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We derive the equation of matter density perturbations on subhorizon scales for a general Lagrangian
density f�R;�; X� that is a function of a Ricci scalar R, a scalar field �, and a kinetic term X �
��r��2=2. This is useful to constrain modified gravity dark energy models from observations of large-
scale structure and weak lensing. We obtain the solutions for the matter perturbation �m as well as the
gravitational potential � for some analytically solvable models. In an f�R� dark energy model with the
Lagrangian density f�R� � �R1�m ��, the growth rates of perturbations exhibit notable differences
from those in the standard Einstein gravity unless m is very close to 0. In scalar-tensor models with the
Lagrangian density f � F���R� 2p��;X�, we relate the models with coupled dark energy scenarios in
the Einstein frame and reproduce the equations of perturbations known in the current literature by making
a conformal transformation. We also estimate the evolution of perturbations in both Jordan and Einstein
frames when the energy fraction of dark energy is constant during the matter-dominated epoch.
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I. INTRODUCTION

Recent observations have determined basic cosmologi-
cal parameters in high precisions, but at the same time they
posed a serious problem about the origin of dark energy
(DE). The analysis of supernova Ia (SNIa) [1] is based
upon the background expansion history of the Universe
around the redshift z <O�1�. The constraint obtained from
SNIa so far has a degeneracy in the equation of state (EOS)
of DE [2]. To many people’s frustration, the �CDM model
with an EOS wDE � �1 has been continuously favored by
observations. This degeneracy has been present even add-
ing other constraints coming from cosmic microwave
background (CMB) [3] and baryon acoustic oscillations
(BAO) [4].

The models of dark energy can be broadly classified into
two classes [5,6]. The first corresponds to introducing a
specific matter that leads to an accelerated expansion. Most
scalar-field models such as quintessence [7] and k-essence
[8] belong to this class. The second class corresponds to the
so-called modified gravity models such as f�R� gravity [9],
scalar-tensor theories [10], and braneworld models [11]. In
order to break the degeneracy of observational constraints
onwDE and to discriminate between a host of DE models, it
is important to find additional information other than the
background expansion history of the Universe. In this
paper we will show that modified gravity models can be
distinguished from others by considering the evolution of
matter perturbations �m and gravitational potentials �.

In Einstein gravity it is well known that linear matter
perturbations on subhorizon scales satisfy the following
equation:

 

��m � 2H _�m � 4�G�m�m � 0; (1)

where H is a Hubble parameter, G is Newton’s gravita-
tional constant, �m is an energy density of the nonrelativ-
istic matter, and a dot represents a derivative with respect to
cosmic time t. During the matter-dominated epoch this has
a growing-mode solution �m / a / t2=3, which leads to the
formation of large-scale structure. In modified gravity
models the growth rates of perturbations are different
because of the modification of the gravitational constant
as well as the change of the background evolution. In the
context of f�R� gravity, in particular, there have been a
number of recent works about the evolution of density
perturbations during the matter-dominated and dark-
energy–dominated epochs [12].

We will derive the equation of matter perturbations in
Sec. III for a very general Lagrangian density f�R;�; X�,
where R is a Ricci scalar and � is a scalar field with a
kinetic term X � ��r��2=2. Together with a subhorizon
approximation we assume that F � @f=@R depends on �
and R but not on X. In fact this Lagrangian covers most of
modified gravity DE scenarios such as f�R� gravity models
and scalar-tensor theories. The effect of modified gravity
appears in an effective gravitational constant Geff whose
explicit form is given in Eq. (40). We derive a parameter �
introduced in Ref. [13] to quantify the strength of an
anisotropic stress and also evaluate a parameter � �
q�1� �=2�, where q is a quantity that characterizes the
deviation from the gravitational constant measured in solar
system experiments today.

The results in this paper can be important for future
surveys of weak lensing [14] as well as for the observations
of large-scale structure (LSS) [15]. In Ref. [16] the devia-
tion from Einstein gravity was constrained from the galaxy
clustering by taking into account an additional Yukawa
correction to the gravitational constant. It will be pos-
sible to carry out similar observational constraints on our*shinji@nat.gunma-ct.ac.jp
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f�R;�; X� DE models from the LSS data by solving the
equation of matter perturbations. In Ref. [13] the authors
proposed a DE parametrization using the variables ��; ��
together with a linear perturbation growth factor � intro-
duced in Refs. [17–19]. If the deviation from the Einstein
gravity case ��; �� � �1; 0� is detected from future survey
of weak lensing, this allows us to distinguish modified
gravity models from the models in Einstein gravity.

In Sec. IV we will find solutions for �m and � during the
matter-dominated epoch for some analytically solvable
models. In particular, we show that f�R� dark energy
models have a peculiar scale dependence of perturbations
unlike the case of Einstein gravity. The effect of modified
gravity on perturbations is important provided that a di-
mensionless variable m � Rf;RR=f;R, which characterizes
the deviation from the �CDM model, is not very close to 0.

The scalar-tensor models with the Lagrangian density
f � F���R� 2p��;X� correspond to coupled dark en-
ergy models in the Einstein frame with a coupling Q��� �
�F;�=2F. In Sec. V we derive the equation of matter
perturbations in the Einstein frame under a conformal
transformation and show that this in fact coincides with
the equation in the models of dark energy coupled to the
matter [20]. We also derive the growth rates of perturba-
tions in both Jordan and Einstein frames for the models in
which the so-called �-matter-dominated epoch [21] is
present.

II. BACKGROUND EQUATIONS

We start with the following 4-dimensional action,

 S �
Z

d4x
�������
�g
p

�
1

2
f�R;�; X� �Lm

�
; (2)

where g is a determinant of a metric g�	, and f is a
function in terms of a Ricci scalar R, a scalar field �,
and a kinetic term X � ��;c�;c=2. Lm is a Lagrangian
density for a pressureless matter whose energy density is
given by �m. We use the metric signature ��;�;�;��.

The gravitational field equation and the equation of
motion of the field � are given by
 

FG�	 �
1
2�f� RF�g�	 � F;�;	 ��Fg�	 �

1
2f;X�;��;	

� T�m��	 ; (3)

 �f;X�
;c�;c � f;� � 0; (4)

where F � @f=@R, G�	 is an Einstein tensor, and T�m��	 is
an energy-momentum tensor of the pressureless matter.

In a flat Friedmann-Robertson-Walker (FRW) metric
with a scale factor a, we obtain the following background
equations:

 3FH2 � f;XX�
1
2�FR� f� � 3H _F� �m; (5)

 � 2F _H � f;XX� �F�H _F� �m; (6)

 

1

a3
�a3 _�f;X�� � f;� � 0; (7)

 _�m � 3H�m � 0; (8)

where H � _a=a, R � 6�2H2 � _H�, and a dot represents a
derivative with respect to cosmic time t.

In order to confront the DE equation of state with
observations such as SNIa, we rewrite Eqs. (5) and (6) as
follows:

 3F0H2 � �DE � �m; (9)

 � 2F0
_H � �DE � pDE � �m; (10)

where

 �DE �
1
2�FR� f� � 3H _F� f;XX� 3H2�F0 � F�; (11)

 pDE � �F� 2H _F� 1
2�FR� f� � �2

_H � 3H2��F0 � F�:

(12)

Here the subscript ‘‘0’’ represents present values. It is easy
to show that �DE and pDE defined in this way satisfy the
usual energy conservation equation

 _� DE � 3H��DE � pDE� � 0; (13)

where we used Eq. (7). This was already shown to hold in
the context of the scalar-tensor gravity [22,23] as well as
the f�R� gravity [24]. We define the DE equation of state as

 wDE �
pDE

�DE

� �1�
2f;XX� 2 �F� 4H _F� 4 _H�F0 � F�

2f;XX� FR� f� 6H _F� 6H2�F0 � F�
:

(14)

Integrating Eq. (8) gives

 �m � 3F0��0�m H2
0�1� z�

3; (15)

where z � a0=a� 1 is a redshift and ��0�m is a present
energy fraction of the nonrelativistic matter. Then by using
Eqs. (9) and (10) the equation of state wDE can be ex-
pressed as

 wDE � �
3r� �1� z��dr=dz�

3r� 3��0�m �1� z�3
; (16)

where r � H2�z�=H2
0 . This is the same relation as the one

derived in Einstein gravity [6]. Thus wDE is constrained in
the usual way from SNIa observations. From Eq. (14) we
find that the evolution of wDE depends upon the models of
dark energy. Hence one can test the viability of the models
by confronting wDE with observations.
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If the scalar field � is minimally coupled gravity, e.g.,
f � R=8�G� 2p��;X�, the structure of the Lagrangian
density p��;X� can be reconstructed by the evolution of
the Hubble parameter H�z� [25]. For the models where the
field � is coupled to gravity or the models in which the
Lagrangian includes nonlinear terms in R, we need addi-
tional information to determine the strength of gravita-
tional couplings. This can be provided by considering the
evolution of matter density perturbations.

III. PERTURBATION EQUATIONS

We consider the following perturbed metric with scalar
metric perturbations � and � in a longitudinal gauge:

 d s2 � ��1� 2��dt2 � a2�1� 2���ijdx
idxj: (17)

We decompose the field into the background and inhomo-
geneous parts: � � ~��t� � ���t;x�. In what follows we
drop the tilde for simplicity. The energy-momentum ten-
sors of the nonrelativistic matter are decomposed as T0

0 �
���m � ��m� and T0

� � ��mvm;�, where vm is a velocity
potential.

The Fourier transformed perturbation equations are
given by [26]

 

3H� _��H�� �
k2

a2 ��
1

2F

�
�

1

2
�f;���� f;X�X� �

1

2
_�2�f;X���� f;XX�X� � f;X _�� _�� 3H� _F

�

�
3H2 � 3 _H �

k2

a2

�
�F� 3 _F� _��H�� � �3H _F� f;X _�2��� ��m

�
� 0; (18)

 f;X

�
� ���

�
3H �

_f;X
f;X

�
� _��

k2

a2 ���
_��3 _�� _��

�
� 2f;���

1

a3 �a
3 _��f;X�

� � �f;� � 0; (19)

 � � ��
�F
F
; (20)

 � _�m � 3H��m � �m

�
3 _��

k2

a
vm

�
; (21)

 _vm �Hvm �
1

a
�; (22)

where k is a comoving wave number.
We define the gauge-invariant matter density perturba-

tion �m as

 �m �
��m
�m
� 3Hv; where v � avm: (23)

Then Eqs. (21) and (22) yield

 

_�m � �
k2

a2 v� 3���Hv��; (24)

 _v � �; (25)

from which we obtain

 

��m � 2H _�m �
k2

a2 � � 3 �B� 6H _B; (26)

where B � ��Hv.
Following the approach in Refs. [6,22,27], we use a

subhorizon approximation under which the leading terms
correspond to those containing k2 and �m (or ��m) in
Eq. (26) and also in Eqs. (18) and (19). Basically the terms
on the right-hand side (r.h.s.) of Eq. (26) give the contri-

bution of the order H2�, which implies that they are
negligible relative to the term �k2=a2�� for the modes
deep inside the Hubble radius (k2 � a2H2).

If the massm� of the field perturbation �� is larger than
the term k=a, then we need to take into account this mass
term. The expression of m� was derived in Ref. [20] in
coupled dark energy models with the Lagrangian density
p��;X�. In Einstein gravity with a standard scalar field the
mass squared is given by m2

� � V;�� � 2 _�2. When the
field � is responsible for dark energy, the terms V;�� and
2 _�2 are of order H2 or less, which then gives jm�j & H.
Hence the approximation neglecting the mass term m�

relative to k=a is justified in such a model. There may be
some specific f�R;�; X� models in which the condition
jm�j 	 k=a is violated, but we do not consider such cases.

Then Eq. (26) is approximately given by

 

��m � 2H _�m �
k2

a2 � ’ 0: (27)

The next step is to express � in terms of �m. From Eq. (18)
we find

 

k2

a2
� ’

1

2F

�
k2

a2 �F� ��m

�
: (28)

Eliminating the term � by using Eq. (20) gives

 

k2

a2
� ’ �

k2

2a2

�F
F
�

1

2F
��m: (29)

In what follows we shall study the case in which F
depends on � and R but not on X, i.e.,
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 F � F��;R�: (30)

This actually includes most dark energy models proposed
in the current literature. Then �F in Eq. (29) is given by

 �F � F;���� F;R�R; (31)

where �R is
 

�R � 2
�
�3� ��� 4H _��H _�� _H�� 4H2��

�

�
k2

a2 � 3 _H
�

�� 2
k2

a2 �
�

’ �2
k2

a2

�
�� 2

�F
F

�
: (32)

Again we used the fact that the first five terms in Eq. (32)
are of order H2�, H2� or less. Plugging Eq. (31) into
Eq. (32), we find

 �R ’ �
2k2

a2

��
2F;�
F ��

1� 4 k2

a2

F;R
F

: (33)

Taking notice that �R includes the term k2=a2, the
quantity �f is approximately given by

 �f � f;���� f;X�X � f;R�R ’ F�R: (34)

Then from Eq. (19) we find

 f;X
k2

a2 ��� F;��R ’ 0; (35)

which leads to the following relation:

 �� ’ �2
F;�

f;X�1� 4 k2

a2

F;R
F � �

4F2
;�

F

�: (36)

Plugging this into Eq. (33), we get

 �R ’ �
2k2

a2

f;X

f;X�1� 4 k2

a2

F;R
F � �

4F2
;�

F

�: (37)

From Eqs. (29), (31), (36), and (37) the gravitational
potential � is expressed as

 

k2

a2
� ’ �

�m
2F

f;X � 4�f;X
k2

a2

F;R
F �

F2
;�

F �

f;X � 3�f;X
k2

a2

F;R
F �

F2
;�

F �
�m; (38)

where we used �m ’ ��m=�m under the subhorizon ap-
proximation. Hence the equation (27) of matter perturba-
tions yields

 

��m � 2H _�m � 4�Geff�m�m ’ 0; (39)

where the effective gravitational ‘‘constant’’ on subhorizon
scales is given by

 Geff ’
1

8�F

f;X � 4�f;X
k2

a2

F;R
F �

F2
;�

F �

f;X � 3�f;X
k2

a2

F;R
F �

F2
;�

F �
: (40)

From Eq. (38) the gravitational potential is

 � ’ �4�Geff
a2

k2 �m�m; (41)

which corresponds to a Poisson equation in the Fourier
space. In what follows we use the standard equality rather
than the approximate equality ( ’ ) for the results obtained
under the subhorizon approximation.

We also define a parameter � that characterizes the
strength of an anisotropic stress:

 � �
���

�
: (42)

Using Eqs. (20), (36), and (37) we obtain

 � �
2f;X

k2

a2

F;R
F �

2F2
;�

F

f;X�1�
2k2

a2

F;R
F � �

2F2
;�

F

: (43)

The gravitational potential � satisfies

 

k2

a2
� � �

�m
2F

f;X � 2�f;X
k2

a2

F;R
F �

F2
;�

F �

f;X � 3�f;X
k2

a2

F;R
F �

F2
;�

F �
�m: (44)

We define another parameter q via �k2=a2�� �
�4�G0q�m�m, where G0 is a gravitational constant mea-
sured in the solar system experiments today. Then q is
given by

 q �
1

8�FG0

f;X � 2�f;X
k2

a2

F;R
F �

F2
;�

F �

f;X � 3�f;X
k2

a2

F;R
F �

F2
;�

F �
: (45)

Defining a combination of parameters, � � q�1�
�=2�, we obtain

 � �
1

8�FG0
: (46)

This agrees with the result in Ref. [13] derived in
the specific scalar-tensor model: f � F���R� 2X�
2V���.1 For this model the parameter � reduces to � �
F2
;�=�F� F

2
;��, which again agrees with the result given in

Ref. [13].
In order to confront the modified gravity models with the

observations of weak lensing, we use the fact that the
potential that characterizes the deviation of light rays
corresponds to �WL � ��� [28]. From Eqs. (38),
(44), and (46) we find that the lensing potential satisfies

1In Ref. [13] the authors used a dimensionless function �F �
8�GF, where G is a bare gravitational constant. Then one has
� � G= �FG0.

SHINJI TSUJIKAWA PHYSICAL REVIEW D 76, 023514 (2007)

023514-4



 �WL ’ �8�G0
a2

k2 �m�m�: (47)

The effect of modified gravity theories manifests itself in
weak lensing in at least two ways. One is the multiplication
of the term � on the r.h.s. of Eq. (47). Another is the
modification of the evolution of �m due to the change of
the effective gravitational constant Geff . The growth index
� of matter perturbations is linked to the parameters � and
� [13]. Thus two parameters ��; �� will be useful to detect
the signature of modified gravity theories from the future
survey of weak lensing.

It can happen that the scales of weak lensing are in the
region of nonlinear clustering, in which case we need to
map the linear power spectrum of the lensing potential into
a nonlinear one. In the context of modified gravity theories
mapping formulas have not been well known. We leave the
analysis of such nonlinear regimes in weak lensing for
future work.

In Einstein gravity with the Lagrangian density f �
R=8�G� 2p��;X� we obtain the standard equation for
matter perturbations:

 �00m � �
1
2�

3
2weff��

0
m �

3
2�m�m � 0; (48)

where a prime represents a derivative with respect to N �
ln a, and

 weff � �1�
2

3

H0

H
; �m �

�m
3FH2 : (49)

If weff and �m are constants then the solution for Eq. (48)
is

 �m � c�a
n� � c�a

n�; (50)

where

 n
 �
1

4
�3weff � 1�

��������������������������������������������
�3weff � 1�2 � 24�m

q
�: (51)

One has weff ’ 0 and �m ’ 1 during a matter-dominated
epoch provided that the contribution of the scalar field is
negligible. Hence the matter perturbation grows as �m /
a / t2=3. However the evolution of �m is modified once the
energy density of the scalar field becomes important rela-
tive to the matter density.

At the end of this section we consider the Brans-Dicke
theory [29]:

 f�R;�; X� �
�
8�

R�
!BD

4��
X; (52)

where !BD is a Brans-Dicke parameter. In this case the
effective gravitational constant is given by

 Geff �
1

�
4� 2!BD

3� 2!BD
; (53)

which agrees with the result in Ref. [30]. We have Geff !
1=� in the general relativity (GR) limit (!BD ! 1). The

deviation from GR is significant when !BD is not much
larger than unity. When !BD � 0, for example, the effec-
tive gravitational constant is 4=3 times larger than that in
the GR case. This modifies the evolution of matter pertur-
bations. However local gravity experiments place the
bound on the present value of the Brans-Dicke parameter
as !BD;0 > 4
 104 [31]. This shows that unless !BD is
very much smaller than the present value during the
matter-dominated epoch it is difficult to see the signature
of modified gravity in the large-scale structure formation.

IV. f�R� GRAVITY

In this section we study the evolution of matter pertur-
bations in modified gravity theories where f is the function
of R only. In this case the effective gravitational constant is
given by

 Geff �
1

8�F

1� 4 k2

a2R
m

1� 3 k2

a2R
m
; (54)

where

 m �
RF;R
F

: (55)

The parameter m was first introduced in Ref. [24]. This
characterizes the deviation from the �CDM model
[f�R� � R=8�G��]. The anisotropic parameter � is
given by

 � �
2 k2

a2R
m

1� 2 k2

a2R
m
: (56)

In what follows we shall consider two different situ-
ations: (i) k2

a2Rm� 1 and (ii) k2

a2Rm	 1.

A. k2

a2R
m� 1

In this case one has Geff ’
1

8�F
4
3 , which thus corre-

sponds to Brans-Dicke theory with !BD � 0 [32]; see
Eq. (53). Note that the anisotropic parameter is of order
unity (� ’ 1) in such a case. Since the condition
k2=a2R� 1 holds under the subhorizon approximation
(k� aH), one can in fact realize k2

a2Rm� 1 provided
that m is not very much smaller than unity. Then from
Eq. (48) the matter perturbation equation is approximately
given by

 �00m � �
1
2�

3
2weff��

0
m � 2�m�m � 0; (57)

where weff and �m are defined in Eq. (49).
In order to estimate the evolution of �m and � analyti-

cally, let us consider the constant m model, i.e.,

 f�R� � �R1�m ��; (58)

where � and � are constants. In Ref. [24] it was shown that
the matter-dominated epoch corresponds to a fixed point
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‘‘P5’’ satisfying

 weff � �
m

1�m
; �m � 1�

m�7� 10m�

2�1�m�2
; (59)

where jmj 	 1.
Plugging Eq. (59) into Eq. (57), we obtain the solution

for �m in the form (50) with

 n
 �
��1� 4m� 


�������������������������������������������
�3� 4m��11� 28m�

p
4�1�m�

: (60)

Since the growing mode corresponds to the power-law
index n�, the matter perturbation evolves as

 �m / a
n� / t~n� ; (61)

where

 ~n� �

�������������������������������������������
�3� 4m��11� 28m�

p
� 1� 4m

6
: (62)

In Ref. [24] it was found that the viable matter epoch
exists only for positive m close to 0. In the case of negative
m the matter point P5 is unstable against perturbations
around the fixed point. When m � �1=4 one has weff �
1=3 and �m � 2, which corresponds to a � matter-
dominated epoch (�MDE) [33]. For the models f�R� �
R� 
=Rn (n > 0) it was shown in Ref. [33] that the
standard matter era is replaced by the �MDE. From
Eq. (60) we find that the matter perturbation evolves as
�m / a

2 / t, which grows more rapidly than in the stan-
dard case (�m / a / t2=3).

The power-law indices n� and ~n� are positive for 0<
m< �

������
73
p

� 3�=16, whereas they are negative for �
������
73
p

�
3�=16<m< 11=28. When m> 11=28 the matter pertur-
bation exhibits a damped oscillation. Both n� and ~n� get
larger as m decreases to zero. However we have to caution
that we cannot take the limit m! 0 because of the break-
down of the condition k2

a2R
m� 1. In this limit the evolution

of �m is no longer described by the solution (61).
From Eq. (41) we find that the gravitational potential

evolves as

 � / tp� ; p� �

�������������������������������������������
�3� 4m��11� 28m�

p
� 4m� 5

6
:

(63)

One has p� > 0 for 0<m< 1=4 and p� < 0 for 1=4<
m< 11=28. Hence � is not constant except for the special
case m � 1=4 and the �MDE case m � �1=4. The varia-
tion of the gravitational potential leads to an integrated
Sachs-Wolfe effect in the CMB spectrum. Thus it should
be possible to constrain the magnitude of m from CMB
observations.

B. k2

a2R
m	 1

Let us next consider the case in which the condition
k2

a2R
m	 1 is satisfied on the scales around which large-

scale structure is formed. In this case one has Geff ’
1

8�F 


�1� k2

a2R
m� and � ’ 2 k2

a2R
m. The matter perturbation equa-

tion is approximately given by

 �00m �
1

2
�0m �

3

2

�
1�

k2

a2R
m
�
�m � 0: (64)

Since the condition m	 k2

a2R
m	 1 holds under the sub-

horizon approximation, we only pick up the correction
terms that contain k2

a2Rm.
Expressing the solutions of this equation in the form

�m � exp�
R
!dN� and using the approximation j!0j 	

!2, we obtain the growing-mode solution

 !� � 1�
3

5

k2

a2R
m: (65)

If m is constant, the second term on the r.h.s. of this
equation is proportional to a � eN during the matter era.
Then the evolution of the matter perturbation is given by

 �m / a1��3=5�
 / t2=3�1�3
=5�; (66)

where

 
 �
k2

a2RN
m � Ck2m

a
ln a

: (67)

Here we have introduced a constant C satisfying the rela-
tion 1=�a2R� � CeN . The gravitational potential evolves as

 � / �1� 
�t�2=5�
: (68)

In the limit 
! 0 one obtains the standard result: �m /
t2=3 and � � constant. When 
 is positive, the growth
rates of �m and �m are larger than in the standard case.
If
 grows to the order of unity, the results (66) and (68) are
no longer valid.

In order to satisfy the local gravity constraint (LGC), we
require that the condition k2

a2R
m	 1 holds at the present

epoch. The severest constraint may be obtained by labora-
tory experiments in which a strong modification of gravity
is not observed on the scales up to �k � a=k� 1 mm. This
gives the following constraint,

 m�z � 0� 	 ��k=H
�1
0 �

2 � 10�58; (69)

where we used R�H2
0 and H�1

0 � 1028 cm. Note that this
agrees with the result in Ref. [34] that was derived by using
the effective mass of a scalar-field potential in the Einstein
frame [see Refs. [35] for recent works of LGC in f�R�
gravity]. The condition (69) can be weakened by taking
into account the fact that the scalar curvature R in the
regime of a local structure such as the Earth is much larger
than the cosmological one. In solar system experiments the
scale �k corresponds to a value around �k � 1 au, which is
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much larger than in the case of laboratory experiments. In
such cases the constraint on m becomes much weaker than
the one given in Eq. (69), although it is not easy to obtain
the values of m close to the order of unity [34].

The variable m generally changes with time apart from
the model f � �R1�m �� discussed above. One can
consider models in which m satisfies k2

a2Rm� 1 during
the matter epoch and then enters the regime k2

a2Rm	 1 in
the dark energy era with the decrease ofm. The anisotropic
stress parameter � decreases from 1 to 2 k2

a2R
m together

with the change of the quantity � given in Eq. (46). It will
be of interest to place observational constraints on such
models by using the future data of weak lensing as well as
the LSS data.

V. SCALAR-TENSOR GRAVITY

In this section we shall consider scalar-tensor gravity
with a Lagrangian density

 f�R;�; X� � F���R� 2p��;X�: (70)

Note that this includes most scalar-field dark energy mod-
els such as quintessence [7], k-essence [8], and tachyons
[36]. In this case the effective gravitational constant Geff

and the anisotropic parameter � are given by

 Geff �
1

8�F

2p;X � 4F2
;�=F

2p;X � 3F2
;�=F

; (71)

 � �
F2
;�

p;XF� F2
;�

: (72)

In the case of quintessence with the Lagrangian density
p � X� V��� the above results agree with those obtained
by Boisseau et al. [27] and by Amendola et al. [13].

One can study the evolution of perturbations in the
Jordan frame as we have done in f�R� gravity models.
Alternatively the dynamics of perturbations can be under-
stood by making a conformal transformation to the
Einstein frame. This is particularly useful when we relate
scalar-tensor models with coupled DE scenarios [21] ex-
tensively studied by many authors (see [6] for references).
We shall make a conformal transformation [37]

 ~g �	 � �g�	; � �
����
F
p

; (73)

where a tilde denotes quantities in the Einstein frame. Then
the action in the Einstein frame is given by

 

~S �
Z

d4~x
�������
�~g

p �
1

2�2
~R� ~p��; ~X� � ~Lm���

�
; (74)

where �2 � 8�G (G is a bare gravitational constant) and

 

~p��; ~X� �
3

2

�F;�
F

�
2

~X�
1

F2 p��;F
~X�: (75)

In what follows we shall use the unit �2 � 1, but we restore
the gravitational constant G when it is needed.

We also have the following relations:

 

~a �
����
F
p

a; d~t �
����
F
p

dt; ~�m � �m=F2: (76)

Then the continuity equation (8) is transformed as

 

d

d~t
~�m � 3 ~H~�m � Q���~�m

d�
d~t
; (77)

where

 Q��� � �
F;�
2F

: (78)

Hence the nonrelativistic matter is coupled to the field �
through the coupling Q���.

The perturbations in the Einstein frame are related to
those in the Jordan frame via [26]

 

~�m � �m �
2�F
F

; ~� � ��
2�F
F

: (79)

Under the subhorizon approximation one can regard ~�m ’
�m, whereas the 2�F=F contribution cannot be neglected
for the gravitational potential. Using the relation ~p; ~X �
3
2 �
F;�
F �

2 �
p;X
F together with the definition of Q given in

Eq. (78), we find that Eq. (39) is written in terms of the
quantities in the Einstein frame:
 

d2

d~t2
~�m � ~H

�
2�Q

1
~H

d�
d~t

�
d

d~t
~�m

� 4�G
�
1�

2Q2

~p; ~X

�
~�m ~�m � 0: (80)

In this section we use a prime to represent a derivative with
respect to the number of e-foldings ~N �

R
~Hd~t in the

Einstein frame. Then the above equation can be written as

 

~� 00m �
�
2�

~H0

~H
�Q�0

�
~�0m �

3

2
~�m

�
1�

2Q2

~p; ~X

�
~�m � 0;

(81)

where ~�m � 8�G~�m=3 ~H2. This fully agrees with the
result in coupled dark energy scenarios derived by
Amendola [20] without any reference to the Jordan frame
(see also Ref. [38]).

Equation (80) shows that the effective gravitational con-
stant in the Einstein frame is given by

 

~G eff � G
�

1�
2Q2

~p; ~X

�
� G

2p;X � 4F2
;�=F

2p;X � 3F2
;�=F

: (82)

From Eqs. (36) and (79) the gravitational potential in the
Einstein frame is

 

~� �
2p;X � 3F2

;�=F

2p;X � 4F2
;�=F

�; (83)

MATTER DENSITY PERTURBATIONS AND EFFECTIVE . . . PHYSICAL REVIEW D 76, 023514 (2007)

023514-7



which satisfies the relation

 

~� � �4�G
~a2

k2 ~�m ~�m: (84)

The effective gravitational potential acting on the matter is
not ~� but ~�� � ~��Q�� � � [20], i.e., that in the
Jordan frame. In fact, from Eqs. (82) and (84), we obtain

 

~� � � �4� ~Geff
~a2

k2 ~�m ~�m: (85)

In order to see the effect of an interaction between the
field� and the matter analytically, it is convenient to study
the constant Q case, i.e.,

 F��� � e�2Q�: (86)

In the case of an ordinary field with an exponential poten-
tial [~p��; ~X� � ~X� ce���], it is known that there exists a
�MDE scaling solution satisfying ~�� � ~weff � 2Q2=3 �
constant [21]. More generally the existence of scaling
solutions restricts the form of the Lagrangian density to be

 ~p��; ~X� � ~Xg�Y�; Y � ~Xe��; (87)

where g is an arbitrary function and � is a constant quantity
[39]. It was further shown in Ref. [40] that the �MDE
exists for the models of the type

 g�Y� � c0 �
X
n>0

cnY�n; (88)

where c0 (> 0) and cn are constants. Note that quintes-
sence with an exponential potential corresponds to the case
g�Y� � 1� c1=Y. For the models (88) we have the follow-
ing relations during the �MDE [40]:

 

~� � � ~weff �
2Q2

3c0
; �0 � �

2Q
c0
; ~p; ~X � c0;

(89)

where ~�� is an energy fraction of the scalar field satisfying
~�� �

~�m � 1.
Then from Eq. (81), the solution for matter perturbations

during the �MDE is given by the form (50) with the
power-law indices

 ~n� � 1�
2Q2

c0
; ~n� � �

3

2
�
Q2

c0
: (90)

Since the scale factor grows as ~a / ~t2c0=�3c0�2Q2�, the evo-
lution of the matter perturbation in the Einstein frame is
given by

 

~�m / ~a1��2Q2=c0� / ~t�2c0�4Q2�=�3c0�2Q2�: (91)

From Eq. (89) we obtain

 � � �0 �
4Q

3c0 � 2Q2 ln ~t: (92)

Using the relations (76) between two frames we find

 t / ~t�3c0�2Q2�=�3c0�2Q2�; a / ~t�2c0�4Q2�=�3c0�2Q2�: (93)

Hence the evolution of matter perturbations in the Jordan
frame is given by

 �m / a�2c0�4Q2�=�2c0�4Q2� / t�2c0�4Q2�=�3c0�2Q2�: (94)

Thus, in the presence of the coupling Q, the growth rate of
matter perturbations is larger than in the case of Einstein
gravity. From Eqs. (84) and (85) we find that the gravita-
tional potential is constant in both Jordan and Einstein
frames:

 � / t0; ~� / ~t0; (95)

which is a rather peculiar property of the �MDE. Recall
that this property also holds for the �MDE solution in the
f�R� gravity.

From Eq. (75) the Lagrangian density in the Jordan
frame corresponding to the �MDE solution is given by

 f�R;�; X� � e�2Q�
�
R� 2�c0 � 6Q2�X

�
X
n>0

2cnX
1�ne�n���2Q��

�
: (96)

Thus the field � has a universal coupling e�2Q�. For the
model g�Y� � 1� c1=Y the above Lagrangian density can
be viewed as the dilaton gravity with an exponential po-
tential V��� � 2c1e

����2Q��. It is interesting that string
theory can give rise to the�MDE solution along which �m
and weff are constants in both Jordan and Einstein frames.
We note that Q is required to be smaller than the order of
unity to reproduce a standard matter era [21], whereas
string theory typically provides the coupling Q of order
one at the perturbative regime [41]. In the region �� 1,
however, the coupling may become weak as in the context
of a runaway dilaton scenario [42].

VI. CONCLUSIONS

In this paper we derived the matter perturbation equation
(39) with the effective gravitational constant (40) for a
Lagrangian density f�R;�; X� without a direct coupling
between R and X. This analysis covers most modified
gravity models proposed in the current literature and will
be useful to detect the deviation from the �CDM model
from the future surveys such as weak lensing and LSS. We
have also evaluated the anisotropic parameter � and the
quantity � � q�1� �=2� in order to confront the models
with future observations of weak lensing; see Eqs. (43) and
(46). We have applied our results to (i) f�R� gravity and
(ii) scalar-tensor gravity with the Lagrangian density
f�R� � F���R� 2p��;X�.

In f�R� gravity models the effective gravitational
constant has a scale-dependent term k2

a2R
m, where
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m � Rf;RR=f;R characterizes the deviation of the �CDM
model. The local gravity constraint is satisfied for the
models in which the condition k2

a2R
m	 1 holds for the

scale of the order a=k � 1 mm at the present epoch. If
we take the cosmological value R�H2

0 , this gives a very
stringent constraint: m�z � 0� 	 10�58. This is weakened
by using a local value of R much larger than H2

0 . One can
consider models in which the condition k2

a2Rm� 1 holds
during the matter epoch on the scales around which large-
scale structure is formed. For the constant m model (f �
�R1�m ��) we have analytically derived the evolution of
matter perturbations �m as well as gravitational potentials
� during the matter-dominated epoch. Even when m	 1
this is different from the evolution in Einstein gravity
(�m / a and � � constant), which will be useful to place
constraints on the value m from future high-precision
observations.

The scalar-tensor gravity with the Lagrangian density
f�R� � F���R� 2p��;X� corresponds to coupled DE
models in the Einstein frame with a coupling Q��� �
�F;�=2F between the scalar field and dark matter. We
reproduced the equation of matter perturbations in coupled
DE scenarios with the k-essence Lagrangian density
~p��; ~X� by making a conformal transformation to the
Einstein frame. Since the evolution of perturbations in
coupled DE models has been extensively studied in the
literature, it is convenient to pay attention to the relation
between Jordan and Einstein frames in order to discuss
perturbations in scalar-tensor gravity. In fact, for the mod-
els in which the � matter-dominated epoch (�MDE) is
present, we analytically derived growth rates of perturba-
tions in both the Jordan and Einstein frames. We also
obtained the form of the Lagrangian density in the
Jordan frame giving rise to the �MDE solution.

The difference between f�R� gravity and scalar-tensor
gravity may be understood in the following way. Taking
into account a massM of the perturbation in the field�, the
effective gravitational constant in Eq. (82) is given by [20]

 

~G eff ’ G
�
1�

2Q2

~p; ~X
e�M‘

�
; (97)

where ‘ is a length scale. Here we assumed that the sound
speed cs of the field � is of order unity. In scalar-tensor
models, even if the mass M is very light, say M�H0, the
second term on the r.h.s. of (97) can be much smaller than
unity to satisfy the local gravity constraints by choosing a
small coupling Q2 � �F�=2F�2 	 1 (provided that ~p; ~X is
of order one). In f�R� modified gravity models, however,
the coupling Q is fixed as Q � �1=

���
6
p

[33]. Hence we
have to choose a heavy mass M2 ’ 1=F;R to satisfy the
local gravity constraints, i.e., e�M‘ 	 1 for the scale ‘�
1 mm [34]. In fact this is equivalent to choosing very small
values of m given in Eq. (69). In scalar-tensor gravity the
coupling-dependent term is more important than the scale-
dependent term provided that M	 k=a, whereas in f�R�
gravity the scale-dependent term plays a crucial role be-
cause of the fixed large coupling Q.

Although the perturbation equation we derived can be
applied to many modified gravity models, it does not cover
the DE models in which higher-order curvature corrections
such as a Gauss-Bonnet term are present [43]. In Ref. [44]
the equation of matter perturbations was derived in the
presence of the GB term coupled to a scalar field� to place
constraints on GB DE models. A recent paper [45] shows
that the GB energy fraction in the present Universe is
severely constrained by solar system tests. Moreover it is
known that tensor perturbations typically show negative
instabilities if the GB term is responsible for the acceler-
ated expansion [46]. It will be of interest to extend our
analysis to more general models that include such higher-
order curvature corrections.
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