to
infinity in a finite time. Finally, as is well known, the
diagram in Fig. 8 also gives rise to the information loss
paradox. While these features of the diagram in Fig. 8 are
not inconceivable, they are sufficiently strange as to cast
doubt on the validity of the picture.

Instead it may happen that the true event horizon never
forms in a gravitational collapse. We saw that an outside
observer never sees formation of a horizon in finite time,
not even in the full quantum treatment. What about an
infalling observer? As in Hawking’s case, the infalling
observer does not see radiation, but this is due to size
limitations of his detectors. The mode occupation numbers
we have calculated will also be the mode occupation
numbers that the infalling observer will calculate, even if
they be associated with frequency modes that he cannot
personally detect. The infalling observer never crosses an
event horizon, not because it takes an infinite time, but

because there is no event horizon to cross. As the infalling
observer gets closer to the collapsing wall, the wall shrinks
due to radiation backreaction, evaporating before an event
horizon can form. The evaporation appears mysterious to
the infalling observer since his detectors do not register any
emission from the collapsing wall. Yet he reconciles the
absence of radiation with the evaporation as being due to a
limitation of the frequency range of his detectors. Both he
and the asymptotic observer would then agree that the
space-time diagram for an evaporating black hole is as
shown in Fig. 9. In this picture a global event horizon
and singularity never form. A trapped surface (from within
which light cannot escape) may exist temporarily, but after
all of the mass is radiated, the trapped surface disappears
and light gets released to infinity.

The space-time picture that we are advocating is similar
to that described in Refs. [13,14] and, more recently,
Refs. [15–17].

VIII. DISCUSSION

In this paper we have studied the collapse of a gravitat-
ing spherical domain wall using the functional Schrödinger
equation. We would like to clearly delineate our analysis of
the collapse and the emitted nonthermal quantum radiation
from the interpretational issues about the formation of an
event horizon.

First, we studied the collapse of a gravitating spherical
domain in both classical and quantum theory, ignoring any

= initial mass

−

i0

i−

i+

r
=

0

+

domain wall

final ray
of radiatio n

F
radiated energy

no radiatio n

evaporatin g

D

FIG. 9 (color online). The space-time of a collapsing domain
wall. During collapse the wall emits nonthermal (quasi-
Hawking) radiation as depicted by the arrows. Our calculations
indicate that the total energy flux between the point i0 to some
point indicated by F is equal to the energy of the initial domain
wall. Hence we conjecture that the domain wall evaporates
completely at point D. Between F and i�, there is no radiation
flux arriving at I�. The event horizon and singularity present in
the customary treatment are not formed and the space-time
structure is the same as that of Minkowski space-time.

i0

I

A

F

−

i+

i−

r
=

0

r
=

0

E

radiated energy
= i nitial mass

no radiatio n
+

singular
r = 0

FIG. 8 (color online). The conventional space-time diagram
for an evaporating black hole. The observer A will register a flux
of quantum radiation even during collapse, and will be able to
account for the entire energy of the shell by the time he/she gets
to the line EF. From this point on, A will conclude that there is no
energy left in the region of the collapsing shell. Yet A will see
objects and other observers (such as I) disappear into what can at
most be a Planck scale object and this is a puzzling feature of this
picture.
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evaporative processes. It has been suggested in the litera-
ture that quantum fluctuations can cause the collapse and
formation of a black hole in a finite (Schwarzschild) time
[3]. However, our results show that this is not the case and
the horizon does not form in a finite time even in the full
quantum treatment.

Then we studied radiation from the collapsing shell as
seen by the asymptotic observer. In the process of gravita-
tional collapse, there are two, perhaps related, sources of
radiation: first is the radiation from particle creation in the
changing gravitational field of the collapsing ball, and
second may be Hawking-like radiation due to a mismatch
of vacua at early and late times. The functional
Schrödinger analysis takes all such sources into account
and therefore gives the total particle production. We have
found a nonthermal distribution of particle occupation
numbers, with departures from thermality as illustrated in
Fig. 3 and discussed toward the end of Sec. V. In a limited
range of frequencies, the spectrum is approximately ther-
mal and the temperature fitted in a restricted range of
frequencies is constant and roughly equal to the Hawking
temperature 1=4�RS. The radiation becomes thermal in
the entire range of frequencies only in the limit t! 1, i.e.
when the horizon is formed. Further, the mode occupation
number diverges in the infinite time limit, if the backreac-
tion is neglected (i.e. the background is held fixed). Since
an outside observer never sees formation of a horizon in a
finite time, radiation observed by him is never quite ther-
mal. (Nonthermal features also get greatly amplified once
the background is also treated quantum mechanically
[18].) This nonthermal radiation has strong implications
for the information loss paradox since it can carry infor-
mation about the collapsing matter.

Without a rigorous calculation that includes backreac-
tion, one cannot give a definite answer to the final fate of a
collapsing object. It may happen that the diagram in Fig. 8
is correct and some radical and elaborate solutions to the
problems we mentioned in Sec. VII are needed. However,
one can imagine an alternative picture, different from the
one in Fig. 8, which seems to have fewer problems, and
that is that an event horizon never forms. Since the mass of
the shell is decreasing during the collapse, the shell will be
chasing its own Schwarzschild radius, and the question is
whether the shell will catch up to its own Schwarzschild
radius or completely evaporate before that happens [14].

With backreaction included, the radiation should lead to
a continual reduction of the Schwarzschild radius, RS,
occurring in the Ipser-Sikivie metric (see Sec. II). Then,
as seen by the asymptotic observer, one of two possibilities
occurs: either the collapsing domain wall evaporates and
RS ! 0 in a finite time, or else backreaction causes the
radiation rate to slow down and vanish in a finite time. This
latter possibility is unlikely, as our estimates suggest that
the rate of emission increases as RS decreases [19]. We
therefore conjecture that the backreaction due to particle

production will cause the collapsing domain wall space-
time to completely evaporate in a finite time. In this case,
the space-time can either be as given in Fig. 8, or have the
same global space-time structure as Minkowski space, as
shown in Fig. 9. If the latter picture is correct, it also means
that the infalling observer will not encounter an event
horizon, because this feature is simply absent from the
space-time. Another way to see this is to note that the
causal relation between two events is the same for all
observers. Hence if the asymptotic observer sees a signal
from an infalling object after he sees the last radiation ray
emitted by the evaporating wall, this will also be the
sequence of signals seen by the infalling observer. As
discussed in Sec. VII, the infalling observer would expect
to see an intense burst of radiation as the wall approaches
the Schwarzchild radius, but can fail to do so because his
detectors are too small to detect the emitted range of
frequencies.

In the absence of an exact backreaction calculation, we
also have to allow for the possibility that a value of the
critical mass exists above which Fig. 8 applies and below
which Fig. 9 holds. Also, as discussed by Hawking [20],
the question of ‘‘whether a black hole forms’’ is not sharp
enough and may not make sense in the full quantum theory
since all of the measurements are made by an asymptotic
observer at infinity, while a collapsing object exists for a
finite time and disappears by emitting radiation in the
strong field region in the middle. An asymptotic observer
can never be sure if a black hole formed because of under-
lying quantum uncertainty [20].

The broad picture we have obtained is consistent with
that proposed in Refs. [13,14], though there are differences
in the analysis and the conclusions. In particular, we find a
nonthermal spectrum whereas Gerlach argues for thermal-
ity. Our picture also supports the interpretation of Hawking
radiation given in Ref. [5] whereby particles are created
during the process of gravitational collapse and are then
radiated slowly to form what we call Hawking radiation.
We have indeed found particle production during the col-
lapse but the radiation is not quite thermal. It is only in the
frequency range where the occupation number spectrum
can be approximated by T=! (Eq. (73)) that thermality
holds at finite time. Also note that the nonthermality we
find is in the mode occupation numbers. Propagation of the
radiation in the background metric will cause further non-
thermality due to greybody factors.

If we live in a world of low scale gravity, the collision of
particles in high energy accelerators will lead to a situation
where the particles are in a continual state of gravitational
collapse from which nonthermal radiation is being emitted.
The lifetime of such a state can be estimated once we know
the details of the radiation more precisely from an analysis
which includes backreaction. However, on dimensional
grounds, Hawking’s estimate for the lifetime of a black
hole (� R3

S=G) may well apply to the colliding particles as
well.
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In reality the collapse is further complicated by the fact
that the collapsing object is not kept in isolation and there
are external forces that can disrupt the collapse at any point
in time. From the perspective of potential information loss,
note that any infalling encyclopedias can be returned to the
asymptotic observer if the collapse is disrupted at any time,
as it could be, for example, by a bomb set to go off at some
late, but finite time. Most importantly, since we calculate
that the radiation emitted during the gravitational collapse
is never truly thermal, the classic information loss issue in
black holes should, in this case, be a nonproblem for the
asymptotic observer [21].

Our primary result, that no event horizon forms in
gravitational collapse as seen by an asymptotic observer
is suggestive of the possibility of using the number of local
event horizons to classify and divide Hilbert space into
superselection sectors, labeled by the number of local
event horizons. Our result suggests that no operator could
increase the number of event horizons, but the possibility
of reducing the number of preexisting primordial event
horizons is not so clear and would require that Hawking
radiation not cause any primordial black hole event hori-
zons to evaporate completely.

Our conclusions have been derived on the basis of a
number of assumptions which we now discuss. The first is
the truncation of superspace to minisuperspace. We have
only included spherically symmetric field configurations.
Even then, the metric is restricted to be the classical
solution sourced by a spherical domain wall. A more
general analysis would include more metric degrees of
freedom, though it is hard to see how this would make a
difference to our conclusion. Similarly, we have restricted
ourselves to a zero thickness domain wall. A more general
analysis would allow for a thick wall. Finally, the Wheeler-
de Witt formalism as we have used it, does not allow for the
creation and annihilation of domain walls (‘‘third quanti-
zation’’). Perhaps third quantization could allow for the
spontaneous creation of a black hole and the annihilation of
the wall, effectively leading to black hole formation. A
fourth possibility is that our Lagrangian breaks down near
the Schwarzschild horizon and ‘‘quantum gravity’’ effects
become important. This is usually thought not to be the
case since the space-time curvature near the horizon is
small for large black holes.

Perhaps the most serious drawback of our analysis is that
it does not include backreaction on the gravitational col-
lapse due to radiation. While we do not expect such in-
clusion to alter our conclusions regarding the nonexistence
of event horizons for asymptotic observers, we are cur-
rently exploring ways to extend our treatments to include
backreaction.

No theoretical idea is complete without the possibility of
experimental verification and so it is important to ask if the
picture we have developed in this paper can also be tested
experimentally. We have already mentioned the relevance

of our conclusions to black hole production in particle
accelerators provided low scale gravity is correct.
However, there is an even more accessible experimental
system where these theoretical ideas can be put to the test.
These are condensed matter systems in which sonic black
holes (dumbholes) may exist [22]. It is very hard to realize
a dumbhole in the laboratory for various experimental
reasons; the closest known realization seems to be the
propagating He-3 AB interface in the experiment of
Ref. [23] as discussed in [24]. Yet the crucial aspect of
our work in this paper is that there is no need to produce a
dumbhole in order to see acoustic ‘‘pre-Hawking’’ radia-
tion. The process of collapse toward a dumbhole will give
off radiation. This is also the conclusion of Ref. [25]
though the details of the analysis and conclusions are
different—for example, we find nonthermal emission
whereas these authors claim thermal emission with a modi-
fied temperature that is lower than the Hawking tempera-
ture. In any case, it should be much easier to do
experiments in the laboratory that do not go all the way
to forming a dumbhole, and this could be an ideal arena to
test pre-Hawking radiation.

Our conclusions are important not only for the general
issue of the breakdown of unitarity via information loss,
but also for more general studies of black hole formation,
whether they be in the context of astrophysics (e.g. galactic
black holes) or in future accelerator experiments. In all
these situations, we are asymptotic observers watching the
gravitational collapse of matter, and we may never see
effects associated with a black hole event horizon. Only
effects occurring during the gravitational collapse itself
appear to be visible.
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APPENDIX A: � EQUATION

In the range t < 0, ! is a constant and the solution to
Eq. (60) is
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��� �
1������
!0
p : (A1)

In the range 0< t < tf, we do not have an analytic
solution but we can derive certain useful properties. First
note that in terms of �

 !2 �
!2

0

1� �=RS
: (A2)

Then the equation for 
 after rescalings can be written as:

 

d2f

d�02
� ��!0RS�2

�
f

1� �0
�

1

f3

�
; (A3)

where �0 � �=RS, f �
������
!0
p


. The boundary conditions
are

 f�0� � 1;
df�0�
d�0

� 0: (A4)

The last term with the 1=f3 becomes singular as f ! 0. Let
us consider another equation with the 1=f3 replaced by
something better behaved. For example,

 

d2g

d�02
� ��!0RS�

2

�
g

1� �0
� g

�
(A5)

with boundary conditions

 g�0� � 1;
dg�0�
d�0

� 0: (A6)

Equation (A5) implies that g��0� is monotonically decreas-
ing as long as g��0�> 0. Furthermore, it is decreasing
faster than the solution for f as long as f < 1, since the
1=f3 term in Eq. (A3) is a larger ‘‘repulsive’’ force than the
g term in the Eq. (A5). So

 g��0� � f��0� (A7)

for all �0 such that g��0�> 0.
Equations (A5) with initial conditions (A6) can be

solved in terms of degenerate hypergeometric functions.
For us, the important point is that the solution for g is
positive for all �0 and, in particular, g�1�> 0 for all the
values of !0RS that we have checked. Therefore f��0� is
positive, at least for a wide range of !0RS.

Let f1 � f�1� � 0. Then the equation for f can be
expanded near �0 � 1,

 

d2f

d�02
���!0RS�

2

�
f1

1� �0
�

1

f3
1

�
: (A8)

This shows that

 

df
d�0
� �!0RS�2f1 ln�1� �0� ! �1 (A9)

as �0 ! 1.
Hence 
�� � RS� is strictly positive and finite while


��� � RS� � �1 for finite and nonzero !0. Since f �������
!0
p


, and f ! 1 for!0 ! 0, we also see that 
! 1 and

� ! 0 as !0 ! 0.

In the range tf < t, ! is a constant. However, the solu-
tion for 
 is not a constant, unlike in the range t < 0, since

the constant solution 1=
������������
!�tf�

q
does not necessarily match

up with 
�tf�� to ensure a continuous solution. Yet it is
easy to check that in this region _N � 0 and so there is no
change in the occupation numbers. So we need only find
N�tf�; �!� to determine N�t! 1; �!�.

APPENDIX B: NUMBER OF PARTICLES
RADIATED AS A FUNCTION OF TIME

We use the simple harmonic oscillator basis states but at
a frequency �! to keep track of the different !’s in the
calculation. To evaluate the occupation numbers at time
t > tf, we need only set �! � !�tf�. So

 
n�b� �
�
m �!
�

�
1=4 e�m �!b2=2����������

2nn!
p Hn�

��������
m �!
p

b�; (B1)

whereHn are Hermite polynomials. Then Eq. (65) together
with Eq. (59) gives

 cn �
�

1

�2 �!
2

�
1=4 ei�����������

2nn!
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Z
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�
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2
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1=4 ei�����������

2nn!
p In; (B2)

where

 P � 1�
i
�!

�
�


�

i


2

�
: (B3)

To find In consider the corresponding integral over the
generating function for the Hermite polynomials

 J�z� �
Z
d�e�P�

2=2e�z
2�2z� �

�������
2�
P

s
e�z

2�1�2=P�: (B4)

Since

 e�z
2�2z� �

X1
n�0

zn

n!
Hn���; (B5)
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dzn
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Therefore

 In �

�������
2�
P

s �
1�

2

P

�
n=2
Hn�0�: (B7)

Since

 Hn�0� � ��1�n=2
����������
2nn!
p �n� 1�!!�����

n!
p ; n � even (B8)

and Hn�0� � 0 for odd n, we find the coefficients cn for
even values of n,

 cn �
��1�n=2ei�

� �!
2�1=4

����
2

P

s �
1�

2

P

�
n=2 �n� 1�!!�����

n!
p : (B9)

For odd n, cn � 0.
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Next we find the number of particles produced. Let

 � �
��������1�

2

P

��������: (B10)

Then
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X
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njcnj
2
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X
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1� �2

p
�

2����������
�!
2

p
jPj

�2

�1� �2�3=2
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Inserting the expressions for � and P, leads to

 N�t; �!� �
�!
2���

2
p

��
1�

1

�!
2

�
2
�

�
�
�!


�
2
�
: (B12)

In summary, we have found the occupation number of
modes as a function of 
 which is a function of time as
given by the nonlinear differential equation (60). The
equation connecting 
 and time t has only been solved
numerically but we have discussed the behavior of 
 and

� as �! RS (t! 1) in Appendix A.
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