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(Received 1 November 2006; revised manuscript received 1 June 2007; published 20 July 2007)

The effect of variations of the fundamental nuclear parameters on big-bang nucleosynthesis are
modeled and discussed in detail taking into account the interrelations between the fundamental parameters
arising in unified theories. Considering only 4He, strong constraints on the variation of the neutron
lifetime, neutron-proton mass difference are set. These constraints are then translated into constraints on
the time variation of the Yukawa couplings and the fine structure constant. Furthermore, we show that a
variation of the deuterium binding energy is able to reconcile the 7Li abundance deduced from the WMAP
analysis with its spectroscopically determined value while maintaining concordance with D and 4He. The
analysis is strongly based on the potential model of Flambaum and Shuryak that relates the binding energy
of the deuteron with the nucleon and � and ! mesons masses; however, we show that an alternative
approach that consists of a pion mass dependence necessarily leads to equivalent conclusions.
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I. INTRODUCTION

Primordial nucleosynthesis (BBN) is one of the most
successful predictions of the standard hot big-bang model.
Its success rests on the concordance between the observa-
tional determinations of the light element abundances of D
and 4He specifically, and their theoretically predicted
abundances [1,2]. Furthermore, measurements of the cos-
mic microwave background anisotropies by WMAP [3]
have led to precision determinations of the baryon density
or equivalently the baryon-to-photon ratio, �. As � is the
sole parameter of the standard model of BBN, it is possible
to make very accurate predictions [4–7] and hence infer
the expected theoretical abundances of all of the light
elements (including 7Li, 6Li, 9Be, 10Be, and 11B).

At present, a discrepancy between the predicted abun-
dance of 7Li and its spectroscopically determined abun-
dance persists. The 7Li abundance based on the WMAP
baryon density is predicted to be [5]

 

7Li=H � 4:15�0:49
�0:45 � 10�10: (1)

The systems best suited for Li observations are metal-poor
halo stars in our Galaxy. Analyses of the abundances in
these stars yield [8] Li=H � �1:23�0:34

�0:16� � 10�10 and more
recently [9] Li=H � �1:26� 0:26� � 10�10. This value is
in clear contradiction with most estimates of the primordial
Li abundance, as also shown by [7] who find

 

7Li=H � 4:26�0:73
�0:60 � 10�10: (2)

In both cases, the 7Li abundance is a factor of �3 higher
than the value observed in most halo stars.

There have been several attempts to account for the
discrepancy between the BBN/WMAP predicted value of
7Li=H and its observational determination. These include
depletion mechanisms due to rotationally induced mixing
and/or diffusion. Current estimates for possible depletion
factors are in the range �0:2–0:4 dex [10]. However, the
negligible intrinsic spread in Li [11] leads to the conclusion
that depletion in halo stars is as low as 0.1 dex. It is also
possible that the stellar parameters used to determine the Li
abundance from the spectroscopic measurements may be
systematically off. Most important among these is the
effective temperature assumed for stellar atmospheres.
These can differ by up to 150–200 K, with higher tem-
peratures resulting in estimated Li abundances which are
higher by �0:08 dex per 100 K. Thus, accounting for a
difference of 0.5 dex between BBN and the observations
would require a serious offset of the stellar parameters. We
note that there has been a recent analysis [12] which does
support higher temperatures, and brings the discrepancy
between theory and observations to 2�.

Another potential source for systematic uncertainty lies
in the BBN calculation of the 7Li abundance. The predic-
tions for 7Li carry the largest uncertainty of the 4 light
elements which stem from uncertainties in the nuclear
rates. The effect of changing the yields of certain BBN
reactions was recently considered in Ref. [5]. In particular,
they concentrated on the set of cross sections which affect
7Li and are poorly determined both experimentally and
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theoretically. It was found, for example, that an increase of
the 7Be�d; p�24He reaction by a factor of 100 would reduce
the 7Li abundance by a factor of about 3 in the WMAP �
range. This reaction has since been remeasured and pre-
cludes this solution [13]. The possibility of systematic
errors in the 3He��; ��7Be reaction, which is the only
important 7Li production channel in BBN, was considered
in detail in [14]. However, the agreement between the
standard solar model and solar neutrino data provides
constraints on variations in this cross section. Using the
standard solar model of Bahcall [15], and recent solar
neutrino data [16], one can exclude systematic variations
of the magnitude needed to resolve the BBN 7Li problem at
the * 95% C.L. [14]. The ‘‘nuclear fix’’ to the 7Li BBN
problem is unlikely.

On the other hand, various theoretical explanations in-
volving physics beyond the standard model have been
proposed [17]. One possible extension of the standard
BBN scenario allows for inhomogeneous nucleosynthesis
[18] but this seems to overproduce 7Li. It has also been
argued that particle decay after BBN could lower the 7Li
abundance and produce some 6Li as well [19]. This has
been investigated in the framework of the constrained
minimal supersymmetric standard model if the lightest
supersymmetric particle is assumed to be the gravitino
[20]. Some models have been found which accomplish
these goals [21]. Another route is to assume that gravity
is not described by general relativity but is attracted toward
general relativity during the cosmic evolution [22]. BBN
has been extensively studied in that scenario (see e.g.
Ref. [23]). The effect of the modification of gravity is
mainly to induce a time variation of the equivalent speedup
that can be tuned to happen during BBN but it can have
other signatures both on cosmological and local scales
[24].

In this article, we want to investigate the possible varia-
tions of fundamental constants. It is well known that var-
iations in the fundamental coupling constants such as the
fine structure constant, �, can affect the light element
abundance during BBN. Most analyses have concentrated
on the effect of such variations on the abundance of 4He
[17,25–33]. Changes in � directly induce changes in the
nucleon mass, �mN , which affects the neutron-to-proton
ratio.

Much of the recent excitement over the possibility of a
time variation in the fine structure constant stems from a
series of recent observations of quasar absorption systems
and a detailed fit of positions of the absorption lines for
several heavy elements using the ‘‘many-multiplet’’
method [34,35]. When this method is applied to a set of
Keck/Hires data, a statistically significant trend for a varia-
tion in � was reported: ��=� � ��0:54� 0:12� � 10�5

over a redshift range 0:5 & z & 3:0. The minus sign in-
dicates a smaller value of � in the past. In Ref. [36], a set
of high signal-to-noise systems yielded the result ��=� �

��0:06� 0:06� � 10�5. One should note that both results
are sensitive to assumptions regarding the isotopic abun-
dances of elements used in the analysis which further
complicates the interpretation of any positive signal from
these analyses [37].

In addition to the possible variation in �, it is reasonable
to search for other time-varying quantities such as the ratio
of the proton-to-electron mass, � [38]. Indeed recent
analyses [39] claim to observe a variation at the level

 

��
�
� �2:4� 0:6� � 10�5 (3)

using Lyman bands of H2 spectra in two quasars. In the
following, we investigate the effect on BBN of changes in
fundamental couplings which could also account for a
variation in �. As we will see, the largest effect can be
traced to a variation of the Higgs vacuum expectation value
leading to a variation in the binding energy of deuterium.
We find that, for a suitably large variation (of order a few
hundredths of a percent) in � at the time of BBN, the 7Li
abundance can be decreased by the requisite factor without
overly affecting the agreement between theory and obser-
vations for D and 4He.

Although we do not directly tie our calculations to the
observation with the result in Eq. (3), we do take, as our
starting point, the possibility that � 	 mp=me could have
differed from its present value at the time of BBN. As a
result we will be interested in variations of Yukawa cou-
plings, h (we can assume, or not, that all Yukawas vary
identically); the Higgs vacuum expectation value (vev), v,
and � 	 �QCD. Some effects of the variations of v [30,31]
and � [32] on BBN have been considered in the past. Here
we will be primarily interested in the interdependence of
these variations (some of which are not model dependent)
and their effects on quantities of direct importance to BBN,
such as the binding energy of the deuteron, the nucleon
mass difference, and the neutron lifetime.

In complete generality, the effect of varying constants on
BBN predictions is difficult to model because of the in-
tricate structure of QCD and its role in low energy nuclear
reactions (see Refs. [40,41]). The abundances of light
nuclei produced during BBN mainly depend on the value
of a series of fundamental constants which include the
gravitational constant G, the three gauge couplings, and
the Yukawa couplings of the electron and quarks. One
needs to relate the nuclear parameters (cross sections,
binding energies, and the masses of the light nuclei) to
these fundamental constants. This explains why most stud-
ies are restricted to a subset of constants, such as e.g. the
gravitational constant [17,23,42], the fine structure con-
stant [17,25–27], or v [30,31].

The approach we adopt here recognizes that many var-
iations of parameters we deem fundamental are interre-
lated in model dependent ways [27]. For example, if one
assumes gauge coupling unification at some high energy
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(grand unified) scale, there is a direct relation between
variations in the fine structure constant and �. In string
theories, the variations of gauge couplings will be related
to variations in Yukawa couplings, and in models where the
weak scale is determined by dimensional transmutation
[43], there is a relation between variations in the Yukawa
couplings and variations in the Higgs vev. Variations in the
latter will also trigger variations in �. While the exact
relation between these variations is model dependent, the
fact that they are interrelated is not. Therefore it is incon-
sistent for example to consider a variation in v without
simultaneously varying �. We will make use of these
dependencies to study variations in several (tractable)
quantities which affect BBN. Coupled variations of this
type were used to strengthen existing bounds on the fine
structure constant based on Oklo and meteoritic data [44].
As noted above, we cannot fully evolve the variations in all
nuclear reactions, because their dependence is unknown.
Here, we will be primarily interested in the induced varia-
tions of the nucleon mass difference, the neutron lifetime,
and the binding energy of deuterium. We recognize that
this represents a limitation on our results.

In Sec. II, we relate the variation of the BBN parameters,
mainly Q, �n, and BD, to the variation of the fundamental
parameters such as the Yukawa couplings, h, the QCD
energy scale, �, and the fine structure constant, �.
Section III focuses on the relations that can be drawn
between the variations of the fundamental parameters,
taking into account successively grand unification, dimen-
sional transmutation, and the possibility that the variation
is driven by a dilaton. In order to deal with some of the
theoretical uncertainties, we introduce two phenomeno-
logical parameters and we then make the connection with
the variation of the proton-to-electron mass ratio at low
redshift. Section IV focuses on the BBN computation and
first describes the implementation of the variations in our
BBN code. Assuming that the fine structure constant does
not vary, we show that deuterium and 4He data set strong
constraints on the variation of the Yukawa couplings [see
Eq. (39)] but that inside this bound there exists a range
reconciling the 7Li abundance with spectroscopic observa-
tions. We then allow the fine structure constant to vary and
set a sharp constraint on its variation in the dilaton scenario
[see Eqs. (40) and (41)].

II. FROM FUNDAMENTAL PARAMETERS TO BBN
QUANTITIES

As discussed above, we focus our attention on three
physical quantities which have direct bearing on the result-
ing abundances from BBN, the nucleon mass difference
Q � mn �mp � 1:29 MeV, the neutron lifetime �n, and
the binding energy of deuterium BD.

The neutron-proton mass difference is expressed in
terms of �, �, v, and the u and d quark Yukawa couplings
as

 Q 	 mn �mp � a��� �hd � hu�v; (4)

where the electromagnetic contribution at present is
a�0�0 � �0:76, and therefore the weak contribution is
�hd0 � hu0�v0 � 2:05 [45]. The variation of Q will then
scale as

 

�Q
Q
� �0:6

�
��
�
�

��

�

�
� 1:6

�
��hd � hu�
hd � hu

�
�v
v

�
:

(5)

The neutron lifetime can be well approximated by

 ��1
n �

1

60

1� 3g2
A

2�3 G2
Fm

5
e


��������������
q2 � 1

q
�2q4 � 9q2 � 8�

� 15 ln�q�
��������������
q2 � 1

q
��; (6)

where q � Q=me. Since GF � 1=
���
2
p
v2 andme � hev, we

have for the relative variation of the neutron lifetime,

 

��n
�n
� �4:8

�v
v
� 1:5

�he
he
� 10:4

��hd � hu�
hd � hu

� 3:8
�
��
�
�

��

�

�
: (7)

In addition to Q and �n, which have been well studied in
the context of BBN, we consider the variation of BD. This
is one of the better known quantities in the nuclear domain:
it is experimentally measured to a precision better than
10�6 [46] so that allowing a change of its value by a few
percent at BBN can only be reconciled with laboratory
measurements if its value is varying with time.

Recently, in a series of works [28,29,47] Flambaum and
collaborators have considered the dependence of hadronic
properties on quark masses and have set constraints on the
deuterium binding energy from BBN [29] following
Refs. [30–33]. The importance of BD can be understood
by the fact that the equilibrium abundance of deuterium
and the reaction rate p�n; ��D depend exponentially on BD
and on the fact that the deuterium is in a shallow bound
state.

Here, we follow Refs. [29,47] to compute the quark-
mass dependence of the deuterium binding energy. Using a
potential model, the dependence of BD on the nucleon
mass and � and ! meson masses have been determined
[47],

 

�BD
BD

� �48
�m�

m�
� 50

�m!

m!
� 6

�mN

mN
; (8)

for constant �. One can see that the coefficients of the
quantities on the right-hand side (rhs) of (8) do not add up
to unity as it is required on dimensional grounds. Clearly
there is a variation of a dimensional quantity that has not
been taken into account, which at low energy can be ex-
pressed in terms of an a priori unknown combination of �
and v. For definiteness we will write the missing term in
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terms of � only, keeping in mind that this somewhat
artificial method of fixing units is accounted for in the
uncertainty in the relations between the variations of the
fundamental parameters that we will discuss in the next
section. Hence, when the nucleon and meson masses are
kept constant, we write �BD=BD � �7��=�. On the
other hand, fixing �, when varying quark masses (the
largest contribution comes from ms), their result is
�BD=BD � �17 �ms=ms.

The importance of the strange quark in the nucleon and
meson masses can be traced to the �-nucleon � term,
which is given by

 ��N 	 � � 1
2�mu �md��Bu � Bd�: (9)

where

 Bq 	 hpj �qqjpi: (10)

Defining y � 2Bs=�Bu � Bd�, the combination ��1� y� is
the change in the nucleon mass due to the nonzero u, d
quark masses, which is estimated on the basis of octet
baryon mass differences to be �0 � 36� 7 MeV [48].
Following Ref. [49], we have �Bu � Bs�=�Bd � Bs� �
1:49 and, given a value of �, one can determine Bq. In
Ref. [47], the value Bs � 1:5 was adopted and corresponds
to � ’ 51 MeV, which is a reasonable value. This corre-
sponds to

 

�mN

mN
�

�
msBs
mN

�
�ms

ms
’ 0:19

�ms

ms
:

For these values we find a similar value (though slightly
larger than the one found in Ref. [47]) for the light quark (u
and d) contributions which give

 

�mN

mN
’ 0:052

�mq

mq
:

This implies that

 

�mp

mp
’ 0:76

��

�
� 0:24

�
�h
h
�

�v
v

�
: (11)

The value of � however has substantial uncertainties
which were recently discussed in Ref. [50]. An often used
value is � � 45 MeV which was already somewhat larger
than naive quark model estimates, and corresponded to y ’
0:2. However, recent determinations of the �-nucleon �
term have found higher values [51], � � 64 MeV. Still
higher values can be ascertained for the observation of
exotic baryons [52]. For � � 45�64� MeV, Bs � 0:9�2:8�
and �mN=mN � 0:12�0:36��ms=ms. The contribution
from u and d quarks is 0.046 and 0.066 for � � 45,
64 MeV, respectively. A similar calculation for the !
meson leads to �m!=m! � �0:09; 0:15; 0:29��ms=ms
for � � 45, 51, and 64 MeV, respectively. For the �
meson, three contributions were identified in [47], only
one of which is related to �, yielding �m�=m� �

�0:44; 0:54; 0:75��ms=ms. Combining these sensitivities
using Eq. (8), we would arrive at �BD=BD �
��16;�17;�19��ms=ms (when the u and d contributions
are neglected). Thus, despite the large uncertainties in
the individual sensitivities, the dependence of BD on
the strange quark mass is relatively stable. Because
of the cancellations in Eq. (8), the u and d quark contri-
butions are indeed small: �BD=BD � �0:08;�0:009;
�0:20��mq=mq and can safely be neglected.

Choosing the central value � � 51 MeV and since
ms � hsv, we immediately have the relation between
BD, h, and v. Adding these two contributions and using
�BD=BD � �17�ms=ms we have, in general,

 

�BD
BD

� 18
��

�
� 17

�
�v
v
�

�hs
hs

�
; (12)

where once again we have repaired the mass dimension by
adding the appropriate powers of ��=�.

Equations (5), (7), and (12), form the initial basis for our
computation.

III. RELATIONS BETWEEN FUNDAMENTAL
PARAMETERS

A. General relations in a GUT

We note that several relations among our fundamental
parameters can be found. First, changes in either h or v
trigger changes in � [53]. This is evident from the low
energy expression for � when mass thresholds are in-
cluded:

 � � �
�
mcmbmt

�3

�
2=27

exp
�
�

2�
9�s���

�
; (13)

for �>mt up to some unification scale in the standard
model1

 

��

�
� R

��
�
�

2

27

�
3

�v
v
�

�hc
hc
�

�hb
hb
�

�ht
ht

�
: (14)

The value of R is determined by the particular grand
unified theory and particle content which control both the
value of ��MGUT� � �s�MGUT� and the low energy rela-
tion between � and �s, leading to significant model de-
pendence in R [54,55]. Here we will assume a value of
R � 36 corresponding to a set of minimal assumptions
[27,56]. However, in most BBN computations, we will
neglect the variation in �, and therefore the precise value
of R chosen will not affect our conclusions. Nevertheless,
the relation between h, v, and � is quite robust and has
been neglected in most studies discussing the effect of
varying v (or varying GF) [30,31].

1In supersymmetric models, additional thresholds related to
squark and gluino masses would affect this relation [54].
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For the quantities we are interested in, we now have

 

�BD
BD

� �13
�
�v
v
�

�h
h

�
� 18R

��
�
; (15)

 

�Q
Q
� 1:5

�
�v
v
�

�h
h

�
� 0:6�1� R�

��
�
; (16)

 

��n
�n
� �4

�v
v
� 8

�h
h
� 3:8�1� R�

��
�
; (17)

where we have assumed that all Yukawa couplings vary
identically, �hi=hi � �h=h. For clarity, we have written
only rounded values of the coefficients, however, the nu-
merical computation of the light element abundances uses
the more precise values. We also recall that �GF=GF �
�2�v=v and �me=me � �h=h� �v=v.

B. Interrelations between fundamental parameters

Second, in all models in which the weak scale is deter-
mined by dimensional transmutation, changes in the larg-
est Yukawa coupling, ht, will trigger changes in v [43]. In
such cases, the Higgs vev is derived from some unified
mass scale (or the Planck scale) and can be written as (see
Ref. [27])

 v � MP exp
�
�

8�2c

h2
t

�
; (18)

where c is a constant of order unity. Indeed, in supersym-
metric models with unification conditions such as the con-
strained minimal supersymmetric standard model [57],
there is in general a significant amount of sensitivity to
the Yukawa couplings and the top quark Yukawa in par-
ticular. This sensitivity can be quantified by a fine-tuning
measure defined by [58]

 �i 	
@ lnmW

@ lnai
; (19)

where mW is the mass of the W boson and can be sub-
stituted with v. The ai are the input parameters of the
supersymmetric model and include ht. In regions of the
parameter space which provide a suitable dark matter

candidate [59], the total sensitivity � �
������������P
i�

2
i

q
typically

ranges from 100–400 for which the top quark contribution
is in the range �t � 80–250. In models where the neutra-
lino is more massive, � may surpass 1000 and �t may be
as large as �500.

Clearly, there is a considerable model dependence in the
relation between �v and �ht. Here we assume a relatively
central value obtained from Eq. (18) with c ’ h0 ’ 1. In
this case we have

 

�v
v
� 16�2c

�h

h3 ’ 160
�h
h
; (20)

but in light of the model dependence, we will set

 

�v
v
	 S

�h
h
; (21)

hence defining S 	 d lnv=d lnh��t and keeping in mind
that S ’ 160. It follows that the variations of BD,Q, and �n
are expressed in the following way:

 

�BD
BD

� �17�S� 1�
�h
h
� 18

��

�
; (22)

 

�Q
Q
� 1:6�S� 1�

�h
h
� 0:6

�
��
�
�

��

�

�
; (23)

 

��n
�n
� ��8:8� 4:8S�

�h
h
� 3:8

�
��
�
�

��

�

�
; (24)

where we have again assumed common variations in all of
the Yukawa couplings. It also follows that �GF=GF �
�2S�h=h and �me=me � �1� S��h=h.

Now, using the relation (14) we arrive at

 

�BD
BD

� �13�1� S�
�h
h
� 18R

��
�

(25)

 

�Q
Q
� 1:5�1� S�

�h
h
� 0:6�1� R�

��
�
; (26)

 

��n
�n
� ��8� 4S�

�h
h
� 3:8�1� R�

��
�
: (27)

Finally we can take into account the possibility that the
variation of the constants is induced by an evolving dilaton
[27]. In this scenario, it was shown that �h=h �
�1=2���=�, therefore the expressions above can be sim-
plified to

 

�BD
BD

� �
6:5�1� S� � 18R�
��
�

(28)

 

�Q
Q
� �0:1� 0:7S� 0:6R�

��
�

(29)

 

��n
�n
� �
0:2� 2S� 3:8R�

��
�
; (30)

though these relations will also be affected by model
dependent threshold corrections.

C. Sensitivity of BD to the pion mass

An independent calculation suggests a large dependence
of the binding energy of the deuteron to the pion mass [60]
parametrized in Ref. [31], for constant �, by

 

�BD
BD

� �r
�m�

m�
; (31)

where r is a fitting parameter found to be between 6 and 10.
The mass of the pion is given by f2

�m2
� � �mu �md�h �qqi,
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where f� / � is a coupling and h �qqi / �3 is the quark
condensate. Hence, the sensitivity of the binding energy to
the fundamental parameters is

 

�BD
BD

�

�
1�

r
2

�
��

�
�
r
2

�
�v
v
�

�h
h

�
; (32)

which must be compared with Eq. (12). The coefficients
are different, at most, by a factor of 4. Substituting relations
(14) and (21) into Eq. (32), we obtain

 

�BD
BD

� �0:2� 0:4r��1� S�
�h
h
� �1� 0:5r�R

��
�
;

(33)

which is to be compared with Eq. (25).
For the dilaton model considered, �h=h � �1=2���=�,

and we find

 

�BD
BD

� 
�0:1� 0:2r��1� S� � �1� 0:5r�R�
��
�
: (34)

Again, the ratio of the coefficients in Eq. (28) to these is at
the most of order 4. We therefore conclude that taking a
scaled dependence with the pion mass (31) leads to the
same constraints on the variation of the fundamental pa-
rameters (up to a factor of a few) as the nucleon/meson
mass dependence (8).

D. Links to the variation of mp=me
Before we use the above relations in our BBN code, it is

interesting to first compare these relations with the ob-
served variation in �. Using Eq. (11), and then Eqs. (14)
and (21), the proton-to-electron mass ratio � � mp=me

varies according to

 

��
�
� 0:8R

��
�
� 0:6�S� 1�

�h
h
: (35)

Using the current value on the observational variation of �
at redshift z� 3 [39], i.e. ��=� � 3� 10�5, we obtain,
assuming � constant,

 

�h
h
’ �3:2� 10�7

�
161

1� S

�
: (36)

Interestingly we deduce from Eq. (25) that when � is
constant

 

�BD
BD

’ 22
��
�
’ 6:6� 10�4; (37)

at z� 3, independent of the value of S.
In the case where the variation is driven by a dilaton, we

can link the observational variation in � to a variation in �
to get

 

��
�
� �1:5� 10�6

�
�20:2

0:8R� 0:3�S� 1�

�
; (38)

which is compatible with the measurement of the time
variation of the fine structure constant in Refs. [34,35]
but higher than the stronger bound found in Ref. [36],
for the considered value �R; S� � �36; 160�. Note that
this corresponds to �BD=BD ’ 6� 10�4, by applying
Eq. (28), which is comparable to the value found in
Eq. (37) where � was taken to be constant.

IV. NUCLEOSYNTHESIS

A. Implementation in a BBN code

We incorporate the relations derived above in a BBN
network. We use the reaction rates provided by the compi-
lation and analysis of experimental data of Ref. [61] cover-
ing ten of the twelve nuclear reactions involved in the
BBN. The two remaining reactions of importance, n$ p
and p�n; ��D, come from theory and are numerically eval-
uated, taking into account the variations discussed above.

The p�n; ��D reaction rate is calculated according to the
Chen and Savage [62] derivation of the cross section in the
framework of effective field theory. The weak reaction
rates n$ p are calculated by numerical integration of
the electron, positron, and neutrino Fermi distributions
and phase space for the six weak interaction reactions.
Zero temperature radiative corrections [63,64] to the
weak rates are also evaluated numerically. The neutrino
versus photon temperature used in these rate calculations is
a by-product of the numerical integration of the Friedmann
equation where we follow the electron-positron annihila-
tion exactly by the numerical integration of their Fermi
distributions.

In principle, one could have introduced a variation in BD
in the effective field theory cross section provided the
scattering length in the 1S0 channel follows this variation.
We found it simpler to use the Dmitriev et al. [29] pre-
scription for the reaction rate change that takes into ac-
count these effects. The binding energy of the deuteron is
also directly involved in the calculation of the reverse rate.

Variations in the binding energy of the dineutron also
have little effect on the primordial abundances provided its
absolute value remains smaller than the deuteron’s binding
energy [65]. Considering that, in this work the variations
on the binding energy of the deuteron are only of a few
percent, we do not expect any important role played by the
binding energy of the dineutron in the calculations.

By varying BD, one also changes the size of the deuteron
which consequently modifies the D�D; n�3He, D�D; p�T,
and D�p; ��3He reaction rates [66]. We have, however,
not included this effect in our calculation.

The n$ p weak rates depend on both Q and �n.
Equation (6) gives the decay rate of free neutrons; that is,
the zero temperature limit of the weak n! p rate. This
equation is used, in conjunction with the experimental
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value of the neutron lifetime (�n � 885:7 s; see Ref. [67])
to fix the normalization of the finite temperature weak
rates. Hence, variations in �n directly affect those rates.2

More precisely, we use Eq. (6) to fix the present day
normalization, then scale it according to the values of
me and GF at BBN and use the BBN values of Q and me
to evaluate the integrals in the finite temperature weak
rate calculations involving Q=me, T=me and T�=me.
Nevertheless, the approximation of scaling the weak rates
with �n is very good.

B. Results under the hypothesis ��=� � 0

We proceed with the calculation of the light element
abundances during nucleosynthesis using Eqs. (25)–(27),
first neglecting the contribution from ��=�. From the
discussions of the two previous sections, we conclude
that variations in the Yukawa couplings lead directly to
the changes in �n,Q, and BD. In addition, the nucleon mass
also changes [�mN=mN ’ 0:76��=�� 0:24��v=v�
�h=h� ’ 66�h=h] as does the electron mass (�me=me ’
161�h=h).

In Fig. 1, we show the time evolution of the light
elements for the standard BBN model (solid curves) and
when a variation �h=h � 1:5� 10�5 (dashed curves) is
considered, assuming the WMAP value for � and using the
central value S � 160. We see that the largest effect is
indeed a decrease in the 7Be abundance (which contributes
to the final 7Li abundance after decay) correlated to an
increase of n=p and a slight increase in the D=H
abundance.

In Fig. 2, we show the final abundances of D=H, 3He,
4He, and 7Li=H as a function of the variation in the Yukawa
coupling h, for three assumed values of the parameter S.
The horizontal cross-hatched regions indicate the current
observational spectroscopic determinations. For 4He, we
use Y � 0:232–0:258 [70]. For D=H, we use the 2� range
based the latest average of six quasar absorption systems,
D=H � �2:83� 0:52� � 10�5 [71]. For 7Li=H, we show
two ranges: the first given by 7Li=H � 1:23�0:68

�0:32 � 10�10

[8] and the second given by 7Li=H � �2:33� 0:64� �
10�10 when higher surface temperatures are assumed
[12] and is represented with dashed lines. The dotted
vertical line indicates the standard BBN results (i.e.
�h=h � 0) for � � 6:12� 10�10.

We recall that there is significant model dependence in
several of the assumed relations between the fundamental
parameters. For example, in Eq. (21), we adopted c=h2 �
1 (that is S ’ 160). However, the origin of the dependence
between v and h depends on physics beyond the standard

model, and c=h2 could be significantly larger or smaller
than unity.

As one can see from Fig. 2, each of the light elements, D,
4He, and 7Li show strong dependences on �h=h. In fact,
D=H provides us with the strongest constraint (under the
hypothesis that � is constant) which for S � 160 is,

 � 1:5� 10�5 <
�h
h
< 1:9� 10�5: (39)

Using Eq. (25), this bound translates to �4� 10�2 <
�BD=BD < 3:1� 10�2. Note that we have not used the
7Li abundance to set the lower bound on �h=h. However,
we also observe that, for values of �h=h * 1:8� 10�5

(�h=h * 0:9� 10�5 for the second range of observational
7Li), the 7Li abundance is sufficiently small so as to come
into agreement with the observational data. So long as we
do not exceed the upper bound given in Eq. (39), all of the
light elements can be brought into agreement with data.
Thus, we must saturate the limit, but recall that this con-

∆h/h = 0 and 1.5×10-5
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FIG. 1 (color online). The time evolution of the light element
abundances for standard BBN (solid curves) and when variations
�h=h � 1:5� 10�5 are included (dashed), assuming � remains
constant. The WMAP value of � � 6:12� 10�10 was assumed
and we have used S � 160.

2While a more recent determination of neutron lifetime has
been published [68], its value has not been adopted by the
Review of Particle Physics [67]. Consequences of this measure-
ment on BBN were considered in [69].

COUPLED VARIATIONS OF FUNDAMENTAL COUPLINGS . . . PHYSICAL REVIEW D 76, 023511 (2007)

023511-7



clusion is based under the restrictive assumption that � is
constant. On the other hand, it also means that our hy-
pothesis can be falsified by decreasing the error bars of
either 7Li or D.

In Fig. 3, we show the individual contributions of the
varying BBN quantities to the light element abundances.
When varying Q and me individually, �n is held constant,
i.e. Eqs. (6) and (7) have not been used. The effects of the
variations of �n, Q, BD, and me can be seen explicitly. The
curves for me are due to the effects of the electron mass on
the expansion of the universe: me effectively enters in the
rhs of the Friedmann equation, affecting the timing and
magnitude of the photon bath reheating following electron-
positron annihilations. This effect is however very small as
seen in Fig. 3. The effect of varying me in the weak rates is
accounted for in the overall variation of �n. The electron
mass does not affect the abundance of any of the isotopes,
however, �n and Q have a significant effect on 4He leaving
deuterium and 7Li almost unchanged.

From the 4He data, we deduce the bounds, �7:5�
10�2 & �BD=BD & 6:5� 10�2, �8:2� 10�2 &

��n=�n & 6� 10�2, and �4� 10�2 & �Q=Q &

2:7� 10�2 at 2�. A variation of the deuterium binding
energy affects all the abundances, in particular, the deute-
rium data sets the tighter constraint �4� 10�2 &

�BD=BD & 3� 10�2. Interestingly, these bounds are
equivalent to the ones obtained from the constraint (39)
considering the interrelations between the fundamental
parameters. The 7Li abundance is brought in concordance
with spectroscopic observations provided its change
falls within the interval �7:5� 10�2 & �BD=BD &

�4� 10�2. We thus conclude that BD is the most impor-
tant parameter connected to the discrepancy of the 7Li
abundance, and again, we see that there exists a window
allowing for consistent 7Li and deuterium abundances with
data.

One may also consider the effect of the variation of the
nucleon mass. The proton and neutron reduced mass enters
as a factor �m�1

p �m�1
n �

1=2 in the p�n; ��D rate. For var-

me, BD, Qnp and τn variations
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FIG. 3 (color online). Primordial abundances of the light nu-
clei as a function of the relative variation of me (dotted lines), �n
(dot-dashed lines), Q (dashed lines), and BD (solid lines) with
the same conventions as in Fig. 2.
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iations of the order we are considering, this effect is
negligible.

C. Allowing for ��=� � 0

We now allow the fine structure constant to vary and
we further assume that it is tied to the variation of the
Yukawa couplings according to �h=h � �1=2���=�, us-
ing Eqs. (28)–(30). The results are shown in Fig. 4 where
the abundances are depicted for three values of the parame-
ter R. Comparison of this figure with Fig. 2 shows the effect
of including the variation in �. Not considering 7Li, the
tighter bounds on �h=h are again given by the deuterium
abundance and are comparable in order of magnitude to the
ones found in Eq. (39):

 � 1:6� 10�5 <
�h
h
< 2:1� 10�5; (40)

for R � 36 and

 � 3� 10�5 <
�h
h
< 4� 10�5; (41)

for S � 240 and R � 60.
While these limits are far more stringent than the one

found in Ref. [25], it is consistent with those derived in
Refs. [26,27] where coupled variations were considered.
Once again, for a variation near the upper end of the range
(40) and (41), we can simultaneously fit all of the observed
abundances.

As noted above, a variation of � induces a multitude of
changes in nuclear cross sections that have not been in-
cluded here. We have checked, however, that a variation of
��=� � 4� 10�5 leads to variations in the reaction rates
(numerically fit), mainly through the Coulomb barrier, of
the most important �-dependent reactions in BBN [25] that
never exceed one tenth of a percent in magnitude.

Before concluding, we return once more to the question
of model dependence. We have parametrized the uncer-
tainty between �v and �h with the quantity S and the
uncertainty between �� and �� through R. In full gen-
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erality, we ought to include one more unknown, say T, that
parametrizes the relation between �� and �h, T 	
d lnh=d ln� [56]. In this work, however, we focused our
investigation in the dilaton model where T � 1=2. It is now
important to evaluate more precisely how sensitive our
results are to the value these parameters may take. In
Fig. 5 we illustrate the evolution of the primordial abun-
dances of the light nuclei with S for a fixed value of the
change in the Yukawa couplings assuming ��=� � 0. We
clearly see that, in this case, the theoretical 7Li abundance
is compatible with its observational measurement provided
200 & S & 370 (for the lower range of observational 7Li
abundances).

We can also evaluate the impact of changing R in the
dilaton model, when we allow a variation in �. To this end,
we show in Fig. 6 the evolution of the primordial abun-
dances for two different values of �h=h. We observe that
when �h=h � 1:5� 10�5, we require R � 16. On the

other hand, if we take �h=h � 2:5� 10�5, the abundan-
ces are more sensitive to the value of R as the slope of the
corresponding curves are steeper, but there is also a narrow
window around R � 45 where all the light nuclei abun-
dances are compatible with the full observational data.

V. SUMMARY

In this article, we have considered the influence of a
possible variation of the fundamental constants on the
abundances of the light elements synthesized during
BBN. We have focused our attention on three fundamental
quantities central to BBN, namely Q, �n, and BD, the
variation of which was related to the one of the fundamen-
tal constants. Specifying our theoretical framework, we
have reduced the fundamental constants to two indepen-
dent ones, the Yukawa coupling and the fine structure
constant.

We have shown that these constants have a strong effect
on 4He allowing us to set strong constraints on the variation
of me, BD, Q, and �n. Interestingly, the deuterium and 7Li
abundances are mainly sensitive to BD and we have shown
that there is a window in which 7Li is compatible with
spectroscopic data (see Fig. 3). The existence of such a
narrow window also implies that our mechanism can be
falsified by an increase of the precision of deuterium and/or
7Li data. Our analysis also enables one to set sharper
constraints on the variation of the fundamental constants.

Assuming that the fine structure constant does not vary,
we have shown that deuterium and 4He data set strong
constraints on the variation of the Yukawa couplings [see
Eq. (39)] but that inside this bound there exists a range
reconciling the 7Li abundance with spectroscopic observa-
tions. We then allow the fine structure constant to vary and
set a sharp constraint on its variation in the dilaton scenario
[see Eqs. (40) and (41)]. The theoretical limitations have
also been discussed in detail. More specifically, we have
parametrized the relations between �v and �h and be-
tween �� and �� with two free quantities, S and R,
respectively. We found that the specific value of these
quantities plays an important role alongside the change
in the fundamental parameters in solving the 7Li abun-
dance problem. We conclude therefore, that a better under-
standing of the values of these parameters from the
theoretical standpoint can help us to better constrain the
variation of the fundamental parameters at the time of
BBN.
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