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We discuss the general framework for a perfect continuum medium in cosmology and show that an
interesting generalization of the fluids normally used is for the medium to have rigidity and, hence, be
analogous to an elastic solid. Such models can provide perfect, adiabatic fluids which are stable even when
the pressure is negative, if the rigidity is sufficiently large, making them natural candidates to describe the
dark energy. In fact, if the medium is adiabatic and isotropic, they provide the most general description of
linearized perturbations. We derive the equations of motion and wave propagation speeds in the isotropic
case. We point out that anisotropic models can also be incorporated within the same formalism and that
they are classified by the standard Bravais lattices. We identify the adiabatic and isocurvature modes
allowed in both the scalar and vector sectors and discuss the predictions they make for cosmic microwave
background and matter power spectra. We comment on the relationship between these models and other
fluid-based approaches to dark energy, and discuss a possible microphysical manifestation of this class of
models as a continuum description of defect-dominated scenarios.
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I. INTRODUCTION

There are four stress-energy components in the presently
preferred standard cosmological model [1–3]: the baryons,
which constitute the visible universe; radiation (photons
and neutrinos); cold dark matter (CDM); and some un-
known component, often called dark energy, which gives
rise to the cosmic acceleration [4–8]. Within the codes
[9,10] used to make predictions for specific models, the
CDM is modeled as a pressureless, perfect fluid and the
radiation components are modeled as blackbody radiation
gases. However, many of the qualitative features of the
observed power spectra, for example, the acoustic peaks in
the angular power spectrum of the cosmic microwave
background (CMB), can be derived by ignoring the higher
order moments of the photon and neutrino distributions and
treating them as a perfect fluid with P � �=3, where P is
the pressure and � is the density. Hence, most of the
important components of the universe are well approxi-
mated by perfect fluids.

The microphysical origin of the cosmic acceleration is
still a mystery. The simplest, and probably most popular,
explanation is a cosmological constant, although this has
some well-documented fine-tuning problems [11,12].
Various ideas exist, collectively known as dark energy
(for a recent review of dark energy models, see
Ref. [13]), whereby the additional stress-energy compo-
nent is provided by a slowly rolling scalar field [14–16],
known as quintessence, or a lattice of topological defects
[17–20]. Alternative explanations require the modification
of gravity by the inclusion of nonminimal coupling be-
tween matter and gravity [21], extra dimensions (for ex-
ample, Ref. [22]) and modifications to the Einstein-Hilbert
action [23–25].

In this paper we shall consider a generalization of the
perfect continuum fluid approach to describe dark energy.
We have already pointed out that perfect fluids can be used
to describe the essential properties of the radiation and
CDM in the universe, and it seems reasonable to consider
the possibility that the dark energy can also be understood
in the same way. This will require us to go back to the
fundamentals of how to formulate a generalized continuum
medium in general relativity and derive equations for the
perturbations in the medium. These are essential in com-
puting accurate predictions for observed power spectra
[16,20,26,27]. We will show that the most obvious general-
ization of a perfect fluid is to allow for rigidity of the
medium in a way analogous to a continuum elastic solid
[19], and that this can be stable if the rigidity is sufficiently
large even if the pressure is negative. For most cosmologi-
cal observations (for example, the CMB or large-scale
structure measurements) we only need to consider the
linearized regime. We will argue that the generalization
of fluids to include rigidity is the most general possibility
for an adiabatic medium at linearized order.

In many ways the concept of dark energy is similar to the
idea of the aether postulated in the late 19th century: there
is something about the laws of physics which appears awry,
and we postulate a medium to try and solve the problem
[28]. The approach we propose is to formulate generalized
properties of such a medium, define ways of computing
power spectra, and then compare them with observations
(see Ref. [29] for the status of this kind of model after the
first-year Wilkinson Microwave Anisotropy Probe
[WMAP] data).

The idea of generalized dark matter/energy has been
considered previously by a number of authors
[19,20,26,27,30–32]. We will attempt to discuss how the
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approaches suggested by others relate to those presented
here. The broad difference between our approach and those
taken previously is that we will derive the equations de-
scribing perturbations in the medium from a set of well-
defined physical assumptions. These equations are closed
and there is no freedom, except the strength of the rigidity,
to play with.

The original derivation of the equations presented here
[19] was motivated by the idea that the dark energy could
be a lattice of topological defects (cosmic strings or do-
main walls) formed at a low-energy phase transition. We
will explain how such a lattice can provide a possible
microphysical model for an elastic dark energy model.
However, we believe that the formulation of the elastic
dark energy models is more general and should not be
thought of as being necessarily linked to these specific
types of models which predict very specific values for w �
P=�. In particular, the elastic dark energy models include
CDM and a cosmological constant as limiting cases allow-
ing them to provide an interesting phenomenology.

The paper is organized as follows. In Sec. II we discuss
the formulation of a generalized medium and derive the
equations of motion. We then go on to identify the various
adiabatic and isocurvature modes in Sec. III and present the
cosmological signatures expected in the CMB and matter
power spectra in Sec. IV. In Sec. V we explain the basic
ideas of defect-dominated scenarios for dark energy and
explain how they relate to the elastic dark energy models.

II. COSMOLOGICAL DYNAMICS OF A
GENERALIZED MEDIUM

In Sec. II A we review the medium representation con-
cept and the scheme for specifying perturbations in a
general medium. In Sec. II B we apply this formalism to
compute the cosmological equations of motion for an
isotropic elastic medium and in Sec. II C evaluate the
propagation speeds of perturbations. We then decompose
the perturbations in terms of harmonic basis functions in
Secs. II D and II E to give the full set of Einstein and
energy-momentum conservation equations. In Sec. II F
we compare our results to other treatments of generalized
fluids, and in Sec. II G discuss briefly how the formalism
can be applied to anisotropic perturbations.

A. Medium representation concept

This section provides an overview of work on relativistic
elastic media in the context of neutron stars by Carter and
others [33–36] and details how this elegant formalism to
describe the mechanics of a generalized medium can be
applied to cosmology. In Newtonian theory it is natural to
define the properties of a medium, such as the density and
pressure, in terms of coordinates of a three-dimensional
Euclidean space at some given instant of time. In general
relativity, however, there is no general time-slicing of the
four-dimensional space-time manifold M which can be

used to specify the material state. Therefore, it is necessary
to consider the projection P : M!H of M onto a three-
dimensional manifold H whose elements represent parti-
cles of the medium [33]. The inverse image P�1�X� �M
of a point X 2H can then interpreted as the worldline of
the particle represented by X. The inverse image deter-
mines a one-to-one mapping between medium tensors
defined on H and the set of tensors on M which are
orthogonal to the congruence of worldlines. This mapping
is important as it allows the intrinsic properties of the
material medium to be defined on H , while the space-
time evolution is described by tensor fields on M.
Moreover, it allows the definition of space-time tensors
in terms the tensors defined on H . We will use Greek
indices�; �; . . . , to label tensors on M and Roman indices
A;B; . . . , to label tensors on H .

We define �AB to be the metric on H which quantifies
the strain of the medium. At each point of H , we will
assume that there are functions determining the density �
and pressure PAB which can be expressed in terms of �AB
(one of the properties of a perfect medium) and, most
probably, related by an equation of state PAB���. Under
these assumptions one can show that

 PAB � �2j�j�1=2 @
@��AB�

�j�j1=2��; (1)

where j�j is the determinant of �AB, and by taking a second
derivative of � with respect to �AB, one can define

 EABCD � �2j�j�1=2 @
@��AB�

�j�j1=2PCD�; (2)

the classical elasticity tensor which satisfies EABCD �
E�AB��CD� � ECDAB. We will see that defining these two
tensors is sufficient to understand linearized perturbations
of the medium.

In order to make correspondence with the space-time
M, we define P A

� to be a bi-tensorial projection operator
which projects a tensor in H into M, or vice-versa, then
one can define the projected metric tensor ��� by

 ��� � P A
�P

B
��AB: (3)

The field of flow vectors u� tangent to worldlines in M are
normalized by the condition

 u�u� � �1; (4)

and the projection is orthogonal to them, that is, u�P A
� �

0. This allows us to construct ��� as an orthogonal pro-
jection tensor

 ��� � g�� � u�u�; (5)

providing an alternative, but equivalent, definition for ���.
It acts as the tensor which projects other tensors onto
the tangent subspace orthogonal to the worldlines. For
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example, any vector v� can then be decomposed into
components orthogonal and parallel to the flow by v� �

?v
� � vku�, where ?v

� � ��� v� and vk � �u�v�. This
allows physically relevant space-time tensors to be decom-
posed into the parallel component, which does not contrib-
ute to the material projection, and the orthogonal part,
which does. This framework is summarized schematically
in Fig. 1.

One can use the projection tensor to construct the space-
time pressure tensor, P��, from that on H :

 P�� � P A
�P

B
�PAB; (6)

which satisfies u�P�� � 0. The same can be done for the
elasticity tensor E���� which satisfies

 E���� � E�������� � E����; E����u� � 0: (7)

One must also specify how perturbations in H are
related to those in M in order to deal with dynamics.
The convected differential d� � � �	 is an important quantity,
as it is the space-time tensor corresponding to the
Lagrangian (worldline preserving) material variation on
H . In the case of a vector, there is the bijection d�v�	 $
f�L?v

A; �Lvkg, where �L is the Lagrangian variation. The
convected differential can be evaluated in terms of
Lagrangian differentials on M by projecting the orthogo-
nal part of the perturbation. This gives the explicit rela-
tionship [35]:

 d�T�������� 	 � �LT
����
���� � T

����
���� u��Lu� � T

����
����u��Lu�; (8)

where T�...
�... is a general mixed tensor.

The next stage is to relate the material variations in
terms of space-time tensors. The most direct way to do
this is to use the convected derivative, which relates
Lagrangian and material variations. Applying (8) to (1)
and (2) one obtains [36]

 �L� � �
1

2
�P�� � ������Lg��; (9)

 �LP�� � �
1

2
�E���� � P����� � 4P���u��u���Lg��;

(10)

where extra terms are induced in (10) due to (8).
We can now begin to discuss the dynamics of an elastic

medium. A perfect elastic medium is defined by the con-
dition that the energy-momentum tensor T�� is a material
function of the metric tensor with respect to the flow field
[36], meaning that it takes the form

 T�� � �u�u� � P��: (11)

The variation in the energy-momentum tensor can be
obtained by using (11) in conjunction with (9) and (10) to
give

 �LT
�� � �

1

2
�W���� � T��g����Lg��; (12)

where the nonorthogonal elasticity tensor W���� can be
decomposed as [37]
 

W���� � E���� � P��u�u� � P��u�u� � P��u�u�

� P��u�u� � P��u�u� � P��u�u�

� �u�u�u�u�; (13)

and has the same symmetry properties as the ordinary
elasticity tensor. This allows the variations to be conven-
iently written in terms of functional derivatives of the
Lagrangian with respect to the metric via

 T�� � �2jgj�1=2 �
�Lg��

�jgj1=2L�; (14)

 W���� � 4jgj�1=2 �
�Lg��

�
�Lg��

�jgj1=2L�

� �2jgj�1=2 �
�Lg��

�jgj1=2T���; (15)

where jgj is the determinant of the metric.
It is often more convenient to describe perturbations

being fixed with respect to some background space. If
the vector field �� is the infinitesimal displacement of
the worldlines with respect to the fixed background space,
then the difference between Lagrangian �L and fixed
(Eulerian) variations �E is given by

 �L � �E �L�; (16)

FIG. 1. Evolution of a material along the flow lines u�.
Physical quantities are defined on the material manifold H in
terms of internal coordinates A;B . . . , and there is a direct
mapping of space-time tensors orthogonal to the flow and tensors
on H . Parallel components of the space-time tensors do not
contribute to the material projection.
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where L� is the Lie derivative. Such a displacement could
be removed by using a mapping of the perturbed space onto
the background space, but it will be more convenient to set
the gauge by some other means. In the following section,
for example, we use the synchronous gauge to derive the
cosmological equations of motion. For the particular case
of the metric tensor, then, the relationship (16) gives

 �Lg�� � �Eg�� � 2r�����; (17)

where �Eg�� is the Eulerian variation of the metric tensor.
The equation of motion for the vector field �� gives the

complete system of equations for the perturbations.
Evaluation of the Lagrangian variation �L����r�T���
gives

 �A������ � ����� � P���u�u���L���� �
1

2
�������	���Lg�	�r
E�
��

�

�
P�� _u� �

1

2
P�� _u� � 2A����
�v�
u� � ����� � P��� _u�u�u�

�
�Lg��; (18)

where dots denote covariant differentiation with respect to
the flow (that is, u�r�) and

 A���
� � E���

� � ���P
�� (19)

is the relativistic Hadamard elasticity tensor which forms
the characteristic equation needed to evaluate the sound
speeds in the medium [38]. This tensor obeys the symmetry
and orthogonality conditions

 A���� � A����; A����u� � 0: (20)

Equation (18) takes the form of a wave equation for the
displacement vector ��. Since all components are orthogo-
nal, the flow then the additional degree of freedom in ��

can be removed by imposing the orthogonality requirement
��u� � 0. The remaining quantities required to evaluate
(18) are the Lagrangian variation of the connection coef-
ficients, given by

 �L���� � r���Lg��� �
1

2
r��Lg��; (21)

and the flow gradient tensor given by

 v�� � r�u� � _u�u�: (22)

B. Cosmological equations of motion for an isotropic
medium

The perturbed space-time metric takes the form

 g�� � a2�
����� � h��	; h�� � ����	�h�	;

(23)

and so the Eulerian component of the metric perturbation is
given by �Eg�� � a2h��. We make use of the synchro-
nous gauge conditions (h00 � h0i � 0) to remove the
remaining degree of gauge freedom in the Einstein field
equations. At zeroth order the flow vector u� �
a�1�1; 0; 0; 0�, and so the nonzero components of the dis-
placement vector �� are confined to the spatial part by the
orthogonality requirement ��u� � 0.

In the synchronous gauge the nonzero components of the
Lagrangian variation of the connection are given by

 �L�i00 �
��i �H _�i; �L�0

0i �H _�i;

�L�0
ij � 2H@�i�j� �Hhij �

1

2
_hij;

�L�i0j � @j _�i �
1

2
_hij;

�L�ijk � @j@k�
i � �jkH _�i � @�jh

i
k� �

1

2
@ihjk;

(24)

where dots are now understood to denote derivatives with
respect to the conformal time and H is the conformal time
Hubble parameter. We can now obtain the equations of
motion and perturbed energy-momentum sources for the
cosmological fluids by inserting the appropriate pressure
and elasticity tensor expressions for each component into
(12) and (18).

1. Isotropic perfect fluid

In an isotropic perfect fluid the pressure tensor is iso-
tropic and is given in terms of the pressure scalar P by

 P�� � P���; (25)

while the elasticity tensor is given in terms of the bulk
modulus 	 by [33]

 E���� � �	� P������� � 2P��������; (26)

and the bulk modulus is defined by

 	 � ��� P�
dP
d�

: (27)

Substituting these expressions into (12), we obtain the
components of the perturbed energy-momentum tensor:
 

�ET
0

0 � ��� P�
�
@i�

i �
1

2
h
�
; (28a)

�ET
i
0 � ���� P� _�i; (28b)

�ETij � �	�
i
j

�
@k�k �

1

2
h
�
; (28c)

where h is the trace of the metric perturbation. From now
onward we do not make the explicit distinction between
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Eulerian (fixed) and Lagrangian perturbations, as all rele-
vant quantities are evaluated with respect to the fixed
coordinates. Substitution of (25) and (26) into (18) gives
the equation of motion for the displacement vector �i as
 

��� P�� ��i�H _�i� � 3	H _�i�	�@i@j�j� @ih=2� � 0:

(29)

2. Isotropic perfect elastic medium

We have pointed out that perturbations in an elastic
medium can be specified by the pressure tensor P�� and
the elasticity tensor E����. In the case of isotropy the
pressure tensor is also given by (25) since ��� is the
only isotropic tensor of rank two, up to a scaling. The
case of rank four, required to describe the elasticity tensor,
is more complicated; it is given by

 E���� � A������ � B��������; (30)

where A and B are arbitrary parameters. In order to fit in
with the definitions used in the previous section, we will
define an additional shear contribution by

 E���� � ����� � �	� P������� � 2P��������;

(31)

where the shear tensor obeys the symmetry and orthogo-
nality conditions

 ����� � ��������� � �����; �����u� � 0: (32)

In an isotropic elastic fluid the shear tensor in terms of a
single shear moduli � is given by

 ����� � 2�
�
�������� �

1

3
������

�
: (33)

The contribution of the shear tensor to the elasticity tensor
is zero in the perfect fluid case (� � 0). We again sub-
stitute these expressions into (12) to obtain the components
of the perturbed energy-momentum tensor
 

�T0
0 � ��� P�

�
@i�i �

1

2
h
�
; (34a)

�Ti0 � ���� P� _�i; (34b)

�Tij � ��
i
j

�
	�

2

3
�
��
@k�

k �
1

2
h
�
���2@�j�

i� � hij�:

(34c)

The equation of motion for the displacement vector �i is
then given by
 

��� P�� ��i �H _�i� � 3	H _�i � 	�@i@j�
j � @ih=2�

���@j@j�
i � @i@j�

j=3� @jhij � @
ih=3� � 0; (35)

where (34a)–(34c) and (35) agree with the equations for an
elastic medium defined in Ref. [19]. If the medium forms at
some finite time then boundary conditions imply that hij !

hij � h
I
ij, where I refers to quantities defined at the time of

formation of the medium. Since only the second-order
variation of the Lagrangian is relevant for linearized per-
turbations we have shown that the pressure tensor, P��,
and elasticity tensor, E����, specify the most general
parametrization of perturbations in T�� under the assump-
tions discussed earlier.

C. Evaluation of sound speeds

This section provides a brief summary of how to com-
pute the propagation speed and polarization directions of
sound waves (small perturbations) in a perfectly elastic
medium, which was originally developed in Ref. [38]. A
sound wave front is defined as the hypersurface across
which the acceleration vector u�r�u� has a jump discon-
tinuity (that is, at some coordinate point x�0 the accelera-
tion is a well-defined function in the limits x�� and x��, but
is not defined at x�0 ). The flow vector u�, the functions of
state �, P��, E����, the space-time tensor g��, and the
projection tensor ��� are continuous across this hypersur-
face, but the acceleration induces discontinuities in the first
derivatives of �, P��, E����, and ���.

At the wave front hypersurface u�r�u� � �l�, where
� is the amplitude of the sound wave and l� is the polar-
ization vector of the wave front, which satisfies

 l�l� � 1; l�u� � 0: (36)

If one introduces a propagation direction vector v� satisfy-
ing the same orthonormality conditions as the polarization
vector, then a characteristic equation,

 �v2����� � P��� �Q��	l� � 0; (37)

can be constructed whose eigenvalues give the squared
propagation speeds v2 in the direction specified by v�

and the eigenvectors are the polarization direction(s). The
relativistic Fresnel Q�� tensor is defined by

 Q�� � A����v�v�; (38)

where the Hadamard tensor A���� is defined by (19). The
Fresnel tensor satisfies the symmetry and orthogonality
conditions

 Q�� � Q����; Q��u� � 0: (39)

1. Isotropic perfect fluid

The Fresnel tensor can be obtained by substituting the
expression for the pressure tensor (25) and elasticity tensor
(26) into (19) and then using (38) to give

 Q�� � 	v�v�; (40)

so the eigenvalue equation becomes

 �v2��� P���� � 	v�v�	l� � 0: (41)
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This equation has a single solution in which the propaga-
tion direction is parallel to the polarization vector (l� �
v�) and is given by

 v2 � c2
s �

	
�� P

�
dP
d�

; (42)

which corresponds to the longitudinal (scalar) sound speed.

2. Isotropic perfect elastic medium

In the case of an isotropic elastic medium the Fresnel
tensor is given by

 Q�� �

�
	�

1

3
�
�
v�v� �����; (43)

so the eigenvalue equation becomes

 

�
v2��� P���� ����� �

�
	�

1

3
�
�
v�v�

�
l� � 0:

(44)

In this case there are two solutions—again there is one
where the propagation direction is parallel to the polariza-
tion vector—but also another where the propagation di-
rection is orthogonal to the polarization vector (l�v� � 0).
This additional solution corresponds to a transversely po-
larized (vector) sound speed. The two solutions are given
by

 v2 � c2
s �

	� 4�=3

�� P
; v2 � c2

v �
�

�� P
; (45)

so the two sound speeds are related by

 c2
s �

dP
d�
�

4

3
c2

v: (46)

For an equation of state where P � w� it can be seen from
(46) that if�=� is sufficiently large then c2

s > 0 even ifw is
negative. This stabilizing property of the shear modulus
initially motivated the use of elastic fluids in the framework
of dark energy models, where w<�1=3 is required to
achieve the observed acceleration [19,20]. The relationship

between the sound speeds and equation of state is shown in
Fig. 2, where we plot lines of constant �=� and c2

v in the
�w; c2

s � plane. The constraint that �=� 
 0 requires that
w 
 �1, while the constraint that 0 � c2

v � 1 restricts the
allowed value of c2

s for a given w. We have assumed that
the intrinsic properties of the medium are fixed and have
ignored time variations in quantities such as w and �=�.
Relaxing this assumption could lead to a well-defined
phenomenological model for time-varying dark energy.
However, such a model would have to respect the stability
conditions discussed above.

D. Harmonic decomposition of perturbations

Constant time hypersurfaces are homogeneous and iso-
tropic, so it is natural to decompose spatial tensor fields on
these hypersurfaces in terms of the irreducible representa-
tions of the rotation group SO(3). A spatial tensor field can
be decomposed in terms of eigenfunctions of the Laplacian
[39–41]

 �ijQS;V;T
jij � �k2QS;V;T; (47)

where the S, V, T index represents irreducible scalar,
vector, and tensorial quantities and ‘‘|’’ represents cova-
riant differentiation with respect to the three-metric �ij.
These eigenfunctions form a complete basis in which to
expand the tensor field. In flat space, for example, Fourier
plane waves provide a local orthonormal basis. Scalars can
be constructed from longitudinal-type vectors and tensors
via [42]

 QS
i � �k

�1QS
ji; QS

ij � k�2QS
jij �

1

3
�ijQS; (48)

and similarly vectors can be constructed from solenoidal
type tensors by

 QV
ij � ��k�

�1QV
�ijj�; (49)

subject to QVji
i � QTji

ij � QTi
i � 0. A vector field can,

therefore, be decomposed as
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FIG. 2. Allowed parameter space of elastic fluid models in the �w; c2
s � plane. The left panel shows lines of constant �=�, with the

constraint that �=� 
 0 disallowing regions with w<�1 and w> c2
s . The right panel shows lines of constant c2

v, with the constraint
that 0 � c2

v � 1 disallowing an additional region with w> c2
s � 4=3.
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 �i � �SQS
i � �

VQV
i ; (50)

and the general decomposition of a symmetric tensor field
is

 Hij � HS
LQ

S�ij �H
S
TQ

S
ij �H

VQV
ij �H

TQT
ij: (51)

The 6 degrees of freedom of the tensor field are represented
by two scalar parts along with vector and tensor parts each
with 2 degrees of freedom.

E. Einstein equations and conserved energy-
momentum

The perturbed Einstein equations subject to the synchro-
nous gauge conditions are

 

a2G0
0 � �3H 2 �H _h�

1

2
@i@

ih�
1

2
@i@jh

ij; (52a)

2a2G0
i � @i _h� @j _hji; (52b)

2a2Gi
0 � @j _hij � @i _h; (52c)

a2Gi
j � �2

_H �H 2��ij �
1

2
� �hij � �h�ij�

�H � _hij � _h�ij� �
1

2
��ij@k@

kh� @k@khij�

�
1

2
�ik�@k@lh

l
j � @j@lh

l
k � @k@jh�

�
1

2
�ij@k@lh

kl: (52d)

The metric perturbation is parametrized by hij � 2Hij,
where Hij is decomposed according to (51). In order to
compare the elastic fluid with other fluid-based models, we
use the parametrization of the energy-momentum tensor
used in Ref. [42],

 

T0
0 � ���� ���; (53a)

T0
i � ��� P�vi; (53b)

Ti0 � ���� P�v
i; (53c)

Tij � �P� �P��
i
j � P�i

j; (53d)

where vi is the velocity perturbation from the flow, and the
anisotropic stress, �i

j, is symmetric and traceless. These
quantities are also decomposed according to (50) and (51).
The scalar-vector-tensor (SVT) split of the perturbed
Einstein equations then gives the following constraint
and evolution equations.

Constraint:
 

H _h� 2k2� � 8�Ga2��; (54a)

k _� � 4�Ga2��� P�vS; (54b)

k _HV � �16�Ga2��� P�vV: (54c)

Evolution:
 

�h� 2H _h� 2k2���24�Ga2�P; (55a)
�h� 6 ��� 2H � _h� 6 _��� 2k2���16�Ga2P�S; (55b)

�HV � 2H _HV � 8�Ga2P�V; (55c)
�HT� 2H _HT� k2HT � 8�Ga2P�T; (55d)

where h � 6HS
L and � � ��HS

L �
1
3H

S
T� are the metric

variables defined in Ref. [43]. The equations of motion
for the scalar and vector components of the displacement
vector �i of the isotropic elastic fluid given by (35) are then
 

��S �
�

1� 3
dP
d�

�
H _�S � k2c2

s

�
�S �

1

2k
�h� hI�

�

� 3k
�
c2

s �
dP
d�

�
��� �I� � 0;

(56a)

��V �
�
1� 3

dP
d�

�
H _�V � k2c2

v

�
�V �

1

k
�HV

I �H
V�

�
� 0;

(56b)

where the subscript I denotes the metric induced on the
medium at the time of formation. Assuming an equation of
state P � w� then the scalar components of the perturbed
energy-momentum tensor (34a)–(34c) are, according to
the decomposition (53a)–(53d),
 

�� � ���1� w�
�
k�S �

1

2
�h� hI�

�
; (57a)

vS � _�S; (57b)

�P � ���1� w�
dP
d�

�
k�S �

1

2
�h� hI�

�
; (57c)

�S �
3

2

�
c2

s �
dP
d�

�
�1� w�1�

�
k�S �

1

2
�h� hI�

� 3��� �I�
�

(57d)

�
3

2

�
c2

s �
dP
d�

�
�1� w�1�

�
�

�
1� w

� 3��� �I�
�
:

(57e)

Note that �P=�� � dP
d� . Equation (56a) can then be used in

conjunction with (57a)–(57c) and (57e) to give a closed set
of scalar equations:
 

_� � ��1� w�
�
kvS �

1

2
_h
�
; (58a)

_vS � �H
�
1� 3

dP
d�

�
vS �

dP
d�

1

1� w
k��

2

3

w
1� w

k�S:

(58b)

The anisotropic stress is zero in the perfect fluid limit (� �
0). Similarly, the vector sources are
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vV � _�V; (59a)

�V � 2c2
v�1� w

�1��k�V �HV
I �H

V�; (59b)

and the anisotropic tensor source is

 �T � 2c2
v�1� w�1��HT

I �H
T�: (60)

The vector or tensor contributions due to the elastic me-
dium are absent in the perfect fluid limit. Equation (56b)
can then be used in conjunction with (59a) and (59b) to
give the vector equation of motion

 _v V � �H

�
1� 3

dP
d�

�
vV �

1

2

w
1� w

k�V: (61)

F. Comparison to generalized fluid systems

The equations of motion derived in the preceding sec-
tions are based on a very specific set of assumptions. Given
that the understanding of the evolution of dark energy
perturbations is crucial to making precise predictions for
the observed power spectra, a variety of phenomenological
models have been discussed [26,27,30–32]. In this section
we attempt to make some contact between our work and
these models.

Energy conservation of a generalized fluid energy-
momentum tensor gives the scalar equations [30,43]:
 � _�

1� w

�
� �

�
kvS �

1

2
_h
�
� 3H

w
1� w

�; (62a)

_vS � �H
�
1� 3

dP
d�

�
vS �

dP
d�

1

1� w
k�

�
w

1� w
k��

2

3

w
1� w

k�S; (62b)

where � is the entropy contribution which is given by

 w� �
�
�P
��
�
dP
d�

�
�: (63)

In general, P � w� does not imply �P � w�� due to
temporal or spatial variations in w which correspond to
entropy perturbations. It transpires that both entropy and
anisotropic stress can play a role in stabilizing perturba-
tions which is crucial to the viability of any model.

In an elastic medium, we have already pointed out that
��=�P � dP

d� which implies that � � 0, that is, the medium
is adiabatic. However, the nonzero rigidity leads to aniso-
tropic stress and it is that which stabilizes perturbations as
shown by (45).

A number of authors [30–32] have suggested phenome-
nological approaches which involve the inclusion of an-
isotropic stress. Based on various arguments, they
suggested making �S dynamical and constructed a phe-
nomenological equation of motion for its evolution:

 

_� S �
1

T
�S �

4c2
vis

w

�
kvS �

1

2
_h� 3 _�

�
; (64)

where T is some decay time scale (which they suggest
should be �3H ��1) and c2

vis is some arbitrary coefficient,
whose physical origin is attributed to viscosity within the
fluid. If we differentiate (57e) and substitute in (58a), then
we obtain

 

_� S �
2�
P

�
kvS �

1

2
_h� 3 _�

�
; (65)

which has a similar form to (64) if T � 1 and c2
vis �

�=�2�� � c2
v�1� w�=2. The construction of these phe-

nomenological models was somewhat ad hoc, nonetheless
they are very close to those described here. However, we
see that the physical mechanism which they describe is not
viscosity, but rigidity. It might be possible to construct
models with finite values of T by modifying our approach
to include some kind of dissipation.

We note that the system of equations which we have
derived is very similar to that which might come from a
truncated Boltzmann hierarchy for a blackbody such as the
neutrinos (or photons with no Thomson scattering terms).
In particular, if we take w � 1=3 and �=� � 4=15, then
the elastic model gives
 

_� � �
4

3

�
kvS �

1

2
_h
�
; (66a)

_vS � k
�

1

4
��

1

6
�S

�
; (66b)

_�S �
8

5

�
kvS �

1

2
_h� 3 _�

�
; (66c)

which is exactly that given by a Boltzmann hierarchy with
a third moment set to zero [42].

A second class of models seeks to model dark energy
fluids which are nonadiabatic and could come from scalar
field models. For a minimally coupled scalar field with the
standard kinetic term

 �� � _
 _�
�
dV
d


�
; �P � _
 _�
�
dV
d


�
;

(67)

and hence �P=�� clearly depends on the frame of the dark
energy defined by �
 and _�
. One can choose to work in
the rest frame of the dark energy defined by ��� P�vi �
k̂ik�
= _
 � 0, where c2

s � �P=�� � 1. More general
models with nonminimal couplings or exotic kinetic terms
could have c2

s � 1.
It was suggested in Refs. [26,27] to use a system of

equations described by (62a) and (62b) with no anisotropic
stress but with � � 0. In order to take into account the
possibility of different frames, the sound speed was
deemed to be defined in the rest frame of the dark energy,
and the equations of motion were modified to apply in an
arbitrary frame, that is, one makes the transformation to

 �rest � �� 3H �1� w��vS � B�=k: (68)
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Here B is the space-time component of the metric pertur-
bation and is zero in both the synchronous and Newtonian
gauges. This leads to equations of motion
 

_� � ��1� w�
�
kvS

�
1�

9H 2

k2 �c
2
s � w�

�
�

1

2
_h
�

� 3H �c2
s � w��; (69a)

_vS � �H �1� 3c2
s �v

S �
kc2

s

1� w
�; (69b)

which can be computed from (62b) using

 w�eff � �c2
s � w�

�
�� 3H �1� w�

vS

k

�
: (70)

When c2
s � w these are clearly the same as for the elastic

medium, but they are very different in the limit c2
s ! 0, as

we shall see in the subsequent discussion.

G. Anisotropic generalizations

In the previous sections we have described how one can
construct a general perturbed energy-momentum tensor
under a set of simple assumptions. The fact that the general
isotropic tensor of rank four has a limited number of
degrees of freedom has allowed us to construct the most
general set of equations of motion for an isotropic medium
defined by its density, pressure, and rigidity. More gener-
ally we have shown that specification of all of the compo-
nents of the pressure tensor, P��, and elasticity tensor,
E����, is sufficient to describe the perturbed energy-
momentum tensor using (12). In this section we will dis-
cuss aspects of a generalization which allows for the
perturbations to be anisotropic and consider the case of
cubic symmetry which is the simplest anisotropic
possibility.

In general, the elasticity tensor has a total of 21 inde-
pendent components [44]. One of these, the bulk modulus,
is specified by the pressure, and the other 20 are shear
moduli, which can provide an anisotropic response to
perturbations depending on the particular symmetry of
the system. Fortunately the classification of these shear
moduli has been studied in the context of classical elastic-
ity theory, and it is known that there are 14 different types,
known as the Bravais lattices. In Table I we list the number
of nonzero shear moduli for each symmetry group.

An additional requirement that we will impose here is
that the pressure tensor is isotropic, P�� � P���, so that
the unperturbed space-time has the standard Friedmann-
Robertson-Walker metric, and the anisotropic response is
only present at linearized order. This will probably restrict
the range of possibilities allowed, but for sure there is at
least one possibility, that of cubic symmetry, which is
compatible with this.

The case of cubic response to perturbations was consid-
ered in Ref. [45]. There are now two shear moduli, �L and
�T, which specify the nonzero components of the elasticity

tensor

 Exxxx � Eyyyy � Ezzzz � 	� P�
4

3
�L;

Exxyy � Eyyzz � Ezzxx � 	� P�
2

3
�L;

Eyzyz � Exzxz � Exyxy � P��T:

(71)

The energy-momentum sources are modified from those in
(34a)–(34c) to
 

�T0
0 � ��� P�

�
@i�i �

1

2
h
�
; (72a)

�Ti0 � ���� P� _�i; (72b)

�Tij � ��
i
j

�
	�

2

3
�L

��
@k�

k �
1

2
h
�

��L�2@�j�
i� � hij� ���Sij; (72c)

where �� � �T ��L quantifies the degree of anisotropy.
The tensor Sij represents the cubic source term and is given
by

 Sij �
0 2@�y�

x� � hxy 2@�z�
x� � hxz

2@�y�
x� � hyx 0 2@�y�

z� � hyz
2@�z�x� � hzx 2@�z�y� � hzy 0

0
B@

1
CA:
(73)

Furthermore, the evolution equations (35) are modified to
 

��� P�� ��i �H�i� � 3	H _�i � 	�@i@j�j � @ih=2�

��L�@j@j�i � @i@j�j=3� @jhij � @
ih=3� � ��Fi;

(74)

where the cubic source term Fi is given by

TABLE I. Number of nonzero shear moduli for each of the
Bravais lattice symmetry groups [44]. For the tetragonal and
rhombohedral symmetries the number of shear moduli depend
on the particular class of symmetry, which can be identified
using the Schönflies notation. There are 7 shear moduli for
tetragonal symmetry with a 4-fold rotation axis (C4), for ex-
ample, but this reduces to 6 with the additional of a mirror plane
parallel to the axis of rotation (C4v).

Symmetry Number of nonzero shear moduli

Triclinic 20
Monoclinic 12
Orthorhombic 8
Tetragonal �C4;S4;C4h� 6
Tetragonal �C4v;D2d;D4;D4h� 5
Rhombohedral �C3;S6� 6
Rhombohedral �C3v;D3;D3d� 5
Hexagonal 4
Cubic 2
Isotropic 1
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 Fi �
�@y@y � @z@z��x � @x�@y�y � @z�z� � @yhxy � @zhxz
�@x@

x � @z@
z��y � @y�@x�

x � @z�
z� � @xhyx � @

zhyz
�@x@x � @y@y��z � @z�@x�x � @y�y� � @xhzx � @yhzy

0
B@

1
CA: (75)

One of the consequences of the introduction of two shear
moduli is that the sound speeds become dependent on the
direction of the wave vector [46]. When one performs the
same SVT decomposition as for the isotropic case, the
different SVT sectors couple and scalar modes can excite
vorticity and gravitational waves [45]. It is possible that
this kind of anisotropic behavior is responsible for anoma-
lies seen in the spectrum of the CMB on very large scales;
this is presently under investigation.

III. ANALYTIC SOLUTIONS

In this section, we identify the regular perturbation
modes which can arise in the early universe in the presence
of an isotropic elastic medium. This task has been per-
formed in the standard scalar case in Ref. [47].
Observations show that the primordial perturbation was
most likely dominated by an adiabatic scalar mode gen-
erated from fluctuations in the metric. However, the most
general primordial perturbation can also contain scalar
isocurvature modes [47] generated from variations in the
abundance ratios of different particle species. In the vector
sector, a regular mode can also be sourced from nonzero
initial photon and neutrino vorticity [48], and primordial
magnetic fields can also lead to regular modes [49].

We consider a universe consisting of cold dark matter
(c), baryons (b), neutrinos (�), photons (�), and an elastic

fluid component (e). We identify specific modes where the
elastic medium has an equation of state with w � 0,�1=3,
�2=3. To identify the regular modes in the early universe
we assume that the photons and baryons are tightly coupled
due to the large Thomson scattering term �T. One can then
obtain exact equations for the evolution of their velocity.
An expansion in opacity ��1

c � ane�T which is valid for
max�k�c;H�c� � 1 gives

 

_vS�b�1� R� � RHvS�b �
k
4
��; (76a)

_vV�b�1� R� � RHvV�b � 0; (76b)

where R � 3�b=�4���. In the following we define !x �

�xH2
0 , R� � ��=�r, and R� � ��=�r. The primordial

modes are then given by a series expansion of equations in
Sec. II E in terms of the conformal time 
.

A. Scalar modes

In the scalar sector the most general primordial
perturbation is specified by a mixture of adiabatic and
isocurvature modes. Adiabatic coupling between various
components in the universe requires that the relative per-
turbation between species, given by

TABLE II. Regular adiabatic and isocurvature scalar modes. The adiabatic mode results from an initial curvature perturbation (�)
and the isocurvature modes for CDM, baryons, and neutrinos result from initial fluctuations in density, such that the curvature
perturbation vanishes. There also exists a neutrino velocity mode, where the neutrino and photon-baryon fluid have a spatially varying
relative velocity, balanced so that the net momentum is zero. We list perturbation growth in an elastic fluid for these modes.

Adiabatic CDM IC Baryon IC Neutrino density IC Neutrino velocity IC

h 1
2 k

2
2 !c����
!r
p 
� 3!c�!m�!e;we�0�

8!r

2 !b����

!r
p 
� 3!b�!m�!e;we�0�

8!r

2 R�!b

40R�
����
!r
p k2
3 3R�!b

8R�
����
!r
p k
2

� 1� �5�4R��
12�15�4R��

k2
2 � !c

6
����
!r
p 
�

!c��15�4R��!m��5�4R��!e;we�0	

16!r�15�4R��

2 � !b

6
����
!r
p 
�

!b��15�4R��!m��5�4R��!e;we�0	

16!r�15�4R��

2 � R�

6�15�4R��
k2
2 � 4R�

3�5�4R��
k


�c � 1
4 k

2
2 1� !c

2
����
!r
p 
� 3!c�!m�!e;we�0�

16!r

2 � !b

2
����
!r
p 
� 3!b�!m�!e;we�0�

16!r

2 � R�!b

80R�
����
!r
p k2
3 � 3R�!b

16R�
����
!r
p k
2

�b � 1
4 k

2
2 � !c

2
����
!r
p 
�

3!c�!m�!e;we�0�

16!r

2 1� !b

2
����
!r
p 
�

3!b�!m�!e;we�0�

16!r

2 R�

8R�
k2
2 R�

R�
k
�

3�R��2�R�!b

16R2
�
����
!r
p k
2

�� � 1
3 k

2
2 � 2!c

3
����
!r
p 
� !c�!m�!e;we�0�

4!r

2 � 2!b

3
����
!r
p 
� !b�!m�!e;we�0�

4!r

2 � R�

R�
� R�

6R�
k2
2 4R�

3R�
k
� �R��2�R�!b

4R2
�
����
!r
p k
2

�� � 1
3 k

2
2 � 2!c

3
����
!r
p 
� !c�!m�!e;we�0�

4!r

2 � 2!b

3
����
!r
p 
� !b�!m�!e;we�0�

4!r

2 1� 1

6 k
2
2 � 4

3 k
�
R�!b

4R�
����
!r
p k
2

�e;we�0 � 1
4 k

2
2 � !c

2
����
!r
p 
� 3!c!m

16!r

2 � !b

2
����
!r
p 
� 3!b!m

16!r

2 � R�!b

80R�
����
!r
p k2
3 � 3R�!b

16R�
����
!r
p k
2

�e;we��1=3 � 1
6 k

2
2 � !c

3
����
!r
p 
� !c!m

8!r

2 � !b

3
����
!r
p 
� !b!m

8!r

2 � R�!b

120R�
����
!r
p k2
3 � R�!b

8R�
����
!r
p k
2

�e;we��2=3 � 1
12 k

2
2 � !c

6
����
!r
p 
� !c!m

16!r

2 � !b

6
����
!r
p 
� !b!m

16!r

2 � R�!b

240R�
����
!r
p k2
3 � R�!b

16R�
����
!r
p k
2

vS�b � 1
36 k

3
3 � !c

12
����
!r
p k
2 � !b

12
����
!r
p k
2 � R�

4R�
k
� 3

16
R�!b

R�
����
!r
p k
2 � R�

R�
� 3R�!b

4R2
�
����
!r
p 


v� � �23�4R��
36�15�4R��

k3
3 � !c

12
����
!r
p k
2 � !b

12
����
!r
p k
2 1

4 k
�
�27�4R��

72�15�4R��
k3
3 1� 9�4R�

6�5�4R��
k2
2

vSe;we�0 � 5c2
s

8�15�4R��
k3
3 15c2

s!c!e

32�15�4R��!r
k
3 15c2

s!b!e

32�15�4R��!r
k
3 c2

sR�
8�15�4R��

k3
3 4c2
sR�

3�5�4R��
k2
2

vSe;we��1=3
�5�4R��30c2

s �
60�15�4R��

k3
3 !c

24
����
!r
p k2
2 !b

24
����
!r
p k2
2 �3c2

s�1�R�
30�15�4R��

k3
3 �3c2
s�1�R�

3�5�4R��
k2
2

vSe;we��2=3
�5�4R��15c2

s �
36�15�4R��

k3
3 !c

15
����
!r
p k2
2 !b

15
����
!r
p k2
2 �3c2

s�2�R�
36�15�4R��

k3
3 4�3c2
s�2�R�

15�5�4R��
k2
2

�S
�

4
�15�4R��

k2
2 � 3
15�4R�

!c!e

2, (we � 0) � 3

15�4R�
!b!e


2, (we � 0) 3
15�4R�

k3
3 8
�5�4R��

k


� !c

�15�2R��
����
!r
p k2
3, (we < 0) � !b

�15�2R��
����
!r
p k2
3, (we < 0)
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 Aij �
�i

1� wi
�

�j
1� wj

; (77)

vanishes. If the various density perturbations compensate
in such a way that the initial curvature perturbation (�) is
zero on superhorizon scales then these are termed isocur-
vature initial conditions. The scalar adiabatic and isocur-
vature modes (for initial perturbations in fluids other than
the elastic fluid) are listed in Table II.

The isocurvature modes which can exist due to an elastic
fluid are listed in Table III. These modes are interesting as
they correspond to both initial nonzero density fluctuations
and nonzero anisotropic stress, resulting from fluctuations
of the scalar component of the worldline displacement
vector �S. Physically, we expect these modes to arise due
to a perturbed state of the elastic medium relative to the
background at formation; that is, the medium is not formed
in an equilibrium state.

Because of our definition of anisotropic stress, the stress
term for an elastic fluid, defined in (57e), will diverge when
w � 0. The equations of motion do not suffer any such
divergence, as this arises only due to our use of the stan-
dard decomposition of the energy-momentum tensor in
(53d). As such, we list the nonzero initial term for the
quantity w�S

e for the elastic anisotropic stress in Table III.

B. Vector modes

The regular vector mode has nonzero initial photon
vorticity, having equal and opposite neutrino vorticity

[48]. We have computed the initial conditions for this
mode in the presence of an elastic fluid; these are shown
in Table IV, neglecting the small contributions from the
photon anisotropic stress.

A regular mode also exists due to a nonzero initial
vectorial component of the displacement vector �V in the
elastic fluid, which also results in nonzero anisotropic
stress (as in the scalar mode), and this mode is presented
in Table V. In the elastic vector isocurvature mode the
photon and neutrino vorticity are zero as they have no
source term in the tight coupling limit. In both the regular
vector mode and elastic isocurvature mode, the elastic fluid

TABLE IV. Regular vector mode with nonzero initial photon
vorticity, having equal and opposite neutrino vorticity. HV

1 is the
first-order term in the expansion for the metric perturbation HV .
We list perturbation growth in an elastic fluid for this mode.

Regular

HV HV
1 
�1�

15
4
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����
!r
p

15�4R�

�

vV�b �
HV

1

4k
4R��5
R�
�1� 3
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v
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V
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3
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kc2

v
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V
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3
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kc2

v

15 H
V
1 


3

TABLE III. Isocurvature scalar modes due to an elastic fluid having an equation of state with
w � 0,�1=3, and�2=3. The isocurvature modes arise from spatially varying fluctuations in the
elastic fluid resulting in nonzero initial density fluctuations and anisotropic stress. We list the
initial perturbation for the parameter combination w�S

e , due to the definition of anisotropic
stress in (53d), which is regular even if w � 0.
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decouples from the equations of motion in the perfect fluid
limit.

The vector isocurvature solution for a w � �1=3 elastic
component can be found analytically in the radiation era
due to the absence of photon and neutrino vorticity. This
solution is given by

 �V � �VI

��
1�

4!e

k2 � 4!e

�
sin�cv�k

2 � 4!e�
1=2
	

cv�k2 � 4!e�
1=2


�
4!e

k2 � 4!e

�
: (78)

It can be shown that this solution gives that presented in
Table V if �VI � k�1 when expanded as a power series in 
.

C. Tensor modes

There are no tensor modes other than the standard
adiabatic mode. The tensor solution can be found analyti-
cally for a w � �1=3 elastic component in the radiation
era assuming that the anisotropic stress of photons and
neutrinos is zero. Using (55d) and (60) then

 HT � HT
I

�
sin��k2 � 4c2

v!e�
1=2
	k2

�k2 � 4c2
v!e�

3=2

�

4c2
v!e

k2 � 4c2
v!e

�
:

(79)

This reverts to the standard solution HT � HT
I j0�k
� when

!e � 0 or c2
v � 0.

IV. COSMOLOGICAL SIGNATURES

The observable CMB and matter power spectra were
computed by modifying the CAMB software [10] to include
an elastic fluid. We consider the elastic fluid in two scenar-
ios—in one instance it acts as the dark energy component
in an otherwise standard cosmology. The shear modulus �
stabilizes perturbations when w< 0. We also consider
models with �� � 0 and the elastic fluid as a pressureless
component with w � 0, but with a nonzero shear modulus.
The shear modulus introduces a clustering scale, the Jeans

length �J 
 cs
0, where 
0 is the conformal time today, as
c2

s � 4�=�3�� when w � 0. This shares some similarities
with a hot (or warm) dark matter component as power will
be suppressed on small scales, although the shear modulus
also allows for vector perturbations in the medium.

A. Scalar sector

The scalar C‘’s are given by

 C‘ � 4�
Z
d�logk�P s�k�j�‘�k; 
0�j

2; (80)

where �‘�k; 
0� is the associated multipole moment for the
photon distribution and P s�k� is the initial power spectrum,
parametrized by P s�k� � Askns�1, where As is the initial
scalar amplitude and ns is the scalar spectral index. Note
that P �k� � k3P�k�=�2�2�, where P�k� is the matter power
spectrum.

1. Adiabatic mode

The adiabatic mode is likely to have dominated the
primordial fluctuation, as a good fit to both CMB and
galaxy clustering data can be obtained by this mechanism
of structure formation and, assuming a flat universe, spec-
ifying a total of 6 cosmological parameters—�b, �c, As,
ns, h, and the optical depth to reionization �R. A dark
energy component is required in order to reconcile the
observed accelerated expansion [4–8].

The introduction of a dark energy component effects the
CMB anisotropies both by its influence on the background
expansion rate and its gravitational perturbations. Any
component which has the same equation of state w will
give an identical overall expansion effect. However, an
elastic fluid can potentially be distinguished by the differ-
ent evolution of perturbations compared with other dark
energy models. If w< 0 then small-scale anisotropies are
unaffected by the dark energy component as the perturba-
tions at these scales entered the horizon when the fractional
dark energy density was negligible. The primary contribu-
tion of the dark energy then arises at large angular scales

TABLE V. Isocurvature vector modes due to an elastic fluid having an equation of state with
w � 0, �1=3, and �2=3. This mode is the analogue of the scalar isocurvature mode, with a
nonzero initial vectorial component of the displacement vector resulting in nonzero anisotropic
stress.
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through the Integrated Sachs-Wolfe (ISW) effect. The
temperature-temperature (TT) contribution of the ISW
effect to the scalar multipoles is given by

 

CTT
‘ � 4�

Z
d�logk�P s�k�

�

�Z 
0


dec

d
e��� _
� _ �j‘�k�
0 � 
��
�

2
; (81)

where 
 and  are the Newtonian potentials [43] and 
dec

is the conformal time at decoupling. The presence of
anisotropic stress alters the evolution of the Newtonian
potentials.

In Fig. 3 we plot the CMB anisotropies for multipoles
‘ < 25 for the best-fitting �CDM model [1], along with
the best estimates of the TT WMAP third-year data [2,3].
We also plot the anisotropies for a number of elastic fluid

models, along with the corresponding scalar field model,
for various values of w and c2

s . In each case we exploit the
degeneracy between w and h to rescale the first acoustic
peak in order to isolate the ISW effect. It is noticeable in
both dark energy models that there is a reduction in power
at large angular scales for w � �1=3—this reduction is
slightly more pronounced for the elastic model due to the
anisotropic stress. For the scalar field models, the ISW
effect is minimized for c2

s � 0 and thereby increases
monotonically with c2

s . The elastic model is consistent
with this behavior for w � �1=3, but for w � �2=3 c2

s �
0 actually maximizes the ISW effect.

In Fig. 4 we plot the temperature-polarization (TE)
power spectrum for the best-fitting �CDM model. The
signal on large angular scales can be attributed to
early reionization. The contribution to the large-scale TE
power for the polarization generated at reionization is
given by

FIG. 3 (color online). (Left panel) A comparison of CMB TT data with the best-fitting WMAP �CDM model at low multipoles. The
parameters used are �ch

2 � 0:104, �bh
2 � 0:0223, h � 0:734, ns � 0:951, As � 2:02� 10�9, and �R � 0:088 [1]. (Right set of

2� 2) A comparison between scalar field and elastic fluid dark energy models at low multipole values. The upper panels show scalar
field models and the lower elastic models. The left and right panels show values of w � �1=3 and w � �2=3, respectively. In each
case the angular diameter distance to the first acoustic peak has been rescaled to coincide with the best-fit �CDM model to isolate the
ISW effect. The appropriate change to the Hubble parameter is h � f0:50; 0:60g for w � f�1=3;�2=3g. In each diagram a dotted line
shows the �CDM model. The solid curves (bottom to top apart from the w � �2=3 elastic fluid model) are c2

s � 0, 0.2, 0.4, 0.6, 0.8, 1,
where c2

s � 2=3 in the w � �2=3 case due to the stability condition (45).
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CTE
‘ � 4�

Z
d�logk�P s�k�

�

�Z 
0


re

d
e��� _
� _ �j‘�k�
0 � 
��
�

�

�Z 
0


re

�d

3

4k2 �g�k
2�� ��� � 2 _g _�� �g��

� j‘�k�
0 � 
��
�
; (82)

where g � _�e�� is the visibility function, 
re is the con-
formal time at reionization, and the polarization source is
given in terms of the photon anisotropic stress and the
zeroth and second-order polarization moments by � �
�S
�=3��P0 � �P2. The photon anisotropic stress is the

dominant term coming from the free streaming of the
monopole at recombination. We also plot the TE power
spectrum for a number of elastic fluid models, along with
the corresponding scalar field models, for various values of
w and c2

s . We find that precision measurement of the TE
cross correlation at low ‘ can provide a potentially power-
ful discriminator of the dark energy model, if nonzero

anisotropic stress is present. The variation of c2
s for a scalar

field model generating no anisotropic stress has little effect
on the TE spectrum. The elastic fluid, however, shows
significant differences for scales of ‘ < 10 due to aniso-
tropic stress modifying the decay of gravitational poten-
tials during reionization.

The possibility of distinguishing two competing models
whose differences are only significant on large angular
scales is limited by the effect of cosmic variance. The
probability of distinguishing model A from B, assuming
that A is correct, is then given by [20]
 �

ln
�
P�fa‘mgjA�
P�fa‘mgjB�

��
A
� �

1

2

X
‘

�2‘� 1�

�

�
1�

C�A�‘
C�B�‘
� ln

�
C�A�‘
C�B�‘

��
: (83)

In Fig. 5 we plot this quantity for A � a scalar field model
and B � an elastic fluid model in the �w; c2

s � parameter
space, and indicate the region where the models can be
distinguished at 1� �. We find that this probability is too
small in almost all of the regions of interest to discriminate

FIG. 4 (color online). (Left panel) A comparison of CMB TE data with the best-fitting WMAP �CDM model at low multipoles.
(Right set of 2� 2) A comparison between scalar field and elastic fluid dark energy models at low multipole values. Parameter values
and labeling is the same as in Fig. 3, apart from c2

s where (top to bottom) c2
s � 0, 0.2, 0.4, 0.6, 0.8, 1, and c2

s � 2=3 in the w � �2=3
case due to the stability condition (45).
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between models, based on CMB TT anisotropies. In the
right panel of Fig. 5 we plot the analogous quantity based
on TE anisotropies, assuming �R � 0, which shows that
accurate measurement at ‘ < 10 vastly increases the area
of parameter space that can be differentiated. If �R � 0
one would be unable to distinguish between scalar field
models from elastic models using TE.

The large-scale structure of the universe depends on the
growth rate of perturbations in the various species. An
important aspect of dark energy is that it has a large
Jeans length, �J 
 cs
0, at the present epoch so that it
does not cluster on small scales and contribute to measure-

ments of �m in galaxy clusters. We have assumed that the
matter power spectrum is modified to

 P��k� � b2j�Tj
2; (84)

where �T �
P
i�i�i. This makes this untested assumption

that the biasing of the dark energy component is propor-
tional to its density. In Fig. 6 we plot the matter power
spectrum for w � �2=3 elastic and scalar field dark en-
ergy models, decomposing the power into components due
to the various species.

FIG. 6 (color online). The clustering effect of elastic (left set of 2� 2) and scalar field (right set of 2� 2) models as c2
s ! 0. The

solid curve shows the total power spectrum for w � �2=3, while the long- and short-dashed curves show the decomposition of the
total power into components due to the clustering of the dark energy and CDM/baryonic species, respectively. The panels show a dark
energy sound speed of c2

s � 10�2 (top left), c2
s � 10�3 (top right), c2

s � 10�4 (bottom left), and c2
s � 10�5 (bottom right). The dotted

curve shows the �CDM model. The total power spectrum has been arbitrarily normalized at k � 10�3h Mpc�1.

FIG. 5. The discrimination ‘‘landscape’’ between scalar field and elastic dark energy based on CMB TT (left panel) and TE (right
panel) data. The dark gray shaded area shows the region of parameter space excluded by the bound c2

v < 1 for the elastic component,
and the light gray area the region where the two models cannot be distinguished. It becomes difficult to distinguish the models in the
region of cosmological interest between �1 � w � �1=3.
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There are noticeable differences in the two cases. The
presence of a clustering scale in the dark energy (c2

s � 1)
affects the elastic fluid power spectrum in several ways. At
small scales, power increases as the sound speed becomes
nonrelativistic. If the assumption (84) is correct then an
approximate limit of c2

s * 10�3 would be required in order
to be compatible with large-scale structure (LSS) data. It is
also noticeable that power in the CDM/baryonic compo-
nents is reduced as the sound speed of the elastic compo-
nent becomes nonrelativistic. In the scalar field dark
energy model, however, a sound speed as low as c2

s �
10�5 does not change the total matter power spectrum
significantly. We have reduced c2

s further and find that c2
s �

0 would be compatible with LSS data.
Finally, we also consider whether the introduction of a

nonzero shear modulus in a pressureless w � 0 component
is compatible with CMB and LSS data. In Fig. 7 we plot the
ratio of the �CDM matter power spectrum against models
where there is elastic rigidity in the CDM, which we denote
�ECDM. The introduction of a nonzero shear modulus
introduces a clustering scale in the CDM and power is
suppressed on small scales. When c2

s � 10�5, for example,
power is suppressed by an order of magnitude compared to
the �CDM model at k � 0:1h Mpc�1. For the values of
c2

s < 10�4, the CMB anisotropies are affected at less than
the 1% level by variations in c2

s .

2. Isocurvature modes

Although the initial conditions appear to be dominated
by the adiabatic mode, a subdominant isocurvature contri-

bution cannot be ruled out. The scale-invariant CDM iso-
curvature mode suffers from the problem that the CMB
anisotropy has greatly suppressed power on small scales
relative to large scales. The reason for this is that the Sachs-
Wolfe effect and the initial temperature fluctuation both
add to give a much greater contribution to large-scale
power. Recent work has placed an approximate 10% upper
bound on the CDM isocurvature fraction, and similar con-
straints also apply for the other isocurvature modes [50].

The power spectrum of the scalar isocurvature mode is
defined by

 hj�j2i �
Z
d�logk�P ��k�: (85)

The scalar isocurvature modes for an elastic fluid are listed
in Table III. We list modes for a pressureless w � 0 com-
ponent with a nonzero shear modulus, which can be com-
pared to the standard CDM isocurvature mode, in Table II.
The effect of the shear modulus, and hence the sound speed
c2

s , enters at first order in 
 for several of the variables, such
as the metric perturbation �. We also list isocurvature
modes where the elastic fluid has an equation of state w �
�1=3 and �2=3.

In Fig. 8 we plot the transfer function T�k� of the total
density fluctuation �T, along with the CMB anisotropies
for a scale-invariant (P � / k0, corresponding to P��k� /
k�3) and white noise power spectrum (P � / k

3, corre-
sponding to P��k� / k0) for w � 0 and a primordial power
amplitude ratio of P �=P � 
 1, where P� is the power in
the curvature perturbation. As in the adiabatic case, density
fluctuations are suppressed on small scales when c2

s � 0.
Since the curvature fluctuation is zero initially, there is the
characteristic phase shift of the CMB peak positions typi-
cal of isocurvature modes compared to the adiabatic one,
with the first angular peak at ‘
 350. For the values of
c2

s < 10�4, we again find that the CMB anisotropies are
affected at less than the 1% level. When w< 0 perturba-
tion growth is suppressed and T�k� is much flatter, with a
fall off in power when c2

s � 0. This is because as these
modes cross through the horizon the dark energy density is
small, and so the growth in the curvature fluctuation is
suppressed. These are shown in Fig. 9, where we also plot
the CMB anisotropies for a white noise power spectrum
when w � �1=3 and �2=3.

B. Vector sector

Primordial vector modes constitute vortical perturba-
tions in the early universe. The regular vector mode has
been discussed in Ref. [48], along with a mode sourced by
the anisotropic stress of a primordial magnetic field in
Ref. [49]. We have also shown in Sec. III B that a regular
solution exists with a nonzero worldline displacement �V ,
which corresponds to nonzero initial anisotropic stress in
the elastic fluid.

FIG. 7 (color online). The ratio of the �CDM matter power
spectrum and models where the CDM has a nonzero shear
modulus, �ECDM, with sound speeds of c2

s � 10�6 (dotted
line), c2

s � 10�5 (short-dashed line), and c2
s � 10�4 (long-

dashed line).
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FIG. 9 (color online). Transfer function (left) and white noise CMB power spectrum (right) for w � �1=3 (top) and �2=3 (bottom)
with isocurvature initial fluctuations. The sound speeds are c2

s � 0 (solid line), c2
s � 0:005 (dotted line), c2

s � 0:05 (short-dashed line),
and c2

s � 0:5 (long-dashed line).

FIG. 8 (color online). Transfer function of the total density fluctuation �T (left panel), along with the scale-invariant (middle panel),
and white noise (right panel) CMB power spectrum for the w � 0 elastic model with isocurvature initial fluctuations. The sound speeds
are c2

s � 0 (solid line), c2
s � 10�6 (dotted line), c2

s � 10�5 (short-dashed line), and c2
s � 10�4 (long-dashed line). Transfer functions

have been arbitrarily normalized to unity at k � 1� 10�5h Mpc�1.
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1. Regular mode

In Ref. [48] vector perturbations are expressed in the
zero vorticity frame, which coincides with the synchronous
gauge used here. The Einstein equation was written

 k� _�� 2H�� � �8�Ga2�V; (86)

where� is the harmonic coefficient of the shear tensor. The
relationship _HV � �k� gives the Einstein evolution
Eq. (55c), and substituting HV

1 � �k�0 into the series
solution in Sec. III B returns the same result as in
Ref. [48]. The primordial power spectrum is defined by

 hj�j2i �
Z
d�logk�P��k�: (87)

In Fig. 10 we plot the CMB TT anisotropies for multipoles
‘ < 25 for a scale-invariant spectrum (P� / k

0) with a
primordial power amplitude ratio of P�=P � 
 10�3.

When the vector sound speed is zero the elastic dark
energy does not contribute to the anisotropic stress of the
Einstein Eq. (86). We find that the large-scale CMB power
is then the same for both the �CDM model and elastic dark
energy models with c2

v � 0. However, w< 0 requires a
nonzero vector sound speed otherwise the scalar perturba-
tions will be unstable to collapse, as shown by (45). In the
w � �1=3 case, for example, c2

v 
 1=4 is required for
c2

s 
 0. However, the effect of the anisotropic stress on
the CMB anisotropies at large angular scales is relativity
small, as shown in Fig. 10.

2. Isocurvature modes

Isocurvature modes can exist in an elastic fluid due to
nonzero anisotropic stress. We quantify these modes by the
spectrum

 hj�j2i �
Z
d�logk�P��k�: (88)

In Fig. 11 we plot an example of this mode for w � �1=3,
with a white noise power spectrum and a primordial power
amplitude ratio of P�=P � 
 10�3. The CMB anisotropies
are significantly suppressed on small scales relative to
large scales and are similar to the scalar isocurvature
mode. On small scales, the dark energy density is negli-
gible at horizon crossing and the resulting growth in � is
small. On larger scales, the dark energy density increases at
horizon crossing resulting in larger growth in �.

C. Tensor sector

In many inflationary models a nearly scale-invariant
spectrum of gravitational waves (tensor modes) is pro-
duced. These models are parametrized by the tensor spec-
tral index nt and the tensor to scalar ratio r � At=As, where
At and As are the primordial amplitude of tensor and scalar
fluctuations and the tensor power spectrum is given by
P t�k� � Atk

nt . The dominant tensor source to the CMB
TT anisotropy is

 CTT
‘ � 4�

Z
d�logk�P t�k�

�

�Z 
0


dec

d
e�� _HT j‘�k�
0 � 
��

�k�
0 � 
��2

�
2 �‘� 2�!

�‘� 2�!
: (89)

FIG. 11 (color online). CMB anisotropies for the vector iso-
curvature mode with a white noise (P� / k

3) spectrum, w �
�1=3, and c2

s � 1=2 (c2
v � 5=8). The top curve is the tempera-

ture spectrum and below this the B- and E-mode polarization.

FIG. 10 (color online). CMB TT power spectrum at low multi-
poles for the regular vector mode with a scale-invariant spectrum
and primordial vector to scalar power ratio of 
10�3. The
dashed curve shows both a �CDM model and an elastic fluid
with w � �1=3 and c2

v � 0 (corresponding to c2
s � �1=3). The

solid curve shows an elastic fluid with w � �1=3 and c2
v � c2

s �
1.
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For a scale-invariant spectrum as k! 0 the power in the
photon Boltzmann hierarchy remains in the quadrupole
and thus the tensor contributions have power enhanced
on large angular scales. This is shown in Fig. 12, where
we plot the TT anisotropy for the �CDM model with nt �
0 and r � 0:1 at the pivot scale k0 � 0:05 Mpc�1. The
elastic fluid contributes a source of anisotropic stress to the
Einstein Eq. (55d), and has the effect of damping the
evolution of HT and reducing the power on large angular
scales. This is another potential signature of elastic dark
energy models.

V. POSSIBLE REALIZATIONS OF ELASTIC DARK
ENERGY MODELS

One possible realization of the elastic fluid dark energy
models is a frustrated network of non-Abelian cosmic
strings [17,18,51,52] or domain walls [20,53]. In this sec-
tion we discuss some basic aspects of these scenarios and
make attempts to link them with the earlier sections. In
order to act as a dark energy component, any model needs
to provide significant negative pressure and have a Jeans
length which is comparable to the present horizon, which
can be achieved by having a relativistic sound speed.

The idea is that a static lattice of topological defects
forms at some point after a phase transition in the early
universe (see Ref. [54] for a review of the physics of
topological defects and phase transitions). Such a lattice
will have microscopic, mesoscopic, and macroscopic
scales. The microscopic and mesoscopic scales refer to
the core width and the lattice cell size respectively; we
will not discuss these specifically here and will just assume
that the relevant theory allows for the formation of a lattice
which is stable to physics on these scales. Most important
to the present discussion is the existence of some macro-
scopic scale, L.

On dimensional grounds the density of static cosmic
strings scales as �str / L�2 and that for domain walls is

given by �dw / L�1. The standard assumption of defect
evolution based on simulations of the simplest field theo-
retic models is that a self-similar scaling regime is
achieved (see, for example, Ref. [55] and references
therein) whereby L / t. However, if a static, stable lattice
forms, then the appropriate macroscopic length scale will
scale with the expansion of the universe and L / a�t�. In
this case the appropriate values of w are w � �1=3 for
strings and w � �2=3 for walls and these have been the
values which we have focused on in our earlier discussions.
It is possible that other values of w might be possible if the
equation of state of the walls is not Nambu-Goto. For
example, the energy-momentum tensor of a string with
energy density per unit length U and tension T is

 T���x� �
Z
d���x� X���	

�
U� _X� _X� �

T
�
X0�X0�

�
;

(90)

where �2 � X02=�1� _X2� and X� � �t;X���� is the posi-
tion of the string. Using this one can deduce that

 Pstr �
1

3
�str

��
1�

T
U

�
hv2i �

T
U

�
; (91)

where hv2i1=2 is the rms velocity of the strings. Hence, one
finds that w � �T=�3U� in the static limit. Since causality
implies that T=U � 1 we have that w 
 �1=3, with w �
0 in the nonrelativistic limit T � U. Similar arguments
can be put together to show that w 
 �2=3 for walls.

The static defect lattice will behave like an elastic solid
since it has rigidity. Recently, it has been shown [56] that
under the assumption that the lattice is isotropic �=� �
4=15 for static Dirac-Nambu-Goto strings and walls. If the
rigidity is comparable to this then the lattice will be stable
to macroscopic perturbation modes since c2

s and c2
v are both

positive and the Jeans length will be a substantial fraction
of the horizon since cs, cv 
 0:1. It is clear that an exactly
isotropic network would be difficult to form in cosmologi-

FIG. 12 (color online). Tensor mode CMB TT power spectrum with r � 0:1 at the pivot scale k0 � 0:05 Mpc�1. The left panel
shows the spectrum for a w � �1=3 elastic fluid and the right panel a w � �2=3 model. The labeling of the curves is the same as in
Fig. 4, and we observe a decrease in large-scale power with increasing c2

s .

COSMOLOGICAL PERTURBATIONS IN ELASTIC DARK . . . PHYSICAL REVIEW D 76, 023005 (2007)

023005-19



cal phase transition since it will be uncorrelated on large
scales. However, it might be possible for it to be approxi-
mately isotropic allowing for the treatment focused on in
this paper to be applicable. An alternative is that the lattice
has approximate point symmetry so the elasticity tensor
will also have point symmetry as described in Sec. II G.
The shear moduli for the Bravais lattices with cubic sym-
metry (the primitive lattices: simple cubic (SC), face-
centered cubic (FCC), and body-centered cubic (BCC))
relevant to the domain wall case were discussed in
Ref. [46], and it was shown that if w � �2=3 then the
BCC lattice is unstable and the SC/FCC lattices have zero
modes. It was argued that for the SC lattice this mode
corresponds to perturbation of infinite extent; that is, one of
the faces of the cubic system moving toward the another. A
number of composite lattices with cubic symmetry which
are part of the tetrahedral close-packing (TCP) structures
(see, for example, Ref. [57]) are also possible, although
none of these appear to be stable ifw � �2=3. They could,
however, be stable if w � �2=3� � for � small and
positive. The values of shear moduli are tabulated in
Table VI for known cubic lattices.

In addition to not being totally isotropic at formation (or
even having exact point symmetry) a lattice may have
initial macroscopic fluctuations relative to the equilibrium
position which correspond to the isocurvature modes dis-
cussed in the previous section. Since the formation of the
lattice is a causal process then these modes will have an
initial white noise spectrum (P i�k� / k3).

Two interesting issues are the scale of symmetry break-
ing of the phase transition and the likely cell size of the
lattice at the present day. Both of these rely on us under-
standing the lattice formation process which is not well
understood. A simple assumption would be that the lattice
forms instantaneously after the phase transition with some
initial cell size �c � atf which is some fixed fraction of the
horizon size at the time of formation tf . If � is the
symmetry-breaking scale which relates to the temperature
of formation Tf � b�, then assuming the lattice forms in
the radiation era the correlation size at formation is given
by

 �c�tf� �
0:3a

b2 N �1=2
mpl

�2 ; (92)

where N is the number of relativistic species at formation.
In the case of domain walls, if the wall density at formation
is ��tf� � c�3=�c, and assuming the network is subse-
quently swept along by the Hubble flow, we can estimate
� to be

 � � 100 keV
�
a
cb

�
1=4
�
N

100

�
�1=8
��dwh

2�1=4: (93)

Since the coefficients representing uncertainty in the wall
formation process have small exponents, it seems reason-
able to estimate � � 100 keV if �dwh2 
 1. One can also
compute the present-day cell size in a similar fashion,
which turns out to be

 �c�t0� � 100 pc
�
a3c

b3

�
1=4
�
N

100

�
�3=8
��dwh2��1=4: (94)

Since the smallest wave number at which nonlinear effects
become important in CMB codes such as CAMB is k

0:2 Mpc�1, it seems reasonable to assume that the linear
response to perturbations in such a defect network can be
treated in the continuum elastic medium framework. The
computation of the cell size is more sensitive to the uncer-
tainty parameters, but since causality gives the upper limit
of a & 1 the continuum medium description seems justi-
fied. One can also perform a similar exercise in the case of
cosmic strings. If the wall density at formation is ��tf� �
c�2=�2

c then one finds � � 2 TeV and �c�t0� � 1:0 AU,
with similar uncertainties in these parameters as in the
domain wall case.

The allowed symmetry-breaking scale may be increased
further if the defect network forms during inflation. In this
scenario the network is inflated outside the horizon and
reenters during a later epoch thus diluting the initial den-
sity. If one assumes that eN � TR=Tf , where TR is the
reheat temperature of inflation and N the number of e-folds
remaining when the network leaves the horizon during
inflation, then the symmetry-breaking scale of a domain
wall network is given by

 � � 5� 10�7 GeV
�
a
c

�
1=3
�
N

100

�
�1=6

�

�
TR

1 TeV

�
�1=3

eN=3��dwh
2�1=3; (95)

and the present-day cell size is modified to

 �c�t0� � 10�5 pca
�
N

100

�
�1=2

eN
�
1 TeV

TR

�
: (96)

If N � 30 and TR � 1 TeV then � � 10 MeV and
�c�t0� � 100 Mpc. One should note that quantum fluctua-
tions in the defect-forming field,  , should satisfy � 

H < �, otherwise no phase transition can occur during

TABLE VI. Shear moduli values for the cubic symmetry group
with different primitive cells. �� is defined as �T ��L, and is
zero in the isotropic case. The last three cases correspond to TCP
structures (see, for example, Ref. [57]).

�L=� �T=� ��=�

SC 1=6 1=3 1=6
FCC 2=9 1=6 �1=18
BCC 0.109 0.183 0.074
Weaire-Phelan (A15) 0.168 0.161 �0:007
Bergmann (T) 0.161 0.161 <10�3

Frauf-Laves (C15) 0.159 0.166 0.007
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inflation. If V 
M4 this restricts the mass scale of inflation
to M< 3� 108 GeV.

If a lattice of domain walls or cosmic strings exists, their
local gravitational interactions can give rise to further
observable effects. The symmetry-breaking scale � is lim-
ited observationally by the local generation of density-
induced perturbations. In the case of domain walls, the
mass per unit area is �
 �3 and so � � 100 keV gives
�
 5� 10�8 kg m�2, and for � � 10 MeV the wall has
�
 5� 10�2 kg m�2. If there are only several walls in
our current horizon they induce a density fluctuation
��=�
G�t0, with a similar-sized fluctuation in tempera-
ture of the CMB. A wall with � � 100 keV would induce
direct temperature fluctuations of �T=T 
 10�9, which is
well below the observed value of �T=T 
 10�5. Using this
constraint directly, one find that domain walls with � *

1 MeV would be ruled out [58]. However, this assumption
assumes that the walls move relativistically, with only
several walls in our horizon. In the lattice structures we
have envisaged here the walls are static and only move with
Hubble flow, and the CMB distortion in this case can be
much smaller [59]. In the case of strings, the mass per unit
length is given by �
 �2, and so � � 1 TeV gives �

9� 10�6 kg m�1. The CMB temperature distortion is of
the order �T=T 
 8�G�, and so low-energy strings dis-
cussed here would not produce significant fluctuations in
temperature.

VI. DISCUSSION AND CONCLUSIONS

We have studied the cosmological implications of a
perfect elastic fluid in the framework of general relativity.
In previous work on this subject, Bucher and Spergel
derived the equations of motion by variation of the action
assuming that the fluid is isotropic [19]. Here, we take a
more general approach using the material representation
concept and obtain equations of motion in terms of the
pressure and elasticity tensors of the fluid. This allows us to
parametrize the most general description of linearized
perturbations of the fluid in a compact and transparent
manner.

Under the assumption that the pressure and elasticity
tensors are isotropic we derive the Einstein and energy-
momentum conservation equations using this approach.
When the fluid has nonzero rigidity there is a source of
anisotropic stress which stabilizes perturbations when w<
0, making these models candidates to describe the dark
energy. The anisotropic stress also interacts with the vector
and tensor sectors as the shear modulus induces transverse
waves in the fluid. This phenomenon is well known in the
laboratory. In a nonrelativistic (low pressure) deformed
medium with nonzero rigidity the temperature has both
temporal and spatial variations. If the transfer of heat
occurs slowly then the oscillatory motions in the deformed
body are adiabatic. These motions correspond to longitu-
dinal (scalar) and transverse (vector) elastic waves, which

are related by c2
s > 4c2

v=3 [44]. In the relativistic (high-
pressure) treatment we enforce adiabaticity by assuming
that there are no temporal or spatial variations inw, and the
relationship between the wave propagation modes is then
given by c2

s � w� 4c2
v=3.

We find that the elastic fluid model is similar to gener-
alized dark energy models [30,31]. The construction of the
fluid energy-momentum tensor in these models was phe-
nomenological, and it was argued that anisotropic stress
can be attributed to viscosity in the fluid. We find that the
functional form of anisotropic stress suggested in [30,31] is
identical to our own if the decay time scale associated with
the stress term is infinite. In this case, the viscous sound
speed can be directly related to the vector sound speed of a
fluid with rigidity by c2

vis � c2
v�1� w�=2.

There appear to be two mechanisms for stabilizing dark
energy perturbations if we wish to model the dark energy
as a fluid. Either the fluid can be adiabatic and have
rigidity, or it can be nonadiabatic and have entropy pertur-
bations. A microphysical realization of the latter possibil-
ity is scalar field dark energy. As the evolution of
perturbations is different in each model, we have inves-
tigated the potential observational differences in the CMB
and matter power spectrum assuming the initial conditions
were generated from curvature fluctuations in the metric.
We find that the possibilities for distinguishing the two
models are low using only CMB TT data. However, the TE
power at large scales is reduced in the elastic fluid models
relative to the �CDM and scalar field models with �R � 0.
This increases the parameter space in which the two mod-
els can be differentiated, up to w * �0:8. As w becomes
closer to �1 the dark energy perturbations become less
important, and the two models essentially become the same
from an observational point of view.

The matter power spectrum outlines an interesting dif-
ference between the two models. An important aspect of
the dark energy is that it has a large Jeans length so that it
does not cluster on small scales. In principle though, it can
cluster on large scales, and we have attempted to model
this by including dark energy perturbations in P��k�. As
cs ! 0 we find that the elastic dark energy contribution to
P��k� dominates and cs * 10�3 would be required to be
compatible with large-scale structure data. In the case of
scalar field dark energy the contribution to P��k� from dark
energy increases as cs ! 0 but remains subdominant even
when c2

s � 0.
We have also shown that both scalar and vector isocur-

vature modes are allowed in an elastic fluid. These modes
correspond to initial fluctuations of the fluid relative to the
background, and give rise to anisotropic stress on super-
horizon scales. A generic feature of these modes is that
power is suppressed on small relative to large scales. The
dominant mode in these models would have to be the
adiabatic curvature mode in order to fit the data but there
could be a subdominant isocurvature component.
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Our approach has shown that we can parametrize the
perturbations of the energy-momentum tensor in terms of
the pressure and elasticity tensors of the fluid. In this work
we mainly focused on the isotropic case, but this formalism
can be easily extended if the elastic fluid has point sym-
metry. The symmetry properties of the elasticity tensor can
be classified by the Bravais lattices, which are familiar in
crystallography. Recently, there has been evidence of
large-scale anomalies in the CMB, most noticeably the
North-South power asymmetry [60] and alignment of low
‘ multipoles [61–64], which appear to persist in the third-
year WMAP data [65]. A possible solution is that the
energy-momentum tensor of the dark energy is not rota-

tionally invariant at linearized order. We have considered
the case where the elasticity tensor has cubic symmetry and
find that perturbation growth is dependent on the direction
as well as the magnitude of the wave vector. This work is
developed further in Ref. [45], and we are currently inves-
tigating whether these anisotropic models are compatible
with the data.
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