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We revisit the problem of constraining steps in the inflationary potential with cosmological data. We
argue that a step in the inflationary potential produces qualitatively similar oscillations in the primordial
power spectrum, independently of the details of the inflationary model. We propose a phenomenological
description of these oscillations and constrain these features using a selection of cosmological data
including the baryonic peak data from the correlation function of luminous red galaxies in the Sloan
Digital Sky Survey. Our results show that degeneracies of the oscillation with standard cosmological
parameters are virtually nonexistent. The inclusion of new data severely tightens the constraints on the
parameter space of oscillation parameters with respect to older work. This confirms that extensions to the
simplest inflationary models can be successfully constrained using cosmological data.
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I. INTRODUCTION

Recent data from the Wilkinson Microwave Anisotropy
Probe (WMAP) [1–4] observations of the anisotropies of
the cosmic microwave background (CMB) are in excellent
agreement with the predictions of inflationary cosmology.
In its simplest implementation, inflation is driven by the
potential energy of a single scalar field slowly rolling down
the potential towards the real vacuum. Under the assump-
tion that the potential is sufficiently flat and smooth, the
resulting spectrum of density perturbations is almost scale
invariant and can be described with a power law. In the
context of this slow-roll paradigm, a number of authors
have used the WMAP data and various other complemen-
tary data sets to derive bounds on the inflationary parame-
ter space. These include constraints on specific inflationary
models [5–8], the Hubble dynamics during inflation
[9,10], or, in a more empirical fashion, the parameters
characterizing the primordial power spectrum [11–14].

In more general classes of inflationary models, however,
slow roll may be violated for a brief instant [15–18]. In
single-field inflation models, such an effect can be modeled
by introducing a feature such as a kink, bump, or step [19]
to the inflaton potential. A step, in particular, can be
regarded as an effective field theory description of a phase
transition in more realistic multifield models [20], which
may arise naturally in, e.g., supergravity- [21] or M theory-
inspired inflation models [22].

This interruption of slow roll will leave possibly detect-
able traces in the primordial power spectrum. Specifically,
wavelengths crossing the horizon during this fast-roll
phase will be affected [23,24], leading to a deviation
from the usual power-law behavior at these scales. Such
nonstandard power spectra have been brought forward to
explain the peculiar glitches in the temperature anisotro-
pies [25] as well as the observed low power at the largest
scales [26,27].

Steplike features in the inflaton potential will lead to a
burst of oscillations in the primordial power spectrum. A
particular realization of a step potential was confronted
with the data in Ref. [28] for fixed cosmological parame-
ters and more generally in Ref. [29].

In the present work, we extend the analysis of [29] in
several important aspects. First, we generalize our method
to spectra corresponding to a whole class of step-inflation
models with arbitrary (slow-roll) background inflaton po-
tentials. This allows us to derive constraints on parameters
characterizing the feature in a more model-independent
way. Second, we address the question of parameter degen-
eracies: could the presence of a feature bias our estimates
for the values and errors of the cosmological parameters,
such as the baryon or dark matter density, in any way?
Third, we consider new data sets: apart from CMB and
matter power spectrum data sets, we consider also the
measurements of the position of acoustic peak in the real
space two-point galaxy correlation function data (BAO)
from the luminous red galaxy (LRG) sample of the Sloan
Digital Sky Survey (SDSS) [30]. This data is, in principle,
especially well suited to constraining (or detecting) small
amplitude oscillations in the power spectrum which would
show up as a peak in the correlation function. However,
due to biasing and weakly nonlinear structure formation,
this data is difficult to interpret and we pay special atten-
tion to do it carefully.

The paper is organized as follows: In Sec. II, we briefly
remind the reader of the exact formalism of calculating the
power spectrum from a given inflaton potential and com-
pare it with the slow-roll approximation. In Sec. III, we
discuss the dynamics of the inflaton field rolling over a step
and introduce a generalized step model. Section IV is
dedicated to our analysis methods with an emphasis on
the determination of the likelihood for the BAO data set.
We present our results in Sec. V, and, finally, draw our
conclusions in Sec. VI.
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II. INFLATIONARY PERTURBATIONS

Let us start this section with a brief recapitulation of how
to calculate the primordial spectrum of curvature perturba-
tions PR, using the formalism of Stewart and Lyth [31].

In the following, we will set c � @ � 8�G � 1. We
consider the gauge invariant Mukhanov variable u
[32,33] given in terms of the curvature perturbation R:

 u � �zR: (1)

Here, z � a _�=H, where a is the scale factor,� the inflaton
field, H the Hubble parameter, and the dot represents a
derivative with respect to time t. The Fourier components
of u obey the equation

 u00k �
�
k2 �

z00

z

�
uk � 0; (2)

with a prime denoting a derivative with respect to confor-
mal time �.

Finally, we can define the primordial power spectrum of
curvature perturbations PR�k� via the two-point correla-
tion function

 hRk1
R�

k2
i �

2�2

k3 PR�k��
�3��k1 � k2�: (3)

Assuming Gaussianity and adiabaticity, this quantity con-
tains all the necessary information for a complete statistical
description of the fluctuations. It is related to uk and z via

 P R�k� �
k3

2�2

��������ukz
��������2
: (4)

A. Background equations of motion

In order to find a solution to Eq. (2), one needs to know
the behavior of the term z00=z. Its evolution is determined
by the dynamics of the Hubble parameter and the unper-
turbed inflaton field, governed by Friedmann’s equation

 H2 � 1
3�V �

1
2

_�2�; (5)

and the Klein-Gordon equation for �

 

��� 3H _��
dV
d�
� 0: (6)

For our purposes, it is convenient to introduce another time
parameter, the number of e-foldings, defined by N � lna.
In terms of N, Eqs. (2), (5), and (6) read

 H;N � �
1
2H�

2
;N; (7)

 �;NN �

�
H;N

H
� 3

�
�;N �

1

H2

dV
d�
� 0; (8)

 

uk;NN �
�
H;N

H
� 1

�
uk;N �

�
k2

e2�N�N0�H2

�
2� 4

H;N

H
�;NN

�;N

� 2
�
H;N

H

�
2
� 5

H;N

H
�

1

H2

d2V

d�2

��
uk � 0; (9)

with N0 determining the normalization of the scale factor.
This coupled system of differential equations can easily be
solved numerically, once a suitable set of initial conditions
has been chosen.

B. Initial conditions

Supposing that at a time Nsr the system has reached the
inflationary attractor solution

 

��� 3H _�; (10)

and is rolling slowly,

 

_� 2 � V���; (11)

the initial conditions for � and H will be given by

 ��Nsr� � �sr; (12)

 �;N�Nsr� � �
1

V��sr�

dV
d�

���������sr

; (13)

 H��sr� �

���������������
V��sr�

3

s
: (14)

The initial conditions for uk can be obtained by requiring
the late time solution of (2) to match the solution of a field
in the Bunch-Davies vacuum of de Sitter space [34], given
by

 uk��� �
e�ik������

2k
p

�
1�

i

k�

�
; (15)

at early times, well before the observationally relevant
scales leave the horizon. For k	 z00=z (or, equivalently,
k�	 1) this can be approximated by the free field solution
in flat space

 uk �
1�����
2k
p e�ik�: (16)

Fixing the irrelevant phase, we obtain the initial conditions
for a mode k

 uk��0� �
1�����
2k
p ; (17)

 u0k��0� � �i

���
k
2

s
(18)

at a time �0 satisfying k	 z00=zj�0
.
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C. Slow roll

Following Ref. [35], we define the Hubble slow-roll
parameters by

 n�H �
�Yn
i�1

�
�

d lnH�i�

d lna

��
1=n
� 2

�
�H�1��n�1H�n�1�

Hn

�
1=n

(19)

for n 
 1, with a superscript ‘‘(n)’’ denoting the nth de-
rivative with respect to �. In addition to that, we define
0�H � 2�H�1�=H�2. The first three parameters of the
Hubble slow-roll hierarchy read

 �H � 0�H � 2
�
H�1����
H���

�
2
� �

_H

H2 ; (20)

 �H � 1�H � 2
H�2����
H���

� �
��

_�H
; (21)

 �2
H � �

2�H�
2 � 4

H�1����H�3����

H2���
�

�
:::

H2 _�
� �2

H: (22)

Using these definitions it can be shown that the mode
equation (2) can be written as
 

u00k � �k
2 � 2a2H2�1� �H �

3
2�H � �

2
H � 2�H�H

� 1
2�

2
H �

1
2�

2
H��uk � 0: (23)

Note that this expression is exact: it does not assume the
slow-roll parameters to be small.

From a model-building point of view, where one regards
the Lagrangian (or the scalar potential) of the theory as the
fundamental quantity, the calculation of the Hubble slow-
roll parameters can be quite involved. In this sense it may
be more convenient to work with the potential slow-roll
parameters instead, which use derivatives of the potential
instead of derivatives of the Hubble parameter. The first
three potential slow-roll parameters are defined by

 � �
1

2

�
V�1�

V

�
2
; (24)

 � �
V�2�

V
; (25)

 �2 �
V�1�V�3�

V2 : (26)

If the attractor condition (Eq. (10)) is satisfied, the two are
approximately related via [35]

 �H � �� 4
3�

2 � 2
3���O�3�; (27)

 �H � �� �� 8
3�

2 � 1
3�

2 � 8
3���

1
3�

2 �O�3�; (28)

 �2
H � �2 � 3��� 3�2 �O�3�; (29)

up to corrections of third and higher orders. Expressed in
terms of the potential slow-roll parameters, z00=z is given
by

 

z00

z
� 2a2H2

�
1�

5

2
��

3

2
��

1

3
1
3�

2 �
1

6
���O�3�

�
:

(30)

It is commonly assumed that the first two slow-roll
parameters vary slowly with time (i.e., �2

�H� � 1). Then
it follows that, if one wants to sustain inflation for long
enough to solve the horizon and flatness problems, ��H� and
j��H�j will also have to be much smaller than unity. In this
(‘‘slow-roll’’) limit, we have z00=z  2a2H2, _H  0, and
a / exp�Ht�.

Let us now turn back to Eq. (2), which is basically the
equation of an oscillator with a time dependent mass term,
and discuss its solutions. The initial conditions imply that
for wave numbers with k=a	 H, i.e., with wavelengths
much smaller than the horizon, the solution is given by
Eq. (16) and uk describes a circular motion in the complex
plane. Because of the exponential growth of the scale
factor, the physical wavelengths will be blown up and leave
the horizon, eventually satisfying k=a� H. In this limit,
the growing solution for uk is given by

 uk / z: (31)

Hence, the spectrum PR will converge to a constant
value for super-Hubble modes, i.e., the perturbations
‘‘freeze in.’’ We can also conclude that the fate of a
perturbation with wavelength k is decided when k=a�H
and the spectrum will have its final shape imprinted on
horizon exit. It is not until much later, when the modes
reenter the horizon during radiation or matter domination,
that they will exhibit dynamical behavior again.

Generically, the power spectrum will not be scale inde-
pendent, with a scale dependence being induced by the
variation of, e.g., the potential energy and the Hubble
parameter as the inflaton field rolls down the potential. In
the slow-roll regime, however, the scale dependence is
rather weak and PR can be reasonably well approximated
by a power law:

 P R�k� ’ AS

�
k
k0

�
nS�1

; (32)

with the normalization AS given by

 AS ’
1

24�2

V
�

��������k0�aH
; (33)

and the spectral index

 nS ’ 1� 6�� 2�: (34)

Before we talk about relaxing some of the assumptions
that went into this analysis, let us quickly mention infla-
tionary tensor perturbations.

NEW CONSTRAINTS ON OSCILLATIONS IN THE . . . PHYSICAL REVIEW D 76, 023503 (2007)

023503-3



D. Tensor perturbations

Apart from the scalar perturbations described above,
inflation also generates tensor perturbations, with a spec-
trum given by

 P grav�k� �
k3

2�2

��������vka
��������2

(35)

and the mode equation

 v00k �
�
k2 �

a00

a

�
vk � 0: (36)

This equation is very similar to the scalar one. This
similarity can be readily seen if we express the ‘‘mass
term’’ a00=a in terms of the slow-roll parameters:

 

a00

a
� 2a2H2

�
1�

1

2
�H

�

’ 2a2H2

�
1�

1

2
��

2

3
�2 �

1

3
���O�3�

�
: (37)

Just like the scalar modes, tensor perturbations will also
freeze in at horizon exit. In the slow-roll case their spec-
trum is approximately

 P grav�k� ’ AT

�
k
k0

�
nT

; (38)

with the tensor spectral index

 nT ’ �2�; (39)

and normalization

 AT ’
2

3�2 V
��������k0�aH

: (40)

III. SLOW ROLL INTERRUPTED

The validity of the power-law parametrization of the
primordial spectra rests on the assumptions that the slow-
roll parameters are small and change slowly with time. Let
us relax the latter and allow � and � to change significantly
on a time scale �N & 1. This has the consequence that we
can also allow � and/or � to become of order unity mo-
mentarily, provided that at a later time, the system returns
to the slow-roll regime. We also assume here that the
system starts in a state where the slow-roll conditions are
fulfilled, in order to give it enough time to reach the infla-
tionary attractor solution.

This effect can be modeled by adding a local feature,
such as a step or a bump, to an otherwise flat inflaton
potential.

A. Chaotic inflation step model

Let us examine the consequences of such a feature using
as an example the same model potential as in [29]

 V��� �
1

2
m2�2

�
1� c tanh

�
�� b
d

��
: (41)

This potential describes standard m2�2 chaotic inflation
[36] with a step centered around � � b. The height of the
step is determined by c, its gradient by d. We do not want
inflation to be interrupted by the step, so we stipulate jcj �
1 to ensure that the potential energy will always dominate
over the kinetic one.

As pointed out above, the eventual spectrum crucially
depends on the dynamics of z00=z, which can easily be
deduced from the solution of Eqs. (7) and (8). For a typical
choice of parameters, we plot the numerical solution in
Fig. 1(a). Generically, we find that z00=�za2H2� has a maxi-
mum before the inflaton field reaches b, a minimum shortly
afterwards, and it will return to the asymptotic slow-roll
value of �2 after O�1� e-folding. Comparison with the
Hubble slow-roll parameters [Fig. 1(b)] shows that this
behavior is mainly caused by �H and �2

H, while �H remains
small. This is a consequence of the condition c� 1.
Beware that the potential slow-roll approximation
Eq. (30) will in general not work for this potential since
the contribution of higher derivative terms can be large.
The smallness of �H (and hence �) also implies that there
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z 
a2 H
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N
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-3

-2
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0

1
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ε H
,η

H
,ξ
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2

N

FIG. 1 (color online). Top: z00=z divided by a2H2 for m �
7:5� 10�6, b � 14, c � 10�3, and d � 2� 10�2 versus the
number of e-foldings. N is set to zero for � � b. It takes the
inflaton field roughly half an e-folding to roll over the step.
Bottom: Hubble slow-roll parameters at the step, �H (dotted line)
remains negligible throughout, while �H (solid line), and �2

H

(dashed line) violate the slow-roll conditions.
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will not be any sizable deviations from a power law for the
spectrum of tensor perturbations.

So, how will this particular behavior of z00=z influence
the solution for uk and eventually the spectrum compared
to a model with no step? It is obvious that modes with
k2 	 maxjz00=zj, i.e., modes that are well within the hori-
zon at the time of the step, will not be affected at all and uk
will remain in the oscillatory regime. For k2 & maxjz00=zj,
the maximum in z00=z will result in a boost of exponential
growth for uk, reverting to oscillations when z00=z goes
negative and eventually return to the growing solution. We
depict the motion of uk in the complex plane in Fig. 2.

When an oscillatory phase is preceded by a growing
phase, the initial circle will be distorted to an ellipse. As
the growth sets in again, the mode will be suppressed
or enhanced, depending on the phase of the oscillation,
which itself is k dependent. In the spectrum, this can be
observed as oscillations. This mechanism will be most

effective for modes that are just leaving the horizon, for
modes with k2 � maxjz00=zj the phase difference will be
negligible.

Hence, a localized feature in the potential will lead to a
localized ‘‘burst’’ of oscillations in the spectrum (see also
Ref. [37]), while large and small scales will remain un-
changed with respect to the spectra of the asymptotic
background models. This is shown in Figs. 3 and 4, where
we also illustrate the parameter dependence of the spectra.
In particular, the shape of the oscillations is determined
essentially by the choice of parameters c and d, whereas b
will determine the physical scale at which the feature
occurs. In Fig. 5, we plot some of the corresponding
inflaton potentials; it is evident that even a very small
step can have a large impact on the spectrum.

Note that the wavelengths affected by the feature are
those that are about to leave the horizon as the inflaton field
reaches the center of the step. In particular, also the fre-

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

R
e[

u k
]

Im[uk]

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

R
e[

u k
]

Im[uk]

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

R
e[

u k
]

Im[uk]

FIG. 2. These figures show the evolution of uk in the complex plane, where uk has been normalized to one in the oscillating limit.
The choice of initial conditions (17) and (18) ensures that the motion will be initially circular. The top left plot shows a mode that is not
affected by the feature, so that the circular oscillation goes straight into a growing motion. In the other two plots the circle gets
deformed by an intermittent phase of growth triggered by the peak of z

00

z , to be followed by another phase of elliptic oscillations (caused
by the dip of z00

z ) until finally the modes leave the horizon and start growing. Whether a mode is suppressed or enhanced by this
mechanism depends on the phase of the oscillation when the growth sets in. Growth along the semimajor axis will lead to an
enhancement (top right), whereas growth along the semiminor axis entails a suppression (bottom) with respect to the modes of the
corresponding featureless model.
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quency of the oscillations of the spectrum is proportional to
this scale.

What remains is to identify the horizon size at the step
with a physical scale today. This connection can be made if
one knows the total number of e-foldings N� of inflation
that took place after a known physical scale k� left the
horizon. Technically, we evolve the background equa-
tions (7) and (8) until the end of inflation Nend, (defined
by �a�Nend� � 0). The scale k� can then be determined in
units of aHj��b via

 k� $
a�Nend � N��H�Nend � N��

aHj��b
: (42)

As long as the spectrum of the c � 0 background model is
only mildly scale dependent, there will be a strong degen-
eracy between N� and b: shifting the feature in the poten-
tial will have the same effect as shifting the scale of k. In
the following we will therefore not treat N� as a free
parameter, but set N� � 50 for k� � 0:05 Mpc�1. If we
want the feature to affect scales that are within reach of
current observations, this will require b to lie in the interval
14 & b & 15. We depict the b dependence of the spectrum
in Fig. 6.

B. Model dependence

Having analyzed a specific example in the previous
subsection, let us now address the question of model

P
R

k/aH

 1e-09

 1e-08

 0.1  1  10  100

FIG. 4 (color online). Primordial power spectra for models
with m � 7:5� 10�6, b � 14:8, c � 1� 10�3 and different
values of the d parameter: d � 8� 10�2 (dot-dashed line), d �
2� 10�2 (thick line), and d � 5� 10�3 (dotted line).

V
(φ

)

φ

 6.1e-09

 6.2e-09

 14.75  14.8  14.85

FIG. 5 (color online). Inflaton potentials for models with m �
7:5� 10�6, b � 14:8. The thick line has (c � 1� 10�3, d �
2� 10�2), the dotted line (c � 5� 10�3, d � 2� 10�2), the
dot-dashed line (c � 1� 10�3, d � 5� 10�3), and the solid
line represents the stepless c � 0 model. The displayed range in
� corresponds to roughly one e-folding of inflation.

P
R

k [Mpc-1]

 1e-09

 1e-08

 0.001  0.01  0.1

FIG. 6 (color online). Primordial power spectrum versus
physical wave number for two models with m � 7:5� 10�6,
c � 1� 10�3, and d � 2� 10�2. The thick line corresponds to
b � 14:8, the dot-dashed line has b � 14:3.

P
R

k/aH

 1e-09

 1e-08

 0.1  1  10  100

FIG. 3 (color online). Primordial power spectra for models
with m � 7:5� 10�6, b � 14:8, d � 2� 10�2 and different
values of the c parameter: c � 0 (i.e., no step at all, solid
line), c � 2� 10�4 (dot-dashed line), c � 1� 10�3 (thick
line), and c � 5� 10�3 (dotted line). The wave number k is
given in units of aHj��b.

HAMANN, COVI, MELCHIORRI, AND SLOSAR PHYSICAL REVIEW D 76, 023503 (2007)

023503-6



dependence: Will we arrive at different conclusions if we
modify the background inflationary model (e.g., 	�4 in-
stead of m2�2) or the parametrization of the step?

We will argue that a more general potential

 V��� � V0 � f���S��� b� (43)

leads to a qualitatively similar spectrum as the potential
(41). Here, Vbg��� � V0 � f��� is the background poten-
tial, which is assumed to fulfil the slow-roll conditions with
f and V0 positive definite. The function S��� parametrizes
the step, and should monotonically asymptote to 1� c
(c� 1) for �	 b and �� b, respectively, with S�0� �
1.

As we have seen above, the derivatives of the potential
are crucial to determining the spectrum. In general, the
derivatives of V are given by

 V�n���� �
Xn
i�0

n
i

� �
f�i����S�n�i����: (44)

Far away from the step, the derivatives of S will be
negligible and the potential and its derivatives are approxi-
mately

 V��� ’ V0 � f����1� c� ’ Vbg���; (45)

 V�n���� ’ f�n�����1� c� ’ V�n�bg ���: (46)

Since the slow-roll conditions hold here, the spectrum will
be given by Eq. (32) with

 AS ’ A
bg
S

�
1� c

�
3f

V0 � f
� 2

�
�O�c2�

�
; (47)

 nS ’ n
bg
S � c

�
2V0

V0 � f
��bg � 6�bg�

�
�O�c2�: (48)

In the special case V0 � 0, we have exactly AS � Abg
S �1�

c� and nS � nbg
S . If V0 � 0, there are additional corrections

of order c to the normalization and also corrections to the
tilt, which are suppressed by c and the slow-roll parameters
of the background model. In both cases, one asymptoti-
cally recovers the spectrum of the background model in the
limit c� 1.

Near the step, however, the derivatives of V will have a
contribution from the derivatives of S. If the step is sharp
enough, the nth derivative of V will be dominated by the
nth derivative of S, since the other terms are suppressed
with factors of the order of the slow-roll parameters of the
background model, and we have

 

V�n����
V���

’
f���S�n����
V0 � f���

: (49)

For V0 � 0, the slow-roll parameters near the step (and
hence z00=z) will be independent of the background, result-
ing in a burst of oscillations similar to the one obtained

from potential (41). If V0 > 0, it is still possible to find a
step function that reproduces this phenomenon, simply by
rescaling the derivatives of S (most importantly, the second
and third derivatives), i.e., by making the step sharper with
respect to the V0 � 0 case.

Let us point out that in step models, oscillations of the
spectrum will be excited as long as z00=z has local extrema.
If S is chosen such that z00=�a2H2z� qualitatively shows a
behavior like the one depicted in Fig. 1(a), the resulting
superimposed oscillations of the spectrum will resemble
those shown in Figs. 3 and 4.

As an example, we illustrate in Fig. 7 the spectra of a
hybrid inflation type potential

 V��� � V0 �
1

2
m2�2

�
1� c tanh

�
�� b
d

��
; (50)

and another monomial potential with a different form of
the step function

 V��� � 	�4

�
1� c arctan

�
�� b
d

��
: (51)

Note that despite the difference in background models and
step functions, the maxima and minima of the oscillations
occur at the same wavelengths.

To alleviate the model dependence of the analysis when
confronting theory with experiment, we choose a phe-
nomenological approach and define the spectrum of a
generalized step model

 PR
gsm � PR

step

�
k
k0

�
nS�n

step
S
: (52)

2e-09

2.2e-09

2.4e-09

2.6e-09

2.8e-09

3e-09

3.2e-09

0.1 1 10 100

P
R

k/aH

FIG. 7 (color online). Primordial power spectra of a hybrid
inflation type step model (50) with V0 � 3:7� 10�14, m �
3:2� 10�8, b � 0:0125, c � 10�3, and d � 5� 10�5 (dashed
line), and of potential (51) with parameters 	 � 6� 10�14, b �
21, c � 5� 10�4, and d � 0:02 (dotted line). The hybrid in-
flation background model has nS > 1, suppressing large scale
fluctuations, while the 	�4 model has nS < 1 with more power
on large scales.
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Here, PR
step is the spectrum obtained from the potential

(41) and nstep
S � 0:96 is the spectral index of the 1

2m
2�2

model. The quantity nS then describes the overall effective
tilt of the spectrum. Spectra of this type will arise from
potentials of the form equation (43) if V0 � 0, and can
arise even for V0 > 0 if the step is sufficiently steep.

While the fine details of particular models may differ
slightly from this approximation, Eq. (52) will nevertheless
capture the broad features of a large class of background
models, since, as argued above, the shape of the burst of
oscillations is largely independent of the background
model and given solely by the unusual dynamics of z00=z,
triggered by the step function. Minor differences would
likely be washed out in the angular power spectrum of the
CMB anyway [38]. The asymptotic behavior of models
with V0 � 0 will be reproduced exactly; for V0 > 0 it will
be approximate, with errors of order c.

There is a catch however: in this analysis the parameters
b, c, and d will be bereaved of their meaning as parameters
of the potential. Instead, they should be interpreted as
phenomenological parameters which describe the spec-
trum. This does not preclude us from deriving meaningful
constraints, though. We argued that the shape of the modu-
lation of the spectrum is largely independent of the back-
ground, so similar modulations should be the consequence
of similar step dynamics. A useful quantity in this context
is the maximum value the slow-roll parameters �,�, and �2

can reach at the step. For the potential (41), we can
estimate �max, �max, and �2

max in terms of b, c, and d:

 �max ’ �bg �
c2

2d2 �
2c
bd
; (53)

 �max ’ �
bg � 0:77

c

d2 ; (54)

 j�2
maxj ’ 2

c2

d4 � 4
c

bd3 ; (55)

assuming c < 1, d < 1, and b > 1. Note that �2 � 0 for the
background model.

Along the same lines, one can replace b with ks, corre-
sponding to today’s wave number of the perturbations that
left the horizon during inflation when � � b.

IV. DATA ANALYSIS

We compare the theoretical predictions of three theo-
retical models (A, B, and C) with observational data. We
use the Markov chain Monte Carlo (MCMC) package
cosmomc [39] to reconstruct the posterior probability
distribution function in the space of model parameters
and infer constraints on these parameters.

A. Models

The three models have four parameters in common: !b
(baryon density), !c (CDM density), � (optical depth to

reionization), and 
s (sound horizon/angular diameter dis-
tance at decoupling). The difference lies in the primordial
power spectrum.

(A) Vanilla power-law �CDM model: the initial spec-
trum is parametrized with AS and nS.

(B) Step model (Eq. (41)) with parameters AS, b, c, and
d.

(C) Generalized step model, which uses an effective tilt
nS in addition to the parameters of model B.
Constraints on �max � �

bg, �max � �
bg, and �2

max

are derived using Eqs. (53)–(55).
We limit our analysis to scalar perturbations. While tensor
perturbations may, in principle, give a subdominant con-
tribution, their spectrum will be smooth in the class of
models studied here, so we do not expect any major degen-
eracies with the step parameters.

B. Data sets

To assess the influence of different data on the con-
straints, we perform the analysis for each of the models
using three different sets of data:

(1) WMAP 3 yr temperature and polarization anisot-
ropy data [1–4] (WMAP3). The likelihood is deter-
mined using the October 2006 version of the
WMAP likelihood code available at the LAMBDA
website [40].

(2) WMAP3 plus small scale CMB temperature anisot-
ropy data from the ACBAR [41], BOOMERANG
[42], and CBI [43] experiments, plus the power
spectrum data of the luminous red galaxy sample
from the SDSS, data release 4 [44]. To avoid a
dependence of our results on nonlinear modelling,
we only use the first 13 k bands (k=h <
0:09 Mpc�1).

(3) The same as data set 2, plus two-point correlation
function data from the SDSS LRG [30].

C. Analysis

Our constraints are derived from eight parallel chains
generated using the Metropolis algorithm [45]. We use the
Gelman and Rubin R parameter [46] to keep track of
convergence of the chains, stopping the chains at R� 1<
0:05. Since the likelihood function is highly non-Gaussian
in some parameter directions and even multimodal in
certain cases, we double-check our results by comparing
with chains generated with a variation of the multicanon-
ical sampling algorithm [47].

D. Priors

Apart from the hard-coded priors of cosmomc on H0

(40 km s�1 Mpc�1 <H0 < 100 km s�1 Mpc�1) and the
age of the Universe (10 Gyr< AU < 20 Gyr), we custom-
arily impose flat priors on the other cosmological parame-
ters and a logarithmic prior on the normalization of the
initial power spectrum.
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For parameters b, c, and d, the choice of the prior is
complicated by the fact that the likelihood does not con-
verge to zero in certain directions of this subspace, but will
go to a constant value (i.e., the likelihood of the featureless
chaotic inflation model) instead. Therefore, any confidence
limits derived from the resulting posteriors, and particu-
larly those in the b-, c-, and d-subspaces of parameter
space will be subject to how we set the limits of the priors
and should only be taken as rough indicators.

We choose a flat prior on b 2 �14; 15�, equivalent to
requiring the feature to affect observable scales. Choosing
a flat prior on c or d would give a systematic bias towards
large steps with a small gradient. Instead, we opt to impose
logarithmic priors. Furthermore, it is advisable to consider
c=d2 instead of d, since the former quantity is better con-
strained by the data. Hence, we take logarithmic priors on c
and c=d2, ( logc 2 ��6;�1�, logc=d2 2 ��5; 3�).
Additionally, we exclude models with steps that are very
sharp ( logd <�2:5) or very shallow ( logd >�0:5).

E. Baryon acoustic peak

Oscillations in the dark matter power spectrum due to
acoustic oscillations in the plasma prior to decoupling
result in a single peak in the two-point correlation function
of the distribution of galaxies ��r�. In Ref. [30], the authors
claim the detection of such a peak and identify it as
corresponding to the baryonic oscillations of the matter
power spectrum. Since any oscillation of the spectrum,
regardless of its origin, will lead to a feature in the corre-
lation function, this data set is particularly well suited to
constraining oscillations in the initial power spectrum as
well, provided that the features are not completely washed
out through subsequent evolution.

The correlation function is related to the matter power
spectrum P�k� via a Fourier transform:

 ��r� /
Z 1

0
dkk2P�k�

sinkr
kr

: (56)

Technically, the upper limit of the integral would be some
ultraviolet cutoff kUV , chosen such that the error in � is
small (� 1%). For the scales covered by the SDSS data,
i.e., comoving separations between 12 and 175h�1 Mpc,
this requires a momentum cutoff kUV > 1h=Mpc. At these
wave numbers, however, nonlinear effects cannot be ne-
glected anymore, which makes the theoretical prediction of
� somewhat tricky.

The standard procedure is outlined in Sec. 4.2 of
Ref. [30] and involves corrections for redshift space dis-
tortion, nonlinear clustering, scale dependent bias, and a
smoothing of features on small scales due to mode cou-
pling. All of these methods were calibrated with nonlinear
simulations in a vanilla cosmology setting and it is not
obvious that they should be applicable to our case. With the
exception of the smoothing, however, the effect of these
corrections on the correlation function is smaller than 10%

and will only be noticeable at scales <40h�1 Mpc (see
Fig. 5 of [30]). So even if we assume a large uncertainty in
the nonlinear corrections, the accuracy of the theoretical
correlation function will still be of order a few percent, that
is smaller than the error bars of the data.

Let us look at the smoothing procedure in a bit more
detail. In the usual case, the dewiggled transfer function
Tdw is a weighted interpolation between the linear transfer
function Tlin and the Eisenstein-Hu [48] no-wiggle transfer
function Tnw

 Tdw�k� � w�k�Tlin�k� � �1� w�k��Tnw; (57)

with a weight function w�k� � exp���ak�2� and a �
7h�1 Mpc. This is related to the dewiggled spectrum by

 Pdw�k� � kT2
dw�k�PR�k�: (58)

In the case of a nonsmooth primordial power spectrum
PR�k�, one should of course also dewiggle the initial
features. In order to recover the standard procedure for
power-law spectra, we will instead smooth the quantity

 T̂�k� � �P�k�=k�1=2 � T�k�
��������������
PR�k�

q
: (59)

The use of the no-wiggle transfer function rests on the
assumption that at small scales, mode coupling will totally
erase all structure, which is reasonable as long as the
amplitude of features is of the same order as that of the
baryon oscillations. For much larger oscillations, mode
coupling might not be efficient enough to erase all struc-
ture; it is likely that some residual oscillations will remain.
So instead of a no-wiggle T̂nw, we will use a smoothed T̂s

defined by

 T̂ s�k; q� � exp
�

1

q

Z lnk�q=2

lnk�q=2
d lnk0 ln�T̂lin�k

0��

�
; (60)

i.e., a convolution of T̂lin with a top hat function of width q
in log-log space. The dewiggled power spectrum is then
given by

 Pdw�k; q� � k�w�k�T̂lin�k� � �1� w�k��T̂s�k; q��
2: (61)

Without turning to N-body simulations it would be hard
to estimate how much the spectrum will have to be
smoothed, though. Therefore, we will determine the BAO
likelihood LBAO by marginalizing over q:

 L BAO �
Z

dqL�q���q�: (62)

We take the prior ��q� to be a top hat function between
q � 0 (i.e., no smoothing at all) and an upper value qmax,
chosen such that it lies in a region where L�q� is flat in q,
corresponding to a complete smoothing.

V. RESULTS

An important question in the context of a model-
dependent analysis is how the choice of model will affect
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the estimates of the parameters, particularly if the models
are nested. Possible degeneracies between ‘‘standard’’ and
newly introduced parameters can bias means as well as
errors. In Fig. 8, we plot the marginalized posterior distri-
butions for the vanilla parameters for all three models with
data set 1. There are small differences between models A
and B for �bh

2, � and the normalization. These arise due
to the fact that in model B, the tilt of the spectrum is fixed.
There is a well-known degeneracy between these parame-
ters and the spectral index. Fixing the tilt near the best fit-
value will reduce the errors on the parameters it is degen-
erate with, which is precisely what is happening here.

The distributions for models A and C show a remarkable
similarity which leads us to conclude that the presence of a
feature will not have any statistically significant influence
on the results for the parameters of the vanilla model. This
conclusion remains unchanged if we consider the other
data sets.

Another interesting question is whether the data prefer
the presence of a feature over a smooth spectrum. How
much will a feature improve the fit and can we understand
why?

In Ref. [29], we studied model B and found two regions
in parameter space which improve the fit to the WMAP3
data by ��2 � 5 and ��2 � 7, respectively. The former
corresponds to oscillations at large scales (‘ ’ 20–30),

while the latter has oscillations of a wavelength similar
to the baryonic acoustic oscillations and lies near the third
peak of the CMB temperature power spectrum. Adding
small scale CMB data and, in particular, the power spec-
trum data of the 2003 data release of the SDSS [49],
improved the fit of the small scale maximum to ��2 � 15.

In the present work, we replaced the old main sample
data with the luminous red galaxy sample of the most
recent SDSS data release. With this newer data set, how-
ever, we do not find such an enhancement of the ��2

anymore. In fact, it appears to disfavor a large feature
near the third peak. Given the better quality of the LRG
power spectrum data and the fact that the BAO data also
does not seem to support this effect, it is likely that the
improvement in the fit was just a fluke. The disappearance
of this maximum of the likelihood function is illustrated in
Fig. 9, where we show the mean likelihood ( color coded)
and the 99% confidence level of the marginalized posterior
in the (b, logc) plane of parameter space. The inclusion of
large scale structure data and BAO data considerably
tightens the constraints on features at small scales corre-
sponding to values of b between �14:1 and �14:4, while
for larger values of b, i.e., features at larger scales, the
contours remain roughly the same.

The feature at large scales (b ’ 14:8), on the other hand,
remains untouched when we add the small scale data sets.

0.02 0.021 0.022 0.023 0.024
Ω

b
 h2

0.09 0.1 0.11 0.12 0.13
Ω

c
 h2

0.05 0.1 0.15
τ

0.92 0.94 0.96 0.98 1
n

s

2.9 3 3.1 3.2
log[1010 A

s
]

65 70 75 80 85
H

0

FIG. 8 (color online). Marginalized posteriors for model A (solid line), model B (dot-dashed line), and model C (solid line). The
differences between the results for A and C are marginal. For some parameters, the results for model B differ slightly. This should be
attributed to the degeneracies of the spectral index with these parameters and the fact that the tilt of the spectrum is fixed in this model,
it is not due to the presence of a feature.
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FIG. 10. Marginalized posterior (solid line) and mean likelihood (dotted line) for parameter ks in the generalized step model,
indicating at which wavelengths a feature is likely to happen. Top left: data set 1, top right: data set 2, bottom: data set 3.
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FIG. 9 (color online). 99% confidence level contours for model B in the (b, logc) plane of parameter space with data sets 1 (top), 2 (
center), and 3 (bottom). In these directions of parameter space, the likelihood function has a plateau towards vanishing step heights
where the model reduces to the featureless m2�2 case, an excluded valley corresponding to large steps and a peak at b ’ 14:8. For the
WMAP data alone we also find a second peak near b ’ 14:3.
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For the generalized step model and data set 1, the large
scale feature maximum likelihood point is at (b � 14:8,
c � 0:001, d � 0:02, �bh2 � 0:0216, �ch2 � 0:102, � �
0:11, nS � 0:952, log�1010AS� � 3:05, and H0 � 72:7),
which lies near the maximum of the marginalized 1D
posteriors of the vanilla model in Fig. 8. This is a further
indication that the presence of a feature at large scales will
not affect the estimates of the other parameters.

Going from model B to the generalized step model will
slightly improve the quality of the fits, yielding an extra
��2 of 1–2. We did not expect a major improvement here,
since the spectral tilt of the m2�2 model lies fairly close to
the best-fit value of the vanilla model with a freely varying
nS.

In Fig. 10, we show the marginalized posterior and mean
likelihood for the wave number ks of the perturbations that
left the horizon when the inflaton field passed the step (i.e.,
at the moment when � � b). Again, we can see how the
inclusion of the data sets sensitive to smaller scales reduces
the evidence for a feature at scales * O�10�2� Mpc�1. The
difference between the marginalized posterior and mean
likelihood is due to a volume effect: integration over the
low c plateau of the likelihood function tends to suppress
peaks in the marginalized likelihood, which show up more
clearly in the mean likelihood.

Finally, we display constraints on the maximum values
of the slow-roll parameters of the step function in Fig. 11.
While the WMAP3 data alone is only sensitive to features
up to a wavelength of �10�2 Mpc�1, the large scale
structure data extends the sensitivity by almost a factor
ten in k. We find fairly strong bounds on the maximum

value of � for the step function. In conjunction with
Eq. (37), this implies that the spectrum of tensor perturba-
tions is unlikely to experience an oscillatory modulation
like the scalar spectrum, since that would require � to be of
order one.

For the higher order slow-roll parameters, values up to a
few (for �) and up to a few hundred (for �2) are still
allowed. Note, however, that these bounds are parametri-
zation dependent (they assume a tanh-form of the step),
and, for � * 1, not only �2, but also higher order potential
slow-roll parameters will be non-negligible.

VI. CONCLUSIONS

We have analyzed the dynamics of single-field inflation
models with a steplike feature of small amplitude in the
inflaton potential. Generically, the resulting spectrum of
scalar perturbations will resemble that of the stepless
background model with a superimposed burst of oscilla-
tions whose shape is determined by the form of the step
only. We have confronted the theoretical predictions for the
spectrum of a specific chaotic inflation model with a step
with recent cosmological data to find out whether the data
require the presence of such a feature and whether it may
actually bias the estimates of other cosmological parame-
ters such as, e.g., the baryon density. We have also repeated
the same analysis for a more empirical but less model-
dependent spectrum, such as might be expected from a step
in an arbitrary inflationary background model.

With a combination of different data sets, a large chunk
of the step model parameter space can be ruled out, only
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FIG. 11 (color online). This plot shows the constraints on the peak values of the slow-roll parameters during the step for the
generalized step model. The thick line denotes the 99% confidence level for data set 3, the thin line corresponds to data set 1.
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spectra with a very modest oscillation amplitude are still
consistent with observations. The BAO data, in particular,
prove to be a very sensitive probe for oscillating spectra.

Compared to the 6 parameter ‘‘vanilla’’ cosmological
model, using the most constraining data set, we find an
improvement of the best-fit �2 of about 5 for the chaotic
inflation step model which comprises two extra parame-
ters, and ��2 ’ 7 for the generalized step model, which
has three extra parameters.

The vanilla model is a subset of the class of generalized
step models for c! 0. If c & O�10�5�, the resulting spec-
trum will be virtually indistinguishable from the vanilla
spectrum. With our choice of priors, contours of greater
than �20% confidence level will contain parts of this
vanilla region of parameter space. Hence, we cannot ex-
clude the vanilla model at more than 20% confidence level.
Reversing the argument, the present data do not show
compelling evidence for requiring a spectrum with an
oscillatory feature of the type discussed above. We expect
that a more sophisticated model selection analysis along
the lines of Refs. [50–52] would lead to a similar
conclusion.

The best-fit region of parameter space consists of models
which show oscillations at wavelengths corresponding to

multipoles ‘ ’ O�10�, where the temperature-temperature
correlation data of the CMB shows some glitches.
Interestingly, the time it would take the inflaton field to
traverse the step in these models is of the order of an
e-folding, which is what one would expect for the time
of a phase transition in more realistic multifield models.

Whether the glitches are just statistical flukes or stem
from a physical effect, such as a feature in the inflaton
potential, cannot be conclusively decided until we have
better measurements of the E- and B-mode polarization
spectra from experiments like PLANCK [53] or, in the
more distant future, projects like the inflation probe [54].
An additional consistency check can be provided by an
analysis of the bispectrum of CMB fluctuations, since the
interruption of slow roll may also induce sizable non-
Gaussianities [55].
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