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Scalar and vector perturbations in quantum cosmological backgrounds
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Generalizing a previous work concerning cosmological linear tensor perturbations, we show that the
Lagrangians and Hamiltonians of cosmological linear scalar and vector perturbations can be put in simple
form through the implementation of canonical transformations and redefinitions of the lapse function,
without ever using the background classical equations of motion. A similar result was obtained by
Langlois in the case of a scalar field, but we generalize it for any perfect fluid. In such case, i.e., when the
matter content of the Universe is a perfect fluid, we can go further and show that the Hamiltonian of scalar
perturbations can be reduced, as usual, to a Hamiltonian of a scalar field with variable mass depending on
background functions, independently of the fact that these functions satisfy the background Einstein
classical equations. These simple Lagrangians and Hamiltonians can then be used in situations where the
background metric is also quantized, hence providing a substantial simplification over the direct approach

originally developed by Halliwell and Hawking.
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I. INTRODUCTION

In the theory of linear cosmological perturbations, sim-
ple evolution equations for the perturbations have been
obtained [1]. Lagrangians and Hamiltonians describing
the dynamics of scalar, vector, and tensor perturbations
coming from the Einstein-Hilbert Lagrangian have been
greatly simplified in different cosmological scenarios
under the assumption that the background metric satisfies
Einstein classical field equations, and after taking out total
derivatives in space and time [1]. Once these simple
Lagrangians and Hamiltonians are obtained, the quantiza-
tion of linear cosmological perturbations becomes easy,
with a quite simple interpretation: they can be seen as
quantum fields which behave essentially as scalar fields
with a time dependent effective mass. The time varying
background scale factor which is responsible for this
“mass” acts as a pump field [2], creating or destroying
modes of the perturbations. In this framework, one can
assume an initial vacuum state for the perturbations, yield-
ing primordial perturbation spectra which can be compared
with observations. In the cosmological inflationary sce-
nario [3], the resulting spectrum for scalar perturbations
is in good agreement with the data [4].

However, this state of affairs is rather incomplete: the
overwhelming majority of classical backgrounds possess
an initial singularity at which the classical theory is ex-
pected to break down, and one needs to justify the initial
conditions for inflation and quantum perturbations. Hence,
a full quantum treatment including the background must be
constructed. The first approach in this direction was made
in Ref. [5], where the canonical quantization of the pertur-
bations and background was implemented through the
derivation of the super-Hamiltonian constraint of the whole
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system and its consequent Wheeler-DeWitt equation
H(A, Py, X, Py)¥ =0, where A and P, represent the
phase space background variables, and X and Py the
perturbation phase space variables. They claim that the
no boundary proposal can set the initial conditions for
inflation and the vacuum initial state for the perturbations.
Then, through the imposition of the ansatz on the wave
functional W(A4, X, t) = ¢(A, H)i(A, X, t), they could man-
age to separate the quantum effects in the background from
the quantum perturbations, where the wave function for the
background ¢(A, 1) obeys an independent quantum minis-
uperspace description where backreaction terms from the
quantum perturbations are negligible. The singularity is
bypassed through a Euclideanization of space-time near it,
and a consequent beginning of time when (or where) the
geometry passes from the Euclidean signature to the
Lorentzian one. The quantum perturbations are described
in the oscillatory part of the background wave function,
where a WKB approximation can be used (see also Ref. [6]
for further details). Then, the evolution of the scale factor
in time may be obtained through the equation & « 3S/da,
where S is a solution of the classical Hamilton-Jacobi
equation. Hence, this evolution is the classical one, and
we are back to a semiclassical description of the
perturbations.

In parallel to that, the possibility that the singularity
could be avoided through a bounce connecting the present
expanding phase with a preceding contracting phase has
been explored. In this case, the Universe is eternal: there is
no beginning of time, nor horizons. Many frameworks
where bounces may occur have been proposed [7-9].
These new features of the background introduce a new
picture for the evolution of cosmological perturbations:
vacuum initial conditions may now be imposed when the
Universe was very big and almost flat, and effects due to
the contracting and bouncing phases, which are not present
in models with a beginning of time, may change the sub-
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sequent evolution of perturbations in the expanding phase.
Because of that, the evolution of cosmological perturba-
tions in bouncing models has been the cause of intense
debate [10].

In the framework of quantum cosmology in minisuper-
space models, bouncing models had also been proposed
where the bounce occurs due to quantum effects in the
background [11-17]. Some approaches have used an onto-
logical interpretation of quantum mechanics, the Bohm-de
Broglie [18] one, to interpret the results [14—16]. In this
interpretation, quantum Bohmian trajectories, the quantum
evolution of the scale factor aq(t) at zeroth order, can be
defined through the relation a « 4S/da, where S is now the
phase of the background wave function ¢(A, 7) without any
approximation: it is not a solution of the classical
Hamilton-Jacobi equation. In fact it satisfies a modified
Hamilton-Jacobi equation derived from the Wheeler-
DeWitt equation for ¢(A, 1), and hence a,() is not the
classical trajectory: in the regions where the quantum
effects cannot be neglected, the quantum trajectory a, (1)
performs a bounce which connects two asymptotic classi-
cal regions where the quantum effects are negligible. One
then has in hand a definite function of time for the back-
ground, even at the quantum level, which realizes a soft
transition from the contracting phase to the expanding one.
Because of the results of Ref. [5], where the background
minisuperspace Wheeler-DeWitt equation for ¢(A, 7) con-
tinues to hold when quantum perturbations are present
because backreaction terms are negligible (which can
also be justified through other ansatz for the wave function
or verified “a posteriori’’), this background quantum func-
tion a, (1) is sufficient to describe all quantum features of
the background. The natural question to ask is what hap-
pens with the perturbations when it passes through this
well-defined and regular quantum bounce. One could then
use the Hamiltonian H of Ref. [5] to investigate the evo-
lution of quantum perturbations in this quantum back-
ground. However, the structure of H is rather com-
plicated, making it difficult to obtain any detailed result
about the spectra of perturbations, especially the scalar
ones. Also, a simplification of H using the zeroth order
classical equations, as done in Ref. [1] and described in the
beginning of this section, is not possible because the
background is also quantized and it does not satisfy the
classical Einstein equations. This state of affairs motivated
us to find a way to simplify the Hamiltonian of Ref. [5],
without ever recurring to the background classical equa-
tions, and apply it to these quantum systems.

Recently, we have managed to put the Hamiltonian of
tensor perturbations into a very simple form through the
implementation of canonical transformations and redefini-
tions of the lapse function only, without recurring to any
classical equations of motion [19]. Its consequences were
explored in Ref. [20]. However, tensor perturbations are
very special (they are automatically gauge invariant; their
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equations do not depend on the matter background) and it
remains to investigate if it would be possible to do the same
procedures to simplify the Hamiltonian of scalar and vec-
tor perturbations. Note that such perturbations are not
gauge invariant from the beginning, and they have contri-
butions from the matter perturbations, which renders the
calculations much more intricate.

In Ref. [21], D. Langlois has shown, using a Hamilton-
Jacobi technique, that one can indeed considerably sim-
plify the Hamiltonian of scalar perturbations when the
matter content is constituted by a scalar field, without
ever using the background classical equations. However,
a full quantization of the system is still involved, as long as
the mass term of the perturbations contains negative and
fourth powers of the background momenta, which renders
the Wheeler-DeWitt equation for the perturbations and
background still complicated. In order to describe the
evolution of these perturbations in terms of linear quantum
scalar fields with a simple time variable mass, as in
Mukhanov’s approach [1], one still needs to use the back-
ground equations at the final step.

The aim of this paper is to extend the results of Ref. [21]
to the case of hydrodynamical fluids and study their con-
sequences. We show that it is also possible to put the
complicated Hamiltonians of scalar and vector perturba-
tions for these fluids into a very simple form, and, in a
second step, to put them in the form of Ref. [1] (quantum
scalar fields with time dependent mass), also without ever
using any classical background equations.

For the first step, working in the Hamiltonian frame-
work, we will exhibit the canonical transformations and
lapse function redefinitions which achieve our goal. The
simplified constraints obtained do not contain any non-
trivial couplings between background momenta and per-
turbation degrees of freedom, as it happens in the scalar
field case, and they have direct physical interpretations.
Because of that, the full quantization of the theory yields a
very simple Wheeler-DeWitt equation for the perturbations
and background, which can now be used with whatever
interpretation of quantum mechanics and gauge time
choice one makes.

In the second step, as the Wheeler-DeWitt equation is
simple and assumes a Schrédinger form in the case of
perfect fluids, a further simplification can be achieved
through the use of an ansatz for the total wave functional,
yielding a separate Wheeler-DeWitt equation for the back-
ground, and provided one uses the ontological interpreta-
tion of Bohm and de Broglie [18]. As in this case a
quantum Bohmian trajectory a,(t) at zeroth order can be
defined, a time dependent unitary transformation can be
implemented in the scalar perturbation sector using this
a,(t), and, like in Ref. [1], the Hamiltonian for the pertur-
bations can be further simplified, rendering equations gov-
erning the scalar perturbations which are formally
equivalent to simple equations for a scalar field with an
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effective mass depending on the quantum solution for the
scale factor a,(t), the quantum “‘pump field.”

The paper is organized as follows. In the following
section, we specify the action and Hamiltonian by restrict-
ing attention to the particular case of a Friedmann-
Lemaitre-Robertson-Walker (FLRW) background and per-
turbations around it, without yet making any separation in
scalar, vector, and tensor perturbations. In Secs. III and IV
we analyze the cases of vector and scalar perturbations,
respectively, for the hydrodynamical fluid case. In Sec. IV
we present all the steps to simplify the scalar part of the
Hamiltonian. In Sec. V we quantize this system. After
separating the background Schrédinger equation from the
perturbed one, we show how to use the Bohm-de Broglie
interpretation in order to perform the last canonical trans-
formations which yield quantum equations for the pertur-
bations with the same form as those presented in Ref. [1].
Finally, Sec. VI ends this paper with some general con-
clusions. In Appendix A, we exhibit an alternative deriva-
tion of the simpler Hamiltonian for scalar fields calculated
in Ref. [21], using the same Hamiltonian methods em-
ployed in Sec. IV for hydrodynamical fluids. Appendix B
presents the explicit canonical transformations used in

Sec. IV.
|
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The first order action was discarded because we are assum-
ing that the mean value of the perturbations over the spatial
sections is null:

j d*xy'?h,, = 0. (7)

These are the actions for the gravitational sector. Let us
now focus on the action for the matter sector. We will
concentrate on the perfect fluid case, leaving the scalar
field for Appendix A as a verification of the results of
Ref. [21] using a different method.

We will restrict the construction of the Hamiltonian to
the K = 0 case and postpone the K # 0 case, which is
more intricate, to a future publication.

Following the approach of Ref. [1], the Lagrangian

density of the perfect fluid is
L m = — & (8)

where

aN
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II. LINEAR COSMOLOGICAL PERTURBATIONS

Let the geometry of space-time be given by

(O

- glLV h/un

8uv (D
(0)

where g, represents a homogeneous and isotropic cos-
mological background,

ds® = g dxtdx” = N (1)di* — a*(1)y;dxidx),  (2)

where y;; is the spatial metric of the spacelike hypersur-
faces with constant curvature K = 0, =1, and the A, are
the linear perturbations, which we decompose into

hOO = 2N2¢, hOi = —NaAi, l’ll] = azéij. (3)
Substituting Eq. (3) into the Einstein-Hilbert action
Ser = ~oE fd“xJ gR, “)

where I = 87G/3, yields the zeroth and second order

actions
1 642 6K
0) _ 4 1/2 . 3( _
Ser = 6 fd xNvy 12q < N7 + a2>’ (5)

S I l. y
Aiejlj_EEA |l+m(_4¢A |[+2Ai6]j)
2 i 3 3 ij 1 ilj

o —3epp — 9¢° + 3A'A; — Ze +2e €;j +?A Al

N 1 o .
—_€1.€EL —_ i i . i
2a26|,51|j azq’)he +4a26|,6
(6)
g = plmy + 1(p, p)] 9)
and
p dp dp'
M(p,p)= [ 2L L (10)
odp’ pp

where p is the number density of particles, m, is their rest
mass, and p is an arbitrary function of p, which will be
identified with the pressure. The particle number density p
is given by

Ixt 9x”
8urao 90

=7

where F is an arbitrary function of Lagrangian variables, o
is a time parameter along the particle world lines, and J is
the Jacobian of the transformation from the Lagrangian
variable to Eulerian ones.

F(a?)

p= (1n
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The energy-momentum tensor of the fluid reads Perturbations displace the particles from their back-
o “ oo .
2 8(/~gL) ground positions x; to the x* positions given by
TW = ——— — =" = gVH,VY — p(gh” — VEV?), o o o .
J=& 0gu x§ — x¢ = x§ + £%xo), (14)
(12)

meaning a change into their Eulerian position, which im-
where it is clear that & and p correspond to the energy  plies modifications in the Jacobian,
density and pressure, respectively. The sound velocity c; is ; . o L o
defined by J=Jo(1+¢& + &t %‘fl,ig],j + fofl,i - %gl,jfj,i
_ g0 i
2 de (13) &8, 15)
in the determinant,

1 N 3a 1 1 1. 1. 1 N
V=8l + &) = _g(o)(xo)<1 + ¢ —5eT Nfo + ;fo _zd’z - 5‘5(/’ +§A'Ai _quez’j + gez +N¢§O
IN ,,  3a 3a . o1 3Na 3a? N 3i 1,
_ - +_0 _- = O_I_ 0+ 'l__'O_'_ 0+_0+_0+_0__ 'l’
3B S e T B ik~ e T TR 0 e et
(16)
and in
Jdx* ax” (0) axg 8x5 N 0 20 N 0 i 0 . N 5 . N L0 £0
— = y—L T+ p+ =0+ £+ + + P+ —E+ +—
\/gw o \/gﬂ o Ga1F O G E T G D+ e+ UG 0k +
a .. 1 az e e . 1
— —AE -y EE — Z 2. 1
NAE 5l 5 0) (17)
The particle number density at point x; is then given by
1 . . . a . 1 a* A | | o1 .
plxg) = Po(1 toem &t EE0+ &€ - NAiE T Yut'e TS AT el gfz +&)e
1. . | R |
& 8 §6§’|i>' (18)
Substituting all that in Eq. (10) and finally in Eq. (9) yields
8,8, = — | d*xNa’y'/? —1¢2+1AiA-—¢§i + 16¢+16ij6~_162—d)§i
29m Y L200) 2 D) i li Po 2 4 ij 8 li
1 a’ i a4 gi i 1, 1, i) i
- 5(80 + Po)(mf &t 2NAi§ +AA ) + Ecs(s() + Po)<18 +&,8), €€ |,->} (19)

The total Lagrangian including the gravitational sector then reads
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i*aV N "y 1. Co ] 1
L=— alzcllv — Na’g,V + —Czl fd3x‘y1/2<A’|/A[,-|j] — ZEUlkEijlk + %Aie’/ A Eefljel s o€ 56”61]'.
1 3
— ¢p€ + ZEI’E|> 2412N fdzxyl/z €e;; + 2N fdzxy1/2< 9¢? — 3edp — —6 + 3AIA; + 26”6U>
_ 2aa

1 . a’ ) 1 . .
3 d3x71/2<¢Az 2A,€1]|j> _m [d3x71/262 +ﬂ fd3x71/2<51]6ij _566_ (;Se)

a? o 1 1 . .
~ <2 jd3xy1/26A’|i — Na's, fd3xy1/2<— 3 o> + EAlAi - ¢§’|I.>
- Nda* dPxy!/? lE([)-i-le"je —152—¢§" +1Na3( + po) | dPxy'? _a2 ¢ +2—aA§i+AAi
Po Y ) 4 i g li 2 €0 T Po Y N2 i N i
1 1 o .
- Ec?Ncﬁ(so + po) ]d3xy1/2<£—‘ g2 + §’|i§f|j - ef’ll). (20)

The procedure of Ref. [1] to simplify Eq. (20) begins as follows: using the background equation of motion

@  aN _3PNa
2a N 2

Por 1)

and discarding a total time derivative

1 .
3 1/2 el 2
[612]\/ j’d xy ( € — 26 >} , (22)

we obtain
2
acaV Na s 1 .. a . .. 1 1
L=— N Na*e,V + 2 /d3xy1/2<A’|fA[,-|j] - Ze”“‘eiﬂk + NA,-E’/ , 261 €kt €l ;5 e’f — €l

1
+Ze E> 24Z2N fdgxyl/z €e;; + —— 2N fd3x71/2( 9¢> — 3ep + 3A'A;) — 2412N fd3x'y'/2 é?

_ 2aa . 1 . ) i
32 /CP 1/2<¢Al"’ - 5Ai€”“> 3PN fd%yl/zd’e 6P [d3x71/26A .

1 1 . . 1 .
- Na3sofd3x71/2<—§¢2 + EAlAi - ¢§l|i> - Na3p0fd3xyl/2<§ €p — ¢§l|i>

1 at ... a .. . 1 1 o .
+ ENCI3(80 + po) /fva’l/z(m &¢ + ZNAi‘fl + AiAl> - EC%N03(80 + po) ]d3xy1/2<1 & + &8~ E'flli)'

(23)
Now using the other background equation

a’a _ Na'e,

aa , 24
612N 6 )

we arrive at the simplified Lagrangian
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a*aV Na . 1. a . .. 1 1
L=—- N — Na’e,V +—2 fd3x‘y1/2<A’|/A[,-|j] —Ze’flkeiﬂk +NAZ-€U . Eefljel Ik + ¢|l .. §e| €l q§|l

1
L Bayl/2¢iié Bryl2e — Bavl/2 2
Tgeue ) 2412N f ryere 2412N f lN ] e

2aa 1 . a’a . o
3P d3x'yl/2<¢A’ EA,-G’JU) eV BPxy' 2 pé — @ [d3xyl/26A’|l.

1 . 1 2 . .
~Na(eg + po) [ dey (et = o8, ) gNa eyt pu) [ dey (G 8 2 Ak )

1 1 o .
- §C§Na3(80 + po) fd3x71/2(182 +&8, - f§'|,->- (25)

Equation (25) corresponds to Eq. (10.37) of Ref. [1] if one is restricted to scalar perturbations, and if one reads 8 in the

latter as B = 3a’l*(€, + p,)/2. Note that it is not necessary to use Eq. (24) in order to pass from Eq. (23) to Eq. (25): the
redefinition of the lapse function

N —: 1\7[1 + % f Ly (e + B — A"A,»)} (26)

takes Eq. (23) into Eq. (25). Note that these two lapse functions related by Eq. (26) are equivalent at first order. Hence, this
procedure does not modify the equations of motion at first order when we make a time gauge choice.
Let us now calculate the Hamiltonians of these Lagrangians for perfect fluids with equation of state

Po = Aé&g. (27)

The Hamiltonian from Eq. (20) reads

NI2p? P; NI*P? 1 1 5
Hp = — ”’—l—NTﬁ%—de2 1/2< ¢2+—6<{>——AA——6 ~I——e’/e>
a a

4aV 32 48
NP, [ \ifesi y 2NI2P, 5 PP, . NP, [ 5 1o i
+Wfd7/(¢A|i+Ej|'Ai)+ v [d xmie;; — 22V2[dxmr+m[dxy €A’
leP 3 6NI? 3 ”77,] 3N s T 3 1A 3 ;
fd TP + j-d 7 o [dx’y]/2 4lzfdxy/A A/ ——fd)MTA

N 7T§7T§ . Na s 1 .. 1 .. ..
oD | g [ g [ (= e+ g ety - due
1 . o1 . 1 1 . .
— e’y - b€ + Zeli6|l> + Na’g, /d3x71/2<—§¢2 +5AA; - d)f’“)
1 1 . 1 1 . .
+ Na’ g [d3xyl/2< €+~ e”e,] 3 —e? — gbf’li) + ENGB)\()\ + 1)80fd3x’)’l/2<1 X + f’lifflj - e§’|i>,

(28)

while that from Eq. (23) is given by
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NI*P? Pr  NEP
Hp = — “+N-L ]d3 1/2< % + —e¢——A’A>

4aV 3"

NZZP 6N 12 mim; 3N
fd3 ¢ + de 1/21 a3 [d3

Ty
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NP, .
oV ]d3x71/2(¢A’|i + e’fle,»)

77_2

d3 1/2A1 AJ __fd3 Az
x’y]/2 4lzf Xy XTT.

N . Na iy | 1 .
N 3 Yl p o 3o 1/2( pilip L gilkg 4 k
+ 20+ Dag fd X 2 a [d XTTA; o fd Xy (AIJA[M 4611 €ijix T zeljljei "

. 1 1 1 1 . .
+ ¢ji€); — Eq,e/ — ¢ e + Rl 6") + Na’e, /d3x71/2<—§¢2 + EAlAi — ¢§l|i>

1 . 1 1 o .
+ Na’Alg, [d3xy1/2<§ €p — g{)f’li) + ENa3)l()l + 1)gg fd3xy'/2<z e + f’lifflj - e§’|i>. (29)

The quantity P appearing in the second term of the zeroth
order term of both Hamiltonians is just the kinematical
constant Py = g,a’*"3V. We have introduced it as a ca-
nonical momentum to a variable 7" which is cyclic, imply-
ing indeed that Py is a constant. We have made an inverse
Routh procedure. The variable T plays the role of time
when the system is quantized. This form of the zeroth order
Hamiltonian appears in other approaches to a Lagrangian
formulation of fluids; see e.g. Ref. [22] for details.

One can now use the total time derivative (22) to con-
struct the generator of canonical transformations

N 1
F=abP,— ]dgxﬂ"/e,j d3x71/2< Ve — 3 2),

(30)
yielding
)
P, = f’a[l v d3x71/2<eijeij - %62>:|, GD
7l = il + I‘)/ 'yl/z(ei-"eij - ;€2>, €l = €.

Using the fact that p « a3, the particle number density
transforms to

- 1 1 . =
p= p[l W fd3xy1/2< g, —zezﬂ =:p— 8p.

(32)

Substituting this last equation into Egs. (9) and (10) we
obtain

oy = 8~ 2P 5, (33)

p

Inserting Eqgs. (31) and (33) into Eq. (28), we obtain (29).
Hence, in the Lagrangian point of view, one can pass from
Eq. (20) to Eq. (23) without using any background equa-
tions of motion. As we have shown that we can pass from
Eq. (23) to Eq. (25) just through a redefinition of N, then it
is proven that Lagrangian (20) is equivalent to Lagrangian

{
(25) at this order of approximation irrespective of the
classical background equations of motion. Figure 1 shows
a schematic view of what we have achieved up to now.

In order to proceed from this point, we will now separate
the perturbations into scalar, vector, and tensor perturba-
tions. We make the decomposition

A, =B;+ S, (34)
6” = 2(,&')/11 - 2E|l|] —Fy — F]|l + W”

in the gravitational sector, while the quantities w;
S; satisfy

ilj

ij» Fi, and

Sy=F,=0  wi,=0  w,=0 (35

and
g=n'+ (36)

with
7', =0, (37)

in the matter sector. Substituting the above decompositions
into Eq. (25) leads to a separation of this Lagrangian, with
some total derivatives discarded, into three independent

Fried. Eg

Lagrangian 1 Lagrangian 2 »| |agrangian 3

Friedmann Eqs. N
N Redefinition

Legendre
Transform Inverse
Legendre

Transform Configuration Space

Phase Bpace

Canonical

Hamiltonian 1 Transfs. Harniltonian 2

FIG. 1. Pictorial representation of the simplification schemes
presented. Mukhanov follows the configuration space path,
based on the Friedmann equations. We propose the configura-
tion/phase space path based on the canonical transformation and
redefinition of the lapse function. By Lagrangians 1, 2, and 3 we
mean Egs. (20), (23), and (25). By Hamiltonians 1 and 2 we
mean Eqgs. (28) and (29).

023506-7



EMANUEL J. C. PINHO AND NELSON PINTO-NETO

sectors: scalar, vector, and tensor sectors. We will focus our
attention on the vector and scalar sectors because the case
of tensor perturbations has already been treated in
Ref. [19].

ITII. VECTOR PERTURBATIONS

Combining the contributions of gravitational and matter
sectors and defining the gauge invariant quantities

4 Coa ..
V’=S’—NF’ (38)
and
76 = i + Fi, (39)
we obtain
LV = 1]\2712 jd*xy‘/zwlm + ;Na*(/\ + ey

[d3x71/2<N i) 4 V’><N e 4 V) (40)

When constructing the Hamiltonian, the primary con-
straint I1; = 0 appears, where = means a weak equality in
the sense of Dirac [23], and II; is the momentum canoni-
cally conjugate to V'. The Hamiltonian then reads

PP:  Pr PP
H" =N + -+ fd3x<
[ 4av @ 2(1 + APpa> 3 y1/2
viP;

- ! 1212 y'2vilivy, )} + fd3fo7T,-, 41)

where P; is the momentum canonically conjugate to nt¢?,
and the A’ are Lagrange multipliers.
The conservation of II; in time imposes a secondary

constraint

Ti— ITTE gV — i — = i 1/2y/ilj

I ={Il'H"} = ¢} = -7, @'y/ Vi (42)
The conservation in time of ¢/, fixes the Lagrange multi-
pliers A’ to the value

PP,

Al=—22
a’v

Vi (43)

Then the equations of motion for V/ and *¢? imply that

Vo

vi=-t, (44)

and

2y/i
i= (2 i) 4 yi| = ViVo 4
¢ (N" V= o+pa . @

These solutions correspond to the classical result, which
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was obtained without recurring to the classical background
equations.

The two constraints obtained are second class. After
defining the corresponding Dirac brackets [23], they be-
come strong equalities which can be used to obtain some
variables from others.

IV. SCALAR PERTURBATIONS
Defining the quantities

E, (46)

(@) = ¢+ E, (47)

which is a gauge invariant quantity, and
_ Vol JIX + Deg (a4
2 8+ F), (48)
VA N

which can be identified with the perturbed velocity poten-
tial of the fluid particles, the scalar Lagrangian reads

=22 f Py P = 247

43 1/2 + = Fl
31 xy (l/f ¢>)

L forr{ostef

— M ]d3xy1/2[/\(3¢f — oD )2

+2¢By — 78 )] +— dxy'Poip,.

12P%a
(49)

As in the vector sector, some constraints appear, and,
because of definition (48) which involves a time derivative,
we have to use the Ostrogradski method [24] through the
definition 77, = dL/ al — ir,. The constraints are

¢ = Py; by = 7; b3 = 7y;
(50)
¢7 = 7T<p; ¢9 = P/.u
and the Hamiltonian is
H= N|:HO + fd3xA¢7T¢ + fd3xAFWF
+ fd3xA(p7r¢} + APy (51)

where H, reads
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PP P, (A+1)P; o . ’p
Hy=——2+—+———— | @xy"2[AGy — £ )2 + 263y — £ )]+ == | &
0 4aV a3,\ 2a3’\V f XYy [ ( lﬁ { ,,) ¢( lﬁ g ,,)] 2d2V )C(i)’iTl/,
2

1 [d%m’;(ﬁﬁ a” /D030 g — F) -4 /d3x'yl/2(l Tyt L '>2

a JoLJ(X + DPy ’ 2a7y'2 70 30

A . oa .

NETT f Exy oo’ ih f Exy' 2y = 24)p . (52)

Conservation in time of the primary constraints (50)
leads to the secondary constraints

by = %,

¢s = é LFens % l/z(zazl;/zw + ;F’i,i)j’j’

be — _% 23y — ) — ZZPV 7, (53)
2a l/2¢l,’

by = 1 a4 a= (/2030 7, +£71/2¢,ii'

a JolJ+ DPy 6/%a

Neglecting third order terms, conservations in time of ¢,
and ¢4 are identically satisfied, whereas conservation of
¢s and ¢pg determines the Lagrange multipliers Ay and

|

($a(0) b5 = = 9200 = X,
VX

— 12 ’)/1/25(x—x/)‘i’l-,

{¢7(x), ¢8(x/)} = 612a

12

(Bo(0) BN} = 515 7250x = )Y = o my (W (),

JA+ 1P .
( )Pr a= G 25 — xyi . —

{¢6(x), ds(x)} =

BNGN
Defining
7 1 (A + 1)Py/6l
¢ 6= ¢6 + E¢2 \/T\)/__T_\/_ —(1/2)(1+31) ¢7,
(58)

one can prove that ¢ is a first class constraint: it has zero
Poisson brackets with all other constraints up to third order.
We are then left with the four second class constraints, ¢,,
&5, b7, and ¢g. Hence, from the 10 degrees of freedom of
phase space corresponding to the variables ¢, ¢, F, ¢, and
&, we have to extract four from the second class constraints

'The explicit value of A, is not important for what follows.

{
A,. The Lagrange multiplier A reads’

’pP,
alp = — oV 54)
As Ap = F/N, then
a . 2a
NF_l’lf_d)_ﬁF’ (55)

which, when expressed in terms of the gauge invariant
Bardeen potentials, yields

o=, (56)

a well-known result.
The Poisson brackets among the constraints read

(57)

l

46, /V(A + 1)P;

(1- 3)\)61_(3/2)(1-'-3)‘)7T¢(X)7T{(x/).

{

and 2 X 2 = 4 from the two first class constraints ¢¢ and
@3, leaving 2 degrees of freedom in phase space, as ex-
pected for this problem.

In order to eliminate the second class constraints, we
have to define the Dirac brackets associated with them. The
Dirac brackets among the variables of phase space which
are not canonical are (excepting the ones involving F and
7, which are not relevant)

V61/Va~1/21-31)
olx
VA + 1)Ppy'/2

(P oI = 5_(1 = 30)p(). (59)

{076 (), ()P = =
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Defining the quantities

o = a2y
T = — VAJA+ 1P, Y123y — i) (60)
e VOV o
B 3VAJA+ 1Py
Tye) = Ty — ==Y ' @)
V6IV

we obtain that the Dirac brackets for these quantities are
canonical. The Hamiltonian in terms of these new variables
then reads

H = NH() - Nfd3x¢¢6 + /d3XA¢7T¢ (61)
where H,, is given by

2P2 P, 3P

_ PP Pp 3P elc) A
H, 4aV * a3 + a’? ,[d ! 71/2 122773
' 3AA + 1Py
» f Py o e~ g

P2 VA B+ Py
Y ¢(c) 2 V2 &YV

f PxeoTye) + 15 3lz dExy Pyt (62)

and ¢4 by (we omitted the bars)

Vol J(A + 1)PT 2P,

b = VA o) = S22y Tt
_3JAIPJ (A + DPr | L2
2:/6a*V3/? v TR
(63)

From the second class constraints we obtain the identity

12 lF,i.:ilz\/iw/(A‘f‘l)PT
2612’)/1/2 302 V6IV

~6/20+2) g,
(64)
which in terms of the new canonical variables reads

12

W ¢(C) + §F’l,i = O (65)

We will need this equation later.

PHYSICAL REVIEW D 76, 023506 (2007)

We have shown that there are 2 degrees of freedom in the
perturbative sector. Hence it should be possible to find a
variable which renders the perturbed Hamiltonian to the
simple form

H= fd* |:a1(t) Y (v + a0 )}
(66)

where a (1), a, (), and a;(r) depend on the background
functions. This variable should have weakly vanishing
Poisson brackets with the first order first class constraints
¢ =~ 0 and 7,4 =~ 0 appearing in Eq. (61), generators of
gauge transformations, in order to be gauge invariant. The
unique combination, as it can be easily verified (apart an
overall background function), of the configuration space
variables ¢ (), ¢, and ¢ which satisfies this requirement is

a1/26A-1)
V= (¢ T

2{,/()\ + )PV 2_3A¢>
NG ’

IP,NA
(67)

which is just the Mukhanov-Sasaki variable. In order to
obtain this new variable, one has to perform a new canoni-
cal transformation generated by

» . 1
F,=TP; +aP, + fd3 [\/_6.161 /2030 a7

*/_— VAF DPr M

+ i
T 3V
12
Yo
Ty “%} (68)
where « is given by
(A+1DP; (1-3M)P, _,_
= - Al N 4 g=@730), 69
“ 212P,a uy ¢ (69)

and 7 is the canonical momentum conjugate to v. The term
proportional to « in Eq. (68) as well as its specific form
given by Eq. (69) are made in order to eliminate a term
proportional to v7r in the Hamiltonian. The new H,, reads
(the explicit canonical transformations are given in
Appendix B)
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12P2 3 2 - o[(A + )P IA[(A + 1)P;]P
= — - 24 T a—(1+64) _ T T —(1+64)
Ho=— gyt an fd SnT fd Y J{ 2P2 2P2
( 4+ 18) — 18A2)Z4P2 12(1 + 3/\2)PTa7(2+3A) Py
64a’V? 16V
2\/—\/_\/ (A+ DPy a1/2(1-32) d3x71/2v¢,i - @ 312\/ (A + I)PTa—(l/Z)(5+3A) Bxvmr
lz i \/V 4
i+ [ dxy 18[(A + l)PT]3Va(279A) CI8[(A + 1)PT]2PTVa(2,9A) N (=2 +9A — 9A3)[(A + l)PT]aﬂA
I*PiA 1Pt SAV
3l + DPP L0604 33+ 2A + 3AH)[(A + 1)P]Pr a0 o172,
*PiA 2P A
[( 2+30)J(A +1 Capsan OV + DPrPr L0 gA)}
VAV PPoVA
N [ 18[(A + 1)P; P2V L7153 4 1SA[(A + VP P2PV L7011
PP3\/A PP}V
L oA IEPNAF DPr _gaeny , LA+ DPIP? 10y
8V3/24/x VAP,
33 +21+3X)/(x F 1)PTPT ~aon Jyzy 4[4 2(A + l)PTVa2—3). Y2y
2J2VP, 3P I*P? i
+
+ 3(A I)PTa—(1+3)t)7T¢l}. (70)
P,

This canonical transformation applied to ¢4 shows that v is a gauge invariant quantity. The same is not true for its
momentum 77, which has a nonzero Poisson bracket with the first class constraint ¢¢. In order to obtain a gauge invariant
momentum 77, we must make a redefinition of 7 to a gauge invariant 77, which reads

= _[6VVIA + )P,
[ PP2/A

which induces a new canonical transformation generated by

aB3/20-32) _

6/ VI(A + 1)PP/? 43/20-32) _

=aP, + d3x{ i +vﬁ'+[
F [ ¢¢ lzpz\/_

(L3N +DPr 55,

(1 +30)JA T DP -
2\)/';\/7 ) T (/20 3)‘)},1/2% (71)

(1 +3M0)/(A+ )Py 41/20- u)} V24

N [_ 6V[(A + D)Pr]? JEREETIN

*PjAA 212P, A

Aiming at eliminating a term in v? proportional to Py in
the final form of the Hamiltonian, we perform the last
canonical transformation

Fi=aP, +— fdgxwr -4 fdzxyl/sz (73)

After these two canonical transformations, the constraint
¢ then reads

2P,

o= "oy i

2f f
} Vg «,m// } (72)
3l
[ 2
and as — éafg, is not weakly zero, we can redefine the

constraint ¢ to be
b6 = Ty (75)

This constraint, in the Dirac quantization scheme, will
imply that the wave functional will not depend on ¢, and
the second class constraint (65) turns out to be the usual
relation between ¢ and v from Ref. [1], Eq. (12.8), as we
will see later on. The new H,, is given by
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Hy=H) + HY + f BAFV e + FOHD]

RN
4aV 2 24

N VAR + 1Py
{ 2w

~(3/2)(1+ Ny, +

PHYSICAL REVIEW D 76, 023506 (2007)

2
fd3 77/ +— fd3xy1/2v v;
Y
3A+1DPy _

6\/— V(A + l)PT

(0) 3 9(A + DPr al=3* 1/2 —(1/2)(1+3X)
+ H, fd x{ 12P2 lzPZ\/_ Y
n |:18[(/\ + 1)PT]3/2\/_ LOD0-30) 4 9(/\ 1) ()\ + I)PT a(1/2)(13,\):| 12 v + lﬁlﬂl
PP 2JVAP, P
9(1 + 2)[(A + 1P IAA — 12
+ [ 22 Lal=34 + T };2}, (76)

where H(O) and H(z) are the zeroth and second order
Hamlltonlan constralnts and FV and F@ are first and
second order functions which can be read from Eq. (76).

We now make the redefinitions of N and ¢ as N =

1 + [d*xF?), which would again just imply a different
irrelevant time gauge choice with terms beyond first order,
and & =N(—212—fg/¢> + F1). From the inverse of the
transformations (60) and (73), and definition (48), <Z~> is
given by

302 0.
2a2V¢ “-Na(A + De <N§+B>. 77

As ¢ is, through the equations of motion, equal to i, we
obtain, imposing N = a, the constraint equation (10.39) of
Ref. [1].

Inserting expression (76) into Eq. (61), and the above
redefinitions, we obtain, omitting the tilde,

H=NH + H?) + AyPy + [d3x¢¢6
+ fd3XA¢W¢, (78)

with

+ — (79)
and

dxy' vt (80)

2
(2>:_fd3 7T

Now we are left with two first class constraints (in fact
one plus co? constraints): one with the homogeneous lapse

[
function N as its associated Lagrange multiplier, which in
the quantization procedure will lead to the Wheeler-
DeWitt equation, and the other oo® constraints with ¢ (x’)
as their Lagrange multiplier, which is nothing but the
inhomogeneous lapse function [see definition (3)], which,
as anticipated, has been tremendously simplified to imply a
simple consequence when quantized—the wave functional
does not depend on . The supermomentum constraint is
automatically satisfied because the v variable is gauge
invariant.

The connection between v = av (the Mukhanov-Sasaki
variable) and @ can be obtained from Eq. (65) which, after
implementing the canonical transformations (68) and (72),
reads (the bars are omitted)

2 2 ;
242 lyl/z * 3213‘/ <¢ * ;P;F> i
3VVI(A + DP, P2
[ PiVA
1+ 30/ + P2
T aaw

L VAF DPrVV I)PT\/_
P \/_’)/1/2

Using that P, = — 21‘\/’;2‘;,

7(1/2)(1 +9A)

—3/2(1+/\):|U

=(1/2(1+30) = — (). (81)

we can identify the quantity

Eq. (56), is equal to ®d. After some algebraic manipula-
tions, we obtain

314P, o 4 3VATDP;
o2 Ty TOh T
4a’Vy 22V

2
X a-tmn[ T [ (PP 30D
Y72 2aV P,

+0@3)=0. (82)
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Using again that P, = — V44 and that 7 = y'/?9, H, =~
0, 7y = 0, and choosing the gauge N = a (conformal

time), we obtain

i — — 32/(A + )Py LAY 3)
! 2NV a

Equation (83) coincides with Eq. (12.8) of Ref. [1]
relating v and ® when the classical equations of motion
are used.

V. DIRAC QUANTIZATION

In this section we will focus only on the quantization of
scalar perturbations. Vector perturbations are trivial and
the quantization of tensor perturbations was done in
Ref. [19].

A. The functional Schrodinger equation

In the Dirac quantization procedure, the first class

constraints must annihilate the wave functional
XIN, a, (x1), y(x), v(x%), T], yielding
0 1)
—y = 0’ — Y = O, — XY = O, Hy=0.
IN X 5 X 5 X X
(84)

The first three equations impose that the wave functional
does not depend on N, ¢, and i: as mentioned above, N
and ¢ are, respectively, the homogeneous and inhomoge-
neous parts of the total lapse function, which are just
Lagrange multipliers of constraints, and ¢ has been sub-
stituted by wv(x’), the unique degree of freedom of scalar
perturbations, as expected.

As Py appears linearly in H, and making the gauge
choice N = a**, one can interpret the 7 variable as a
time parameter. Hence, the equation

Hy=0 (85)

assumes the Schrodinger form

ad 1 d ad
=y = _),06A=-1/2_" | ,Gr-1)/2_~_
LaTX 4{a da [a aa}})(

3A—1 52 3A+1 ) '
— [a 5 fd%cm— a > [d3xv”v,ii|/\/,

(86)

where we have chosen the factor ordering in a in order to
yield a covariant Schrodinger equation under field redefi-
nitions, and V and / have been absorbed in redefinitions of
the fields.
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B. Further developments using the Bohm-de Broglie
interpretation

If one makes the ansatz
xla, v, T1= x(a T)xplv, T] (87

where x(g)(a, T) satisfies the equation

d 1 _ d _ d
LaiTX(O)(a, T) = 4{a(3)l 1)/2[61(3/\ /2 M”X(o)(a: T),

da
(83)

then we obtain for y(;)(a, v, T) the equation

9 a(S/\—l) 3 52
LﬁX(Z)(ar v, T)=— > fd Xm)((z)(a, v, T)

AgBAD _
+ — fd3xv”v,i,\/(2)(a, v, T).

(89)

Solutions of the zeroth order equation (88) are known
[14,16]. If one uses the ontological Bohm-de Broglie in-
terpretation of quantum mechanics in order to obtain the
Bohmian trajectories a(T) from Eq. (88), this a(T) can be
viewed as a given function of time in the second equation
(88). Going to conformal time dn = a**~'dT, and per-
forming the unitary transformation

U= e{b[fd3x71/2a'v/(2¢z)]}e*{L[fd3x(v77+77v)/21n(a)]} (90)

the Schrodinger functional equation for the perturbations is
transformed to

P , 2 ;
jxelv] (LA
an 260 2
a//
- gzﬂ)m[u 7l 1)

where we have gone to the new quantum variable v = av,
the Mukhanov-Sasaki variable defined in Ref. [1], after
performing transformation (90), and we have omitted the
bars.

The corresponding time evolution equation for the op-
erator v in the Heisenberg picture is given by

"

V=i - Ly =0, (92)
’ a

where a prime means derivative with respect to conformal
time. In terms of the normal modes vy, the above equation
reads
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Cl”
vy + <)\k2 - ;)vk =0. (93)

These equations have the same form as the equations for
scalar perturbations obtained in Ref. [1] (for one single
fluid, the pump function z”/z obtained in [1] is exactly
equal to a’’/a obtained here, if we make use of the back-
ground equations). The difference is that the function a(7)
is no longer a classical solution of the background equa-
tions but a quantum Bohmian trajectory of the quantized
background, which may lead to different power spectra.

VI. CONCLUSION

In this paper we have managed to obtain simple
Hamiltonians for scalar perturbations when the matter
content is described by a perfect fluid, without recurring
to the background classical equations. Performing canoni-
cal transformations and redefining the homogeneous lapse
functions with terms which do not alter the linear pertur-
bation equations, the constraint connected to the inhomo-
geneous part of the lapse function is greatly simplified
implying that the momentum canonically conjugate to
the scalar perturbation ¢ is weakly zero. The Hamil-
tonian constraint is also greatly simplified when written
in terms of a new variable which is exactly equal to the
usual Mukhanov-Sasaki variable [1].

This simplified Hamiltonian can now be used in the
Dirac quantization procedure not only to quantize the
perturbations but also the background, yielding a
Wheeler-DeWitt equation much simpler to handle than
the one of Ref. [5]. In the case of perfect fluids, where a
preferred time variable appears and the Wheeler-DeWitt
equation can be put in a Schrodinger form, and using the
Bohm-de Broglie interpretation of quantum mechanics to
perform a last unitary transformation, one obtains an equa-
tion for the modes which has the same form as in Ref. [1],
where the pump field is obtained from a scale factor which
now takes into account the quantum effects, the quantum
Bohmian trajectory of the background.

In future publications, we will apply these results to
specific models, and evaluate the power spectrum of scalar
perturbations which arise on them in order to compare,
when taken together with the results of Ref. [20], with
observations. One application of our results is already
published: see Ref [25].

The case of a scalar field was also calculated and the
result shown in Appendix A. It is in accordance with the
result previously obtained in Ref. [21], obtained through a
different method. The further developments we have im-
plemented in Sec. V for perfect fluids are much more
involved in the case of scalar fields. First, the simplified
Hamiltonian in the case of a scalar field [see Eq. (A40)
below and Ref. [21]], although being a substantial im-
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provement over the one obtained in [5], still contains
coupling terms involving nontrivial powers of the canoni-
cal background momenta and the perturbation degrees of
freedom, which renders the total Wheeler-DeWitt equation
of the system (perturbations plus background) much more
difficult to handle. Second, there is no preferred gauge time
choice as in the perfect fluid case. Finally, the Bohmian
trajectories obtained from the minisuperspace background
quantum solutions, if they are still applicable when the
perturbations are also considered, do not have an explicit
form (see Ref. [15]), which imposes further technical
difficulties. Hence, the calculation of scalar perturbations
for the scalar field case when the background is also
quantized demands much more work. This problem will
be addressed in our future publications.
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APPENDIX A: THE SCALAR FIELD

In this appendix we implement the same simplifications
we have done for hydrodynamical matter for the case of a
scalar field.

The scalar field Lagrangian reads

L, =3¢..¢" —3U(p). (AD)
We write its perturbation as
¢ =@t de, (A2)

where ¢ is the homogeneous scalar field depending only
on time. Substituting (A2) in (A1) we obtain

+ 2;;32432 - %A"A,- - %Msb
- %A"quu + #quz - 2—22590"5%
B éllUwqo&@z' (A3)

The total Lagrangian including the gravitational sector
reads
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L —_ aaV NKaV ¢02 3y Na3VU Na

1 1 .. g
fd3xy1/2|:A’|JA[ ]~ Zefl €k NA €l —e’fljeiklk + ¢|i6’f|]

EN TP 2N > VY2 5
- 56'16’ — el +euel + K<4€ —€le;—ep + A'A — 3¢ )} 2412N /‘pw‘/zéu&u
. adz 3 i 3 y
T 248N f‘px”]/zez TN fd3x71/2(_9¢2 ~3ep — €+ 3414, + Ee’e,»j)

2aa i [T a’a 3. 1/2( Cij. 1. : 3. 1/2 40
0 e G e e R G e D R Ll

1 . Nd'U,
Cl QDO d3 l/2<¢+§6>6¢+a2¢0fd3x71/25¢A1|i_ a2 fd3x71/2<¢__ >5¢

N
, 1 1 Na*U 1 1
+—¢O a /d3x71/2<3¢2+eqS—A’Al-—Ee”e +1€> 4 fd3 1/2<¢2+6¢ AlA; +2 ’/e,j 462>
Na 82 S¢S, 1
fd3 1/2< 5 UW8¢2>. (A4)
Its Hamiltonian is given by
P2 KaV , P,  d’VU  I*P? I*P; I*P2
H=NIl— a _ + L + a d3 1/2 2 4 d3 1/2 _ d3 1/2A1A-
{ dav P 228V 2 8aV? f WG gy | Py e mgys |

2 2

32aV2

512P‘2l 3 1/2 i
+48aV2 fd xyV2ele; -

(N P 1 P ,-
o L G e B e~ K CRe UL E

612 a3 2 PP | . PP
L [ ) L L SR (ol Bxy'PAT Al — — | PxmAl + =2 | Pxwd
472 5 g li " 2y

P, : P .
3. 1/2 2 3.01/2 a 3o /2 A i
fd xyl/2e +6V ]d xy! AL b + 7, [d xy /A€

pE IVVER Y2 242y
21°P . 1 2 1 . 1 .. U
+ a2Va /‘d3x77’fe,-j + 57 fd3x—y172 ~ P a’gxy'/z[A’“A[ i~ Ze”"‘e,ﬂk + Eeljljeiklk + ppie’); - §6|i611|j

li 4 1 |i 1 i 2 aSU 3xyl/2
— @€ —66|+K<46—€j6 —E¢+AA_3¢>} dexy <¢__ >6¢

aU
4

P
+ 2 oy fd3xy1/2eA’ } (AS)

Performing the canonical transformation generated by

1 1 3 , 1
d3x71/2<¢2 +ep —AA + = 5 €le;; — Zez> + % fd3x'yl/2<—2 S¢lise) + §U¢¢5¢2>
' a

~ - aP, 1
F=aP,+ ¢\P, — ]d3x(gz’>7r¢ + Ayl + &+ Spm,) — oy d%xy1/2< e, — §€2>
P, I\
-2 f d*xym(d) §e>5¢ (AG)
which are
a 1 N P 1
=g+ 3.~ 1/2( zij _ - = — _ "a 3.4, 1/2( zij _ - =
a=d B fdxy <ee 26 , P,=P, 1zvfdx'y €VE 26 ,
ot (B2 d+Le\sa _ s _Pe inss A7
®o goo—i—v d>xy ¢+2e 5, Ty =Ty =Y 5@, (A7)
a 1 p P -1
ij — &ij a  A/2( zij _ Zzaij) P A1/28 2A0) N A V) 4+ _g
m' =i Y (6 S €Y ) w? opyY, Mo =T =Y <¢ 26>,
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yields the new Hamiltonian

P2 KaV P2  &VU IPP? 12p2 12P2 .
H=NIl— a + [%4 + + a d3 1/2 42 + a d3 1/2 _ d3 1/2A1A~
{ 40V 28V 2 8aV? f Wyt ggn | dxy el m gy | vy ’

+ é [d3x‘yl/2Al|i¢ + ﬁ fd3x71/2Ai€l]|j — 3‘/;/2 fd3x71/2(3¢2 +ed — AA,) + 2_a fd3x7Td)
312Pa 3 ng 31 ; 3 1177- 312 2 N
+ Py jdx75¢+—]d*xy/5¢A|i /d 1/2 dx—r 7 412fdxy/A|Aj|
1 PrmAi — 912P2 Pyl _3z2PaP¢, P25 + e ¢
a XA, 4a 3V2 ¢ 20272 xy ' Fpde + — 1/2

T dexvl/z[A"’A[ i~ %fﬂ €ijlk ; € T B’ %ﬂ el — e + %6“%
+ K(—%E’JG —€p +AA; -3¢ )} +a’U /d3xy1/2¢8go -— /d3xy1/2(¢2 +ep — AlA)
£ fd3xyl/2<—5g0|i5<p luos 2)} (A8)
2 2 li ™5 Yee 2
Going back to its corresponding Lagrangian, and redefining N as
N = N[l + % fd3x71/2(e¢ + $2 — A"Al-)} (A9)

we obtain

aaV NKaV 9002 v NagVU_i_Na

1 . a . .. 1 .. .
L=-7y 1 N 3 o deW]/Z[A'l’A[I 1 g€ et Al T 5l duel;
1 j li 4 1 li 1 i a’ 3o 1/2 2i) - a 3..1/22:2
~ €€’y — i€ Ze“e + K( S €€ + 2ep — 2A'A; >} 24BN /d Xy C€VE — oy fd xy'/“€é
ad® 3. 1/2 42 2aa 3.1/2 i 1 ij a*a 3. 1/2 4 a’ 3 1/2: 00
~ N dxy' = — 3 d’xy <¢A 2A-e |j> T 3PN d’xy''“pé — o7 d°xy'' €A I
+ a]\gloo [d3 '/2<q5 + §é>6¢ + a2¢0[d3x71/25¢Ai|i - Nda'U, [d3x'y dxy'2p?
Na3 d¢? 5<p|i5g0|- 1
+ — d3x’yl/2<F_Tl_§U¢‘p5¢2>‘ (Al())
{
Splitting as before the perturbations into their tensor, The vector part reads

vector, and scalar parts, Na a>

LY) = o fd3x,yl/2Si|jS[i|j] — o /dax,yl/zsiljpilj
Ai = B|l + Si’

61] == Z(ﬂ’yu - 2E|l|] —F

ilj

(A11) a
+
i 1212N

612N fdb’x,yl/ZFt _ jd% 1/2st

=0, wi,=0 (Al2) (A13)
Using the gauge invariant quantity

—F|+W

s a’k iy
]d3x71/2F’|fF,-|j v /d3x71/2SiF’

with

S =F, =0, Wijlj

the Lagrangian also splits into tensor, vector, and scalar V.=§ — a
1

. i ——F, (Al4)
parts. The tensor part was already treated in Ref. [19]. N
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this Lagrangian simplifies to Conservation of the constraint 7%, = 0 leads to the
secondary constraint
— f dPxy 2V = 2KVIV). (A15) N
6l LVl + KV, =0 (A18)
Its associated Hamiltonian reads whose conservation fixes the Lagrange multiplier Af,

N | which means that both constraints are second class.
HY) = _‘21 f 43 xyl/zv,»(— yili G+ KV,-> + f dBxA, i, Defining the associated Dirac brackets, they become strong
6l 2 ! equalities, yielding the well-known result for a universe

(A16)  filled only with a scalar field:

where we have the constraint Vi =0. (A19)

my =~ 0. (AI7) In the scalar sector we have

L0 =28 [y P2, 40,0 + K—60? + 1200 = o [y =5 d3xyl/2¢2
61> ! ! I’N >N

2424
_ad Bxy' 2 pis + 4% Bxy 2 (p + 346 — Na’U, BPxy' Ppse + L — 2% dPxy'2p?
BN N 2N
Na? 1 1 . 1 2a® a 312 ¢ I N
| Py 58> — 58080, — S U,, 80| — Lo -2 N6p—~—K(B-=E
f Xy 2007 T 509700 — 5 Uppoe Ve g+ ¢ op o N
X (B - %E) . (A20)

When constructing the Hamiltonian, we obtain the primary constraints (here again we define F = B — aE/N)

3.
a @g

~ Y260 =0, ¢y =7 =0, (A21)

¢ =Py =0, by =7y —

The Hamiltonian reads

P
H = NH, + AyPy + [d3xAF7TF + fd3x/\¢(77¢ — 7‘p’yl/25g0> (A22)

where H,, is given by

2 p2 P2 3 2 P2 3Z2P
HO:_lPa+ ¢ _KaV+a VU+lPa [d3¢77¢_ ¢ fd3x71/2¢2+ [d36¢>77¢,

4aV  2a*V P 2 2a’V 2a%V? 2a%V
a3 2 1 . \2 312P,P

3...,1/2 X _ a” ¢ 3 3...,1/2
7 [d Xy (20371/2 my + —3aFl'i> + < D2V +a U¢> [d xy'*dde

2
3l Exy' Lyl — 2¢"; + K(— 3¢2+6¢¢>]—ﬁ f d*xy'PFF1, +— f d'x 172

a . 92P:  a*U,
+ = | Pxy'28¢i8p,; + (-5 + dBxy' 2592 A2
2[ xy /“o¢tdp < 177? ) )/ xy /“o¢”. (A23)

Performing the canonical transformation

P

. 1 P . . .
90 =&~y [d3xvl/2¢5¢, Ty = dry + %71/25% 7, =, +—£y'?¢ (A24)

generated by

P g
F=1I- 7“’ /d3xy1/2¢8g0, (A25)
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where I represents the identity transformation, the new H reads

H = NHO + ANPN + deXAFWF + fd3XA¢7T¢,

where

2P2 P2 KaV a3VU 12P
Hy=——2+_—%2 — + d? i3

0T T4av 2V 2 f ¢y

_3PPP,

< 2a%V?

;llz fd3x71/2FF’.

912P%P 3U¢>€0 3 1/2
+<_4—a3V2+ )fd xy'28¢2.

Conservation of the primary constraints (A21) leads to
the secondary constraints

HO ~ O’ (A28)
1 2a 2aK
b3 = 3ot gE? PP SE Y 0 (429)
1P, 3PP,P, a’U
d)6 = _2a2V 7T¢ < ZaZquD B 2 ¢>Fyl/26§0
Za 6LZK P
3[2 1/2¢1 1/2¢ — —V7T = 0. (A30)

Conservation of H is identically satisfied. Conservation
of ¢¢ leads to a term proportional to H up to second order
terms. Finally, ¢5 fixes the Lagrange multiplier Ag:
rr,

aVv

Substituting F = {F, H} = Ay into the above equation, we
get for the gauge invariant Bardeen potentials ® and ¥

=1 (A32)

GAF—¢

(A31)

Calculating the non-null Poisson brackets among the
constraints yields

. 2aK
(s dsh = — 5572800 = 2) = Ty 280 — ),
2 2K
(65,6} = 5728 =21, = S5y 28— ).
(A33)

The ¢3 and ¢5 constraints are second class, while

- 1

b6 =" s +E¢3 (A34)

is a first class constraint. Defining the Dirac brackets, the

(A26)

3 a’ 30172 P Lo\
3V ]d oy — fd Xy <2a3yl/2 Ty +3—aF' ,i>

Uy ) f Py pog — L f Py 2Ly — 240, + K(—32 + 6]

P 1 Ty :
V[d3x¢77 to 3fd3 —% Efd3xy1/25¢vt5¢,,.

(A27)

[

second class constraints can be substituted in the
Hamiltonian.

Making K = 0, and performing the canonical transfor-
mations generated by

- P B 3 - 2}3¢
Fi=aP, + ¢yP, +fd x[aﬂ'éga + z/fwl/,—ﬁglm'

+ %'yl/zﬁgoz} (A35)
where
3pP2 PP
a=—¢ L e (A36)
aP,v. 2V
and
fz = ai’a + gDOﬁ(p + ]d3x{d/ﬁ'¢ + v
2P, a4V~U‘P B 6P~‘p3 PPy
aVv P, Pa*P2v
. ( 2P _a'VU,P, 6P, ) /20
PaP,v  I'P}?2 PPV
2a’V .
+ oy Pyt L, A37
3Z4Pa7 by } (A37)
and making a redefinition of N, we finally obtain
b=, (A38)
and
P 3P2
H=NHy+ | &x[—==%¢ + ¢
0 j x( 22v? .y
3P,
L >¢6 b AyPy + j Prhys  (A39)
where
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zpz p2 avu 1 ar?
Hy=——S+4+ 2+ +— | dPx—
0 4aV 24’V 2 2a x'yl/z

2 p2 2
. zi [d%cyl/zvviv,i s <151 Py, aUy, 3PUa
a

4a°V? 4 8
2 4
oUPL P2 21PY  3P,U,
4aP?  16a°V?  4a’V?P2 P,

(A40)
J

X fd3x‘y1/2v2.
a= d[l

PP2\/A
1 da

Bxy!/? 16(1/2(1=31),,
¥ Pf xy'2( ol

a

P,=P,—
2./61

(1- 3)\)&7(3/2)(17).) [d3x<\/gl€l(l/2)(l3)‘)

PHYSICAL REVIEW D 76, 023506 (2007)

Using the background classical equations one can show
that the coefficient of v? can be written as z”/z as in [1].
Without their use, this is the simplest form the Hamiltonian
of scalar perturbations can have in scalar field models.

APPENDIX B: THE EXPLICIT CANONICAL
TRANSFORMATIONS

The explicit canonical transformations obtained from
the generators F;, F»,, and F5 of Sec. Ill are, respectively,

LA DPVY G1/20-3% / dExipr

2SO ]

1P NA
26X + )PV _ g
IP,NA )

30 = WAFDPIV 1y /(mw
P ,JA
Lda (5. l/2<\/gla(l/2)(l—3)«) _2/6J(A + PV TS ) (B1)
2 da lp VA
Toc) = M — a61a/D=30 172y, 2a+/6(2 i—/_l)PT\/— 2 3hy1/2
6l 1P
) = V613172030, — 2\/6\/()‘~+ I)PT\/deﬂx\lz
1P ,/A
7T,//(C) = ir 2 ()\ + I)PT\/— ”’(3/2)(1 /\)
PPAX
3/2 2 _
Y &{1 N 12JV[(A + 1)Py] 20/261-9) /d%ymv& N [_ 18V[(A :i- 1)P;] 260 4 (1 3)11()\1)PT&1_3A}
l2P3\/_ I*PiA 212P2\
fd3x71/2¢2 3P fd3x71/2l//¢ }
= p o — 3’\)\/—[(’\ + DPT]S/Z G1/20-94) _ 9’\2)\/(’\ t1 —(1/2)(1+3)) 3..1/2~ 7
pP,=P,+ TN NN d’xy' oY
e 18V(1 —2A)[(A + 1) P72 e (2432 =9A)(A + 1Py a0 [dey2ge
PP 2P\ Y

2a*V oo
t P fd3x71/zllf¢f”,,», (B2)
I°P,
SN |:6\/_[(A + ])PT]3/2 26203 _ (1 +3M0)(A+ )Py &(1/2)(1_3)‘):|71/21/~f,
PPA 2V
S — [6\/_[(A + )PP s6m0-30 _ AF3VVAFDPr ) w} .
PP2A VAV
L[ IVIO+ DR o (430 DRy Y L4V Ny
PP3A PP,A l4P v
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2
=q + d3 1/2 "’2’
4T AT v f e

The intermediary Hamiltonian between F, and F5 reads

(1]
(2]
(3]

(4]
(5]

(6]
(71

? n A
Y72 2a

2P
4aV

Pr
a3/\

0=

1
+— | &
2a *

2

+ Héo) /d%c{

JV
9+ 1)PTa

1=30,,1/2 2 4
2P Yy

fd3x'yl/2v’iv,i

N {_ﬂ 32J(x + DPr /6430, 4 SA+ DPy
P

a

6Vy[(A + 1Py L0/D0-30

2P2\/A
18[(A + 1)PT]3/2Wa(1/2)(179A) ~ 301 =30/ + DPr 1143
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LB,
Yo [ pyt2g2
4v f v

(B3)

(1 =30)PP;
av

a—(1+3).)¢}77¢

a7(2+3)\)v2

/g

2

u

PP3Jx

2J/V/AP,

atv
:|71/2UI/I + Z4P2 w'vb’l,i

N [_ 9(1 + 2)[(A + 1)PT]a7(H3A) N (2=9X+9A%)2

2P?

8Va?

(B4)

},1/21,2}.
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