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We discuss the moduli space approximation for heterotic M theory, both for the minimal case of two
boundary branes only, and when a bulk brane is included. The resulting effective actions may be used to
describe the cosmological dynamics in the regime where the branes are moving slowly, away from
singularities. We make use of the recently derived colliding branes solution to determine the global
structure of moduli space, finding a boundary at which the trajectories undergo a hard wall reflection. This
has important consequences for the allowed moduli space trajectories, and for the behavior of cosmo-
logical perturbations in the model.
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I. INTRODUCTION

The conjectured duality of Hořava and Witten [1,2]
between 11-dimensional supergravity compactified on the
orbifold S1=Z2 and strongly coupled heterotic string theory
is a key development for fundamental string and M theory,
for particle phenomenology [3], and for early universe
cosmology [4]. Realistic particle physics models are ob-
tained by first compactifying six of the ten spatial dimen-
sions on a Calabi-Yau threefold, taken to be smaller than
the orbifold dimension for phenomenological reasons, and
then studying the resulting five-dimensional effective the-
ory [5,6] in which one of the remaining four spatial
dimensions is the orbifold with its boundary branes. In
recent work, Moss has given an improved treatment of
the boundary conditions for bulk fields [7,8], giving greater
confidence in this general approach.

Cosmological applications of heterotic M theory empha-
size the importance of letting the branes be fully dynamical
[4,9]. If heterotic M theory is to describe our universe,
however, then the constancy of the measured coupling
constants implies that the volume of the Calabi-Yau, which
is related to the gauge couplings, must have been stabilized
shortly after the big bang. Similarly, the radion field mea-
suring the size of the extra dimension must either decouple
efficiently from the matter density, or itself be given a
mass. Nevertheless, it is entirely reasonable to assume
that the branes may have been dynamical over a short
period of time just before and after the big bang. It is
therefore of interest to derive four-dimensional effective
actions for heterotic M theory describing the motion of
bulk and boundary branes, and many authors have done so
in the past [10–16]. In particular, we would like to draw
attention to [17], which is closely related to the work
reported here.

We will derive the effective action in this paper by
developing the moduli space approximation in light of

the recently derived colliding branes solution of [18].
This exact solution of heterotic M theory enables us to
understand the global structure of moduli space in more
detail. In particular, we find that there are two different
types of boundaries to moduli space: the first type of
boundary, which is well known, arises for example because
a bulk brane is constrained to remain in between the two
orbifold branes, and therefore the range of the coordinate
describing its location along the orbifold is restricted.
However, when a bulk brane collides with one of the
orbifold branes, a small instanton transition can occur
[19], signalling the appearance of new, light degrees of
freedom which cannot be described in the original four-
dimensional effective theory. In other words, the original
moduli space approximation cannot be trusted at these
locations and an improved treatment is needed.

We will argue, however, that there may also exist
boundaries to moduli space that can best be described as
hard and repulsive. Such a boundary arises at a zero of the
bulk warp factor. From the higher-dimensional picture, we
know that it is always the negative-tension brane that
encounters this singularity, and is in fact repelled by it
(see Fig. 1). We describe the boundary as ‘‘hard’’ because
in the presence of the slightest amount of matter on the
negative-tension brane, satisfying the weak energy condi-
tion, the singularity is in fact never reached and the
negative-tension brane simply bounces back smoothly. In
the moduli space approximation this corresponds to a
simple reflection of one of the two scalar fields off the
boundary. For a small, fixed density of matter on the
negative-tension brane, as we lower the speed of the in-
coming negative-tension brane, the bounce becomes
milder and milder. In this situation, we do not expect
additional light degrees of freedom, such as branes wrap-
ping cycles of the Calabi-Yau, to become light enough to
play a significant role, and we expect the four-dimensional
effective description to remain accurate.

We begin this paper with a brief review of heterotic M
theory, before proceeding in Sec. III to derive the moduli
space action for the case in which there is no bulk brane
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present. From this action, we show how to recover the
colliding branes solution recently discussed in [18]. This
particular solution highlights another general feature of the
moduli space approximation that shows the importance of
higher-dimensional input: the moduli space approach leads
to an infinite number of possible background solutions.
Choosing a particular one then amounts to imposing
boundary conditions that are obtained from the original
higher-dimensional theory. We will generalize our discus-
sion to incorporate the presence of a bulk brane in Sec. IV.
In particular, we exhibit a series of special cases in which
the moduli space action simplifies. In these instances, we
are able to recover and improve upon some earlier results
appearing in the literature. We conclude in Sec. V.

II. HETEROTIC M THEORY

Hořava-Witten theory can be dimensionally reduced on
a Calabi-Yau threefold to yield five-dimensional heterotic
M theory [1,2,5,6]. This gauged supergravity theory can be
consistently truncated to gravity and a scalar � parame-
trizing the volume of the Calabi-Yau manifold (namely
VCY � e�). The action is given by

 S �
Z

5d

�������
�g
p

�
R�

1

2
�@��2 � 6�2e�2�

�

� 12�
Z

4d;y��1

�������
�g
p

e�� � 12�
Z

4d;y��1

�������
�g
p

e��;

(2.1)

where � is related to the number of units of 4-form flux
pointing entirely in the Calabi-Yau directions,1 and we
have placed branes of opposite tensions at y � �1 (where
y is the coordinate transverse to the branes). It is important
to realize that when boundary brane actions are present � is
necessarily nonzero. As a consequence, five-dimensional
Minkowski space is not the vacuum of the theory; rather,
the vacuum is given by a domain wall spacetime of the
form

 d s2 � h2=5�y��B2��d�2 � d ~x2� � A2dy2�;

e� � Ah6=5�y�; h�y� � 5�y� C;
(2.2)

where A, B, and C are arbitrary constants. The y coordinate
is taken to span the orbifold S1=Z2 with fixed points at y �
�1. In an ‘‘extended’’ picture of the solution, obtained by
Z2-reflecting the solution across the branes, there is a
downward-pointing kink at y � �1 and an upward-
pointing kink at y � �1. These ensure the Israel condi-
tions are satisfied, with the negative-tension brane
being located at y � �1 and the positive-tension brane at
y � �1.

III. THE MODULI SPACE ACTION

In our previous paper [18], we derived the higher-
dimensional solution for colliding branes in heterotic M
theory. Here, we wish to describe this solution in terms of
the four-dimensional effective theory. We derive this the-
ory by making use of the moduli space approximation,
originally employed in the study of the low-energy dynam-
ics of BPS monopoles [20,21], and subsequently developed
extensively in the mathematical literature [22]. The main
idea is the following. If the set of static solutions of given
topology is parametrized by some continuous parameters,
then these parameters represent flat directions in configu-
ration space, which cost no potential energy. In contrast,
other directions in configuration space are typically asso-
ciated with large mass scales (for example, the massive
vector boson mass in a spontaneously broken gauge the-
ory). Hence, the low-energy dynamics of the system can be
well approximated by considering motion to be only along
the massless directions. It is important to emphasize that
the moduli space approximation is usually not exact: it
ignores effects due to radiation when two monopoles scat-
ter, for example. But in many cases, it is found to give the
correct leading order description of the dynamics, in an
expansion in the velocity of the motion along moduli
space. In many cases the system departs from the ‘‘bottom
of the potential valley,’’ described by moduli space, by an
amount proportional to the square of the velocity along
moduli space. A simple example is provided by a theory
with a broken U(1) global symmetry, i.e. a complex scalar

FIG. 1 (color online). A Kruskal plot of the colliding branes
solution described in [18]. In suitable coordinates, the bulk
geometry is static and contains a timelike naked singularity
(denoted by thick black lines) corresponding to a zero of the
bulk warp factor. The dashed lines indicate representative orbits
of the bulk Killing vector field. The boundary branes then move
through this bulk geometry according to the Israel junction
conditions. The trajectory of the positive-tension brane is shown
in red and that of the negative-tension brane in green. The
collision of the branes, as well as the two bounces of the
negative-tension brane off the naked singularity, are shown at
a magnified scale in the inset. The regularization of these
bounces is discussed in detail in [18].

1Compared to [5,6], we have rescaled � such that � �
�LOSW=3

���
2
p

.
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field � � fei� with a Mexican hat potential. Restricting
attention to spatially homogenous solutions, the low-
energy motion consists of the field running around the
potential minimum f � fmin with some velocity _�, while
the massive field �f � f� fmin deviates only modestly
from the potential minimum, ��f=fmin� 	 _�2=m2, wherem
is the mass of �f.

Here, following the usual procedure, we shall derive the
moduli space action by plugging the static solutions, with
parameters promoted to time-dependent moduli, back into
the action and integrating out the spatial dependence. The
resulting action contains only kinetic terms, and from these
the metric which governs geodesic motion on moduli space
can be read off. On general grounds, one expects the low-
energy dynamics, including both mild space and time
gradients, to be described by a 4D effective theory respect-
ing full spacetime symmetry (i.e. Lorentz or general coor-
dinate invariance). Once one has determined the kinetic
terms from the moduli space approach, it is usually
straightforward to identify the corresponding, fully cova-
riant four-dimensional spacetime action.

A. The time-dependent moduli

In the static domain wall solution above, the volume of
the Calabi-Yau manifold and the distance between the
boundary branes are determined in terms of the moduli A
and C, while the scale factors on the branes are determined
in terms of B and C. The modulus C additionally deter-
mines the height of the harmonic function h at a given
position in y. To implement the moduli space approxima-
tion, we simply promote these moduli to arbitrary func-
tions of the brane conformal time �, yielding the ansatz:

 

ds2 � h2=5��; y��B2�����d�2 � d ~x2� � A2���dy2�;

e� � A���h6=5��; y�;

h��; y� � 5�y� C���; �1 
 y 
 �1:
(3.1)

Let us give a brief justification for this ansatz: first, we note
that the ansatz satisfies the �y Einstein equation identically.
This is important, since otherwise the �y equation would
act as a constraint, see e.g. [23]. Second, there is no g�y
modulus, since this metric component is odd under the Z2

symmetry, and therefore has to vanish at the location of the
branes. Any such component which is zero at the location
of the branes, but nonzero in the bulk, is necessarily
massive. In fact, from the work of [24], we know that,
apart from the above moduli, all other perturbations have a
positive mass squared.

For completeness, the lift of this ansatz to 11 dimensions
is given by

 d s2
11 � e�2�=3ds2

5 � e
�=3ds2

CY (3.2)

 � h�2=5A�2=3B2��d�2 � d ~x2� � h�2=5A4=3dy2

� h2=5A1=3ds2
CY; (3.3)

where the five-dimensional metric and scalar field are
now both part of the 11-dimensional metric. The 11-
dimensional distance between the branes is then

 d11 � A2=3I��1=5�; (3.4)

where we have defined

 In �
Z 1

�1
dyhn

�
1

5��n� 1�
��C� 5���n�1� � �C� 5���n�1��: (3.5)

The orbifold-averaged Calabi-Yau volume is given by

 he�i � 1
2AI6=5: (3.6)

B. The action

Having defined the time-dependent moduli, we would
now like to derive the action summarizing their equations
of motion. This is achieved by simply plugging the ansatz
(3.1) into the original action (2.1), yielding the result
(where we use the notation _ � @=@�)
 

Smod � �6
Z

4d
AB2I3=5
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� _A
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B

�
2
�

_A _B
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�
1
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I��7=5�

I3=5

_C2 �
3

5

I��2=5�
_B _C

I�3=5�B

�
: (3.7)

This action can be greatly simplified by introducing the
field redefinitions

 a2 � AB2I3=5; (3.8)

 e
��
3
p
 � A�I3=5�

3=4; (3.9)

 � � �
1

20

Z
dC�I3=5�

�1�9�I��2=5��
2 � 16I��7=5�I�3=5��

1=2:

(3.10)

Note that a has the interpretation of being roughly the
four-dimensional scale factor, whereas  and � are four-
dimensional scalars. The definition (3.10) can be rewritten
as stating that

 d� � �
dC

2�C� 5��1=5�C� 5��1=5I3=5

: (3.11)

This expression can be integrated to yield
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 C � 5�
�
�1� e4��5=4 � �1� e4��5=4

�1� e4��5=4 � �1� e4��5=4

�
: (3.12)

In terms of a,  , and �, the moduli space action (3.7) then
reduces to the remarkably simple form

 Smod � 6
Z

4d
�� _a2 � a2� _ 2 � _�2��: (3.13)

The minus sign in front of the kinetic term for a is char-
acteristic of gravity, and in fact this is the action for gravity
with scale factor a and two minimally coupled scalar
fields. There is also a manifest O�2� rotation symmetry
for the scalar fields. The equation of motion for a reads

 

�a � �a� _ 2 � _�2�; (3.14)

while the equations of motion for  and � immediately
lead to the conserved charges Q and Q�, according to

 a2 _ � Q ; a2 _� � Q�: (3.15)

The solutions to these equations are given by

 a2 � 2
��������������������
Q2
 �Q

2
�

q
��� �a�; (3.16)

  �
Q 

2
��������������������
Q2
 �Q

2
�

q ln� 0��� �a��; (3.17)

 � �
Q�

2
��������������������
Q2
 �Q

2
�

q ln��0��� �a��; (3.18)

where Q , Q�, �a,  0, and �0 are constants of integration.
We can now return to the ansatz (3.1) and relate physical

quantities in five dimensions to the moduli fields a,  , and
�: if we denote the distance between the branes by d, and
the volume of the Calabi-Yau and the brane scale factors at
the locations y � �1 by e�� and b� respectively, then we
have the relations

 d � 1
3�2��

�1=4e�3��
��
3
p
 ��1� e4��3=2 � j1� e4�j3=2�;

(3.19)

 e�� � �2��
3=4e

��
3
p
 
�
�cosh2��3=2

j sinh2�j3=2;
(3.20)

 b� � �2��1=8ae�
��
3
p
 =2

�
�cosh2��1=4

j sinh2�j1=4:
(3.21)

These relations are useful in interpreting particular solu-
tions to the moduli equations of motion. Note that for �!

�1, we have

 d ’ �2���1=4e
��
3
p
 ��; (3.22)

 e�� ’ �2��
3=4e

��
3
p
 �3�; (3.23)

whereas for �! �1, we have

 d ’ �2���1=4e
��
3
p
 ��; (3.24)

 e�� ’ �2��
3=4e

��
3
p
 �3�: (3.25)

Thus, in both limits, lnd and �� are orthogonal variables.
This means that, sufficiently far away from the � � 0 axis,
the fields  and � are, up to a rescaling, simply related to
lnd and �� by a rotation in field space. Since the moduli
space trajectories in terms of  and � are straight lines, far
from the � � 0 axis, the trajectories will also be approxi-
mately straight lines in terms of lnd and ��.

C. Recovering the colliding brane solution

In [18] a colliding branes solution of heterotic M theory
was derived subject to the boundary conditions that the
brane scale factors and the Calabi-Yau volume should be
finite and nonzero at the collision. This solution was con-
sidered in two different coordinate systems; first, one in
which the bulk geometry is static but the branes are mov-
ing, and second, one in which the brane locations are fixed
and the bulk evolves dynamically. While in the first coor-
dinate system the solution may be determined exactly, in
the second, comoving, coordinate system, the solution was
found perturbatively as a series expansion in the rapidity
2y0 of the branes at the collision. The leading term in this
expansion was found to be a scaling solution whose form is
independent of the parameter y0, for any y0 � 1. It is this
scaling solution that we may expect to recover from the
moduli space description of the system, which holds at low
velocities. In fact, it takes little effort to see that the scaling
solution in [18] corresponds to choosing

 �a � 0;  0 � 2y0; �0 � 4�y0;

Q �

���
3
p

2
y0; Q� �

1

2
y0;

(3.26)

from which it follows that

 a � j2y0�j1=2; e � j2y0�j
��
3
p
=4;

e� � j4�y0�j1=4:
(3.27)

As discussed in [18], the condition that the Riemann
curvature of the 5-dimensional bulk remains small, so
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that M theory corrections involving powers of the curva-
ture remain negligible all the way to the brane collision,
selects a unique solution of the higher-dimensional theory.
This solution is also special in that the brane scale factors
and the Calabi-Yau volume (in 5 dimensions) are finite
and nonzero at the collision. In contrast, from the 4-
dimensional perspective, the solution (3.27) is just one of
an infinite number of seemingly equivalent solutions, with
no special features to distinguish it. Of course, one could
reformulate the requirement of finite 5-dimensional
Riemann curvature in terms of 4-dimensional quantities.
But the 5-dimensional interpretation offers more transpar-
ent insight into which solutions do not suffer large M
theory corrections.

For the solution (3.27), the brane collision occurs at time
� � 0, where a � 0 and  , �! �1. Thus the moduli
space scale factor goes to zero at the collision, whereas we
know that from the higher-dimensional point of view the
brane scale factors are finite and nonzero, as may be
verified directly from (3.21).

The scale factor on the negative-tension brane does
however go to zero at time � � 1=�4�y0�, at which time
the volume of the Calabi-Yau manifold also vanishes. This
implies the existence of a boundary to moduli space at � �
0. As discussed in [18], we expect the scale factor on the
negative-tension brane to bounce back smoothly when it
reaches zero, because of the peculiar properties of gravity
on a brane of negative tension (in the presence of matter on
the branes, we expect the scale factor to bounce back
before reaching zero, thus rendering the bounce entirely

nonsingular). In comparing the moduli to higher-
dimensional quantities via Eqs. (3.19), (3.20), and (3.21),
it is apparent that this bounce of the negative-tension brane
is equivalent to flipping the sign of � and thus _� also, and
hence the trajectory of the scaling solution gets reflected
off the � � 0 boundary.

The scaling solution, as viewed from moduli space, is
shown in Fig. 2, where we have suppressed the direction
corresponding to the scale factor a. It is immediately
apparent that at the bounce the second derivative of the
trajectory is proportional to a �-function. Figure 3 shows
the same solution, but in terms of the physically more
meaningful variables VCY� � e��, representing the
Calabi-Yau volume at the location of the boundaries at y �
�1, and the interboundary distance d. If �� denotes a small
variation in conformal time about the bounce, then the first
derivative of the V� curve with respect to d is proportional
to ����1=2 and is thus zero at the bounce, in agreement with
the fact that the bounce is smooth. However, the second
derivatives with respect to d of both the V� and the V�
curves contain a term proportional to �����1=2 and thus
they blow up at the time of the bounce. This is because the
scaling solution represents only the leading terms of the
full solution expanded in powers of the collision rapidity
2y0. In the full solution we would expect the trajectories to
be rounded off and to have an everywhere continuous
second derivative, for both choices of variables considered
above.

ψ

χ

ln d

ln d

φ

ln d

φ

φ

+

+

+

FIG. 2. The trajectory of the scaling solution as seen in the  -�
plane. � � 0 corresponds to the scale factor on the negative-
tension brane shrinking to zero, and thus the � � 0 plane
represents a boundary to moduli space, at which the scaling
solution trajectory is reflected. The brane collision occurs as  ,
�! �1. Also shown are the directions of increasing logarithm
of the distance between the boundary branes ( lnd) and increas-
ing logarithm of the Calabi-Yau volume at the location of the
positive-tension brane (��). Away from the � � 0 boundary,
e�� is approximately equal to the volume of the Calabi-Yau at
the location of the negative-tension brane and thus also approxi-
mately equal to the average Calabi-Yau volume.

d

V

FIG. 3. An alternative viewpoint on the colliding branes scal-
ing solution: this plot shows how the volume V� of the Calabi-
Yau manifold at the location of the boundary branes at y � �1
depends on the interbrane distance d. The upper curve represents
V� while the lower curve represents V�.

EFFECTIVE ACTIONS FOR HETEROTIC M THEORY PHYSICAL REVIEW D 76, 023501 (2007)

023501-5



IV. ADDING A BULK BRANE

From particle phenomenology, we know that generically
there are bulk branes present between the two boundary
branes [25]. From the M theory perspective these bulk
branes arise as M5-branes wrapping a 2-cycle in the
Calabi-Yau, with the remaining four dimensions parallel
to the boundaries of the effective five-dimensional space-
time [25]. For simplicity we will consider adding just a
single bulk brane, although the extension to multiple bulk
branes would be straightforward (though cumbersome) to
write down. In the presence of a bulk brane, the 4-form flux
on the Calabi-Yau takes different values on either side of
the bulk brane. The neatest way to handle this situation is
to dualize the flux (which is a scalar in five dimensions) to a
5-form field strength F � dA, and then F takes different
values on either side of the bulk brane which is located at
y � Y (see [4]). The action reads
 

S �
Z

5d

�������
�g
p

�
R�

1

2
�@��2 �

3

2  5!
e2�F 2

�

� 12
X

i��;Y;�

�i
Z

4d;y��1;Y;�1

�

� �������
�g
p

e�� �
1

4!
��	
�A�	
�

�
; (4.1)

where �; 	; . . . � 0; . . . ; 3. Since the orbifold dimension is
compact, the sum of the tensions �i must vanish (because
the flux has nowhere to escape). Here we will take

 �� � ��1; �Y � �2; �� � �1 � �2; (4.2)

with �1 arbitrary and �2 positive.
The static multiple domain wall vacuum solution is then

given by

 d s2 � h2=5�y��B2��d�2 � d ~x2� � A2dy2�; (4.3)

 e� � Ah6=5�y�; (4.4)

 F 0123Y �

�
�5�1A�1B4h�7=5�y�; �1 
 y 
 Y;
�5��1 � �2�A�1B4h�7=5�y�; Y 
 y 
 �1;

(4.5)

where we have included the (constant) moduli A, B, C and

the new modulus Y. The harmonic function h is now given
by

 h �
�

5�1y� C; �1 
 y 
 Y;
5��1 � �2�y� C� 5�2Y; Y 
 y 
 �1;

(4.6)

where there is now an additional kink at y � Y (see Fig. 4).
Proceeding in the same manner as in the last section, we let
the moduli depend on time �, to obtain the moduli space
action
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3
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I3=5�C� 5�1Y�
2=5

�
;

(4.7)

where the last term originates from the bulk brane action
and where we have introduced the definitions (note that the
definition for In is generalized in this section):

 

I�n �
Z Y

�1
dyhn �

1

5�1�n� 1�
��C� 5�1Y�

�n�1� � �C� 5�1�
�n�1��;

I�n �
Z 1

Y
dyhn �

1

5��1 � �2��n� 1�
��C� 5�1 � 5�2�1� Y���n�1� � �C� 5�1Y��n�1��;

In �
Z �1

�1
dyhn � I�n � I�n

�
1

5�1��1 � �2��n� 1�
��1�C� 5�1 � 5�2�1� Y��

�n�1� � �2�C� 5�1Y�
�n�1� � ��1 � �2��C� 5�1�

�n�1��:

(4.8)

Once again we can define an effective four-dimensional scale factor a via

−1 0

h(y)

y+1Y

FIG. 4. The harmonic function in the presence of a bulk brane
at y � Y.
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 a2 � AB2I3=5; (4.9)

and use the expression

 

_I n � n _CI�n�1� � 5�2n _YI��n�1� (4.10)

in order to rewrite the moduli space action as
 

Smod �
Z

4d
�6 _a2 � a2

�
2
� _A
A

�
2
�

27

50

�
I��2=5�

I3=5

�
2

_C2 �
6

25

I��7=5�

I3=5

_C2 �
6�2

I3=5�C� 5�1Y�2=5
_Y2 � 6�2

2

I�
��7=5�

I3=5

_Y2

�
27�2

2

2

�I�
��2=5�

I3=5

�
2

_Y2 �
9

5

I��2=5�

I3=5

_A
A

_C� 9�2

I�
��2=5�

I3=5

_A
A

_Y �
12�2

5

I�
��7=5�

I�3=5�

_C _Y�
27�2

5

I��2=5�I���2=5�

�I3=5�
2

_C _Y
�
: (4.11)

This action describes gravity with scale factor a coupled to
three scalar fields A, C and Y. In analogy with the case
where no bulk brane is present, one would hope to be able
to reduce the action to a much simpler form by a series of
field redefinitions. However, in the present case it seems
unlikely that such a drastic simplification can be achieved,
since a calculation of the curvature of the scalar field
manifold inhabited by A, C, and Y reveals the Ricci scalar
to be a rather complicated function of C and Y (by contrast,
in the absence of a bulk brane, the scalar field manifold is
flat). In view of this difficulty, we will simplify the action
by looking at certain specific limits in the following
subsections.

Before doing so, however, we would like to remark that
the moduli space under consideration here has two very
obvious boundaries in the Y direction, namely, at Y � �1
and at Y � �1, corresponding to the collision of the bulk
brane with the boundary branes. It is not clear, however, to
what extent the moduli space action can be trusted at these
specific boundaries, since a bulk brane could fuse momen-
tarily with the boundary, accompanied by a small instanton
transition [19]. This specific process would then not be
described by the moduli space approximation, as one
would expect that additional light degrees of freedom,
describing the interaction of the bulk brane with the bound-
ary brane, would have to be added to the effective action.

A. The large harmonic function limit

For cosmological applications, and, in particular, appli-
cations to the ekpyrotic/cyclic models, the most useful
regime to consider is the one where the boundary branes
are far apart and slowly approaching one another. Indeed,
this corresponds to the epoch where the cosmological
density perturbations are being generated. From the collid-
ing brane scaling solution described in Sec. III C, in con-
junction with (3.12) and (3.19), it is easy to see that the
large j�j limit corresponds to the large interbrane distance
limit, which in turn corresponds to the modulus C��� being
very large. In fact, C��� has the property that it also
becomes very large in the near-collision limit �! 0.
Thus both the near-collision limit and the large boundary
separation limit correspond to the harmonic function h

being very large. We can expand the relevant integrals in
powers of C:

 I�n � Cn�1� Y� �
5n�1

2
C�n�1��Y2 � 1� �O�C�n�2��;

(4.12)

 

I�n � Cn�1� Y� �
5n
2
C�n�1����1 � �2�Y � �1 � �2�

�O�C�n�2��; (4.13)

 In � 2Cn �
5n�2

2
C�n�1��1� Y�2 �O�C�n�2��: (4.14)

We then expand the moduli space action in powers of 1=C,
and to first order we find
 

Smod;C!1 �
Z

4d
�6 _a2

� a2

�
2
� _A
A

�
2
�

�
39

50
�

39�2

20C
�1� Y�2

�� _C
C

�
2

�
3�2

C
_Y2 �

�
9

5
�

9�2

4C
�1� Y�2

� _A _C
AC

�
9�2�1� Y�

2

_A _Y
AC
�

39�2�1� Y�
10

_C _Y

C2

�
:

(4.15)

In order to get a better physical understanding of the
meaning of the various terms in this action, we will define
the two fields

 D � ln�AC1=5�; (4.16)

 �A � ln�AC6=5�: (4.17)

These fields are related to the distance between the bound-
ary branes, and the orbifold-averaged Calabi-Yau volume,
in the limit of C being large:

 d ’ 2eD; (4.18)

 hVi ’ e�A: (4.19)
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Note also that in the limit we are considering

 �A � D� 1: (4.20)

In terms of these new fields, the moduli space action reads

 

Smod;C!1 �
Z

4d
�6 _a2

� a2

�
3

2
_D2 �

1

2
_�2
A � 3�2e

D��A _Y2

�
3�2

2
�1� Y�eD��A� _D� 2 _�A� _Y

�
3�2

4
�1� Y�2eD��A�2 _�2

A �
_�A

_D� _D2�

�

�O�e2�D��A��: (4.21)

Note that if the bulk brane is very close to the boundary at
y � 1 and we momentarily insert Y � 1 into the action, we
obtain

 

Smod;C!1;Y�1 �
Z

4d
�6 _a2

� a2

�
3

2
_D2 �

1

2
_�2
A �

3�2

5
eD��A _Y2

�
;

(4.22)

which is the action previously derived (by different means)
in [14,15]. However, inserting Y � 1 into the action is of
course inconsistent:2 one should use the full action (4.21)
and only at the end of a calculation insert particular values
of Y. However, as mentioned previously, the moduli space
approximation is unlikely to be very trustworthy at this
particular boundary in any case.

B. The symmetric case

As another example where the moduli space action
simplifies considerably, we will consider the symmetric
case with two boundary branes both with negative tension
��1 and one bulk brane with positive tension �2 � 2�1,
the bulk brane being located near Y � 0. We are trying to
find the effective action for this setup in the limit where the
boundaries are far apart, but only slowly moving, and we
will also specialize to the phenomenologically interesting
limit where the orbifold-averaged Calabi-Yau volume is
fixed.

Writing h� � h�y � �1� and hY � h�y � Y�, we have

 I�n �
1

5�1�n� 1�
�h�n�1�
Y � h�n�1�

� �; (4.23)

 In �
1

5�1�n� 1�
�2h�n�1�

Y � h�n�1�
� � h�n�1�

� �: (4.24)

The large boundary separation limit is obtained by letting
h� ! 0. Taking this limit corresponds to C! 5�1 and
thus hY � h0 ’ 5�1. We then obtain the following expres-
sions for various integrals of the harmonic function:

 n >�1: I�n ’
1

5�1�n� 1�
h�n�1�
Y ; (4.25)

 n >�1: In ’
2

5�1�n� 1�
h�n�1�
Y ; (4.26)

 n <�1: I�n ’
�1

5�1�n� 1�
h�n�1�
� ; (4.27)

 n <�1: In ’
�1

5�1�n� 1�
�h�n�1�
� � h�n�1�

� �; (4.28)

while the orbifold-averaged Calabi-Yau volume reduces to

 hVCYi �
10

11
A�5�1�

6=5: (4.29)

This suggests we should take A to be constant, so that the
average Calabi-Yau volume is fixed. If we retain only the
leading terms, the moduli space action becomes

 Smod;symmetric �
Z

4d
�6 _a2 � a2

�
12

25h8=5
0

� _h2
�

h2=5
�

�
_h2
�

h2=5
�

��
:

(4.30)

From an 11-dimensional point of view, the distance be-
tween the boundary brane at y � �1 and the bulk brane at
y � 0 is given by [cf. (3.4)]

 d11;�0 �
1

4�1
A2=3�h4=5

0 � h4=5
� �: (4.31)

In the limit under consideration, we obtain the approximate
relationship

 

_d11;�0

d11;�0

’ �
4

5

_h�
h4=5

0 h1=5
�

; (4.32)

and similarly for d11;�0. Thus the moduli space action can
be rewritten as

2In this particular case it turns out that the Ricci scalar on the
scalar field manifold calculated from the action (4.22) coincides
with the Ricci scalar calculated using the full action (4.21) and
inserting Y � 1 at the end (in both cases its value is �4=3).
However, this is a coincidence; the connections, for example, are
not equal.

LEHNERS, MCFADDEN, AND TUROK PHYSICAL REVIEW D 76, 023501 (2007)

023501-8



 Smod;symmetric �
Z

4d
�6 _a2 � a2

�
3

4

� _d2
11;�0

d2
11;�0

�
_d2
11;�0

d2
11;�0

��
;

(4.33)

describing gravity minimally coupled to two scalar fields
representing the distance of the bulk brane to the two
respective boundaries. As expected, the moduli space ac-
tion embodies the symmetries of the specific setup ana-
lyzed here.

V. CONCLUSIONS

We have developed the moduli space approximation for
heterotic M theory, including the case where a bulk brane is
moving along the orbifold direction. The moduli space
actions describe gravity in the form of an effective scale
factor coupled to scalar fields. In general, the resulting
equations of motion allow for a very large number of
possible motions of the branes. In this context, the bound-
ary conditions that one obtains by inspection of the higher-
dimensional parent theory can prove crucial in singling out
a particularly relevant solution. Moreover, the parent the-
ory is useful in determining what the allowed ranges of the
moduli are; we have given examples of such boundaries to
moduli space, and shown how these result in important
modifications to the allowed moduli space trajectories.

In the absence of a bulk brane, the action is remarkably
simple, and consists of gravity minimally coupled to two
scalar fields (which only interact with each other via
gravitational effects). At large brane separation the respec-
tive logarithms of the distance between the branes and the
Calabi-Yau volume are orthogonal variables, and one can
perform a rotation in field space to obtain

 Smod;C!1 �
Z

4d
�6 _a2 � a2

�
3

2
_D2 �

1

2
_�2
A

�
; (5.1)

where the distance between the branes is 2eD and the

average Calabi-Yau volume is given by e�A . One of the
allowed trajectories in moduli space corresponds to the
colliding brane solution described in [18]. This solution
has been proposed as a model for the big bang, because it
has the particular feature that the brane collision is well
behaved, in the sense that the Riemann curvature remains
bounded right up to (but not including) the collision. It
would be of interest to study the generation of cosmologi-
cal perturbations in this model. However, in order to do so,
one would have to know the interbrane forces away from
the collision. In complicated settings such as heterotic M
theory, where the forces between the various branes can
only partly be computed as yet (see e.g. [26,27]), the
moduli space approximation offers us the possibility of
adding ‘‘effective’’ potentials for the moduli to the effec-
tive action. These effective potentials then reflect our guess
for the sum of all interbrane forces and allow one to deduce
the resulting spectrum of cosmological perturbations.
Work related to these questions will be presented else-
where [28].

In the presence of a bulk brane, the moduli space action
is in general quite complicated, although we have shown
how it simplifies in certain limits of interest. In this way we
have been able to compare our work with results already
known in the literature, and to extend these. The appear-
ance of an extra scalar degree of freedom is likely to have
interesting phenomenological consequences.
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