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We derive the mass-radius relation of relativistic white dwarf stars (modeled as a self-gravitating
degenerate Fermi gas at T � 0) in a D-dimensional universe and study the influence of the dimension of
space on the laws of physics when we combine quantum mechanics, special relativity, and gravity. We
exhibit characteristic dimensions D � 1, D � 2, D � 3, D � �3�

������
17
p
�=2, D � 4, D � 2�1�

���
2
p
� and

show that quantum mechanics cannot balance gravitational collapse for D � 4. This is similar to a result
found by Ehrenfest (1917) at the atomic level for Coulomb forces (in Bohr’s model) and for the Kepler
problem. This makes the dimension of our universe D � 3 very particular with possible implications
regarding the anthropic principle. We discuss some historic aspects concerning the discovery of the
Chandrasekhar (1931) limiting mass in relation to previous investigations by Anderson (1929) and Stoner
(1930). We also propose different derivations of the stability limits of polytropic distributions and consider
their application to classical and relativistic white dwarf stars.
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I. INTRODUCTION: SOME HISTORIC ELEMENTS

The study of stars is one of the most fascinating topics in
astrophysics because it involves many areas of physics:
gravitation, thermodynamics, hydrodynamics, statistical
mechanics, quantum mechanics, relativity, . . . and it has
furthermore a very interesting history. In his classical
monograph The Internal Constitution of the Stars,
Eddington (1926) [1] lays down the foundations of the
subject and describes in detail the basic processes that
govern the structure of ordinary stars. At that stage, only
elements of ‘‘classical’’ physics are used and difficulties
with such theories to account for the structure of high
density stars such as the companion of Sirius are pointed
out. Soon after the discovery of the quantum statistics by
Fermi (1926) [2] and Dirac (1926) [3], Fowler (1926) [4]
uses this ‘‘new thermodynamics’’ to explain the puzzling
nature of white dwarf stars. He understands that low mass
white dwarf stars owe their stability to the quantum pres-
sure of the degenerate electron gas [5]. The resulting
structure is equivalent to a polytrope of index n � 3=2 so
that the mass-radius relation of classical white dwarf stars
behaves like MR3 � 1 (Chandrasekhar 1931a [6]). The
next step was made by Chandrasekhar, aged only 19,
who was accepted by the University of Cambridge to
work with Fowler. In the boat that took him from Madras
to Southampton [7], Chandrasekhar understands that rela-
tivistic effects are important in massive white dwarf stars
and that Einstein kinematic must be introduced in the
problem. In his first treatment (Chandrasekhar 1931b
[8]), he considers the ultrarelativistic limit and shows that
the resulting structure is equivalent to a polytrope of index
n � 3. Applying the theory of polytropic gas spheres
(Emden 1907 [9]), this leads to a unique value of the
mass Mc that he interprets as a limiting mass, nowadays

called the Chandrasekhar limit [10]. The complete mass-
radius relation of relativistic white dwarf stars was given
later (Chandrasekhar 1935 [11]) and departs from Fowler’s
sequence as we approach the limiting mass. At this critical
mass, the radius of the configuration vanishes. Above the
critical mass, the equation of state of the relativistic degen-
erate Fermi gas of electrons is not able to balance gravita-
tional forces and, when considering the final evolution of
such a star, Chandrasekhar (1934) [12] ‘‘left speculating on
other possibility.’’ Chandrasekhar’s result was severely
criticized by Eddington (1935) [13] who viewed this result
as a reductio ad absurdum of the relativistic formula and
considered the combination of special relativity and non-
relativistic quantum theory as an ‘‘unholy alliance.’’
Because of the quarrel with Eddington, it took some time
to realize the physical implication of Chan-
drasekhar’s results. However, progressively, his early in-
vestigations on white dwarf stars were extended in general
relativity to the case of neutron stars (Oppenheimer and
Volkoff 1939 [14]) and finally led to the concept of ‘‘black
holes,’’ a term coined by Wheeler in 1967. Without the
dispute with Eddington, this ultimate stage of matter re-
sulting from gravitational collapse could have been pre-
dicted much earlier from the discovery of Chandrasekhar
[15].

Although these historic elements are well known, it is
less well known that the concept of a maximum mass for
relativistic white dwarf stars had been introduced earlier by
Anderson (1929) [16] and Stoner (1930) [17,18]. These
studies are mentioned in the early works of Chandrasekhar
but they have been progressively forgotten and are rarely
quoted in classical textbooks of astrophysics. These au-
thors investigated the equation of state of a relativistic
degenerate Fermi gas and predicted an upper limit for the
mass of white dwarf stars. Stoner (1930) [17] uses a
uniform mass density to model the star while Chan-
drasekhar (1931) [8] considers a more realistic n � 3*chavanis@irsamc.ups-tlse.fr
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polytrope. However, as noted in Chandrasekhar (1931) [8],
the value of the limiting mass found by Stoner with his
simplified model is relatively close to that obtained with
the improved treatment. Interestingly, Nauenberg (1972)
[19] introduced long after a simplified treatment of rela-
tivistic white dwarf stars in order to obtain an analytical
approximation of the mass-radius relation. It turns out that
this model, which gives a very good agreement with
Chandrasekhar’s numerical results (up to some normaliza-
tion factors), is similar to that introduced by Stoner.

Leaving aside these interesting historical remarks, the
result of Chandrasekhar [8] concerning the existence of a
limiting mass is very profound because this mass can be
expressed in terms of fundamental constants, similar to the
Bohr radius of the hydrogen atom [20]. Hence, the mass of
stars is determined typically by the following combination

 

�
hc
G

�
3=2 1

H2 ’ 29:2M�; (1)

where G is the constant of gravity, h the Planck constant, c
the velocity of light, and H the mass of the hydrogen atom
(M� is the solar mass). This formula results from the
combination of quantum mechanics (h), special relativity
(c), and gravity (G). Since dimensional analysis plays a
fundamental role in physics, it is of interest to investigate
how the preceding results depend on the dimension of
space D of the universe. In our previous investigations
[21–23], we considered the case of classical white dwarf
stars inD dimensions and found that they become unstable
in a space of dimension D � 4. In that case, the star either
evaporates or collapses. Therefore, quantum mechanics
cannot stabilize matter against gravitational collapse in
D � 4 contrary to what happens in D � 3 [4,24,25].
Interestingly, this is similar to a result found by Ehrenfest
[26] at the atomic level for Coulomb forces in Bohr’s
model and for the planetary motion (Kepler problem).
The object of this paper is to extend these results to the
case of relativistic white dwarf stars and exhibit particular
dimensions of space which play a special role in the prob-
lem when we combine Newtonian gravity, quantum me-
chanics, and special relativity. We shall see that the
problem is very rich and interesting in its own right. It
shows to which extent the dimension D � 3 of our uni-
verse is particular, with possible implications regarding the
anthropic principle [27]. We note that a similar problem
has been considered in [28] on the basis of dimensional
analysis. Our approach is more precise since we generalize
the exact mathematical treatment of Chandrasekhar [11] to
a space of dimension D. A connection with other works
investigating the role played by the dimension of space on
the laws of physics is made in the conclusion. In
Appendix B, we propose different derivations of the stabil-
ity limits of polytropic spheres and consider applications of
these results to classical and relativistic white dwarf stars.

II. THE EQUATION OF STATE

Following Chandrasekhar [11], we model a white dwarf
star as a degenerate gas sphere in hydrostatic equilibrium.
The pressure is due to the quantum properties of the
electrons and the density to the protons. In the completely
degenerate limit, the electrons have momenta less than a
threshold value p0 (Fermi momentum) and their distribu-
tion function is f � 2=hD where h is the Planck constant.
There can only be two electrons in a phase space element
of size hD on account of the Pauli exclusion principle.
Therefore, the number of electrons per unit volume is

 n �
Z
fdp �

2SD
hD

Z p0

0
pD�1dp �

2SD
DhD

pD0 ; (2)

where SD � 2�D=2=��D=2� is the surface of a unit sphere
in D dimensions. The mean kinetic energy per electron is
given by

 � �
1

n

Z
f��p�dp �

2SD
nhD

Z p0

0
��p�pD�1dp; (3)

where ��p� is the energy of an electron with impulse p. In
relativistic mechanics,

 � � mc2

��
1�

p2

m2c2

�
1=2
� 1

�
: (4)

The pressure of the electrons is

 P �
1

D

Z
fp

d�
dp

dp �
2SD
DhD

Z p0

0
pD

d�
dp

dp: (5)

Using Eq. (4), the pressure can be rewritten

 P �
2SD
DmhD

Z p0

0

pD�1

�1� p2

m2c2�
1=2
dp: (6)

Finally, the mass density of the star is

 � � n�H; (7)

where H is the mass of the proton and � the molecular
weight. If we consider a pure gas of fermions (like, e.g.,
massive neutrinos in dark matter models), we just have to
replace �H by their mass m.

Introducing the notation x � p0=mc, we can write the
density of state parametrically as follows

 P � A2f�x�; � � BxD; (8)

where

 A2 �
SDm

D�1cD�2

4DhD
; B �

2SDm
DcD�H
DhD

; (9)

 f�x� � 8
Z x

0

tD�1

�1� t2�1=2
dt: (10)

The function f�x� has the asymptotic behaviors
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 f�x� ’
8

D� 2
xD�2 �x	 1�; (11)

 f�x� ’
8

D� 1
xD�1 �x
 1�: (12)

The classical limit corresponds to x	 1 and the ultrarela-
tivistic limit to x
 1. Explicit expressions of the function
f�x� are given in Appendix A for different dimensions of
space.

III. THE CHANDRASEKHAR EQUATION

For a spherically symmetric distribution of matter, the
equations of hydrostatic equilibrium are

 

dP
dr
� �

GM�r�

rD�1 �; (13)

 M�r� �
Z r

0
�SDr

D�1dr: (14)

They can be combined to give

 

1

rD�1

d
dr

�
rD�1

�
dP
dr

�
� �SDG�: (15)

Expressing � and P in terms of x and setting y2 � 1� x2,
we obtain

 

1

rD�1

d
dr

�
rD�1 dy

dr

�
� �

SDGB2

8A2
�y2 � 1�D=2: (16)

We denote by x0 and y0 the values of x and y at the center.
Furthermore, we define

 r � a�; y � y0�; (17)

 a �
�

8A2

SDG

�
1=2 1

By�D�1�=2
0

; y2
0 � 1� x2

0: (18)

Note that the scale of length a is independent on y0 forD �
1. Substituting these transformations in Eq. (16), we obtain
the D-dimensional generalization of Chandrasekhar’s dif-
ferential equation

 

1

�D�1

d
d�

�
�D�1 d�

d�

�
� �

�
�2 �

1

y2
0

�
D=2
; (19)

with the boundary conditions

 ��0� � 1; �0�0� � 0: (20)

The radius R of the star is such that ��R� � 0. This yields

 ���1� �
1

y0
: (21)

The density can be expressed as

 � � �0
yD0

�y2
0 � 1�D=2

�
�2 �

1

y2
0

�
D=2
; (22)

where the central density

 �0 � BxD0 � B�y2
0 � 1�D=2: (23)

Finally, we find that the mass is related to y0 by

 M � �SD

�
8A2

SDG

�
D=2 1

BD�1 y
D�3�D�=2
0

�
�D�1 d�

d�

�
���1

:

(24)

Note that y0 does not explicitly enter in this expression for
D � 3 but it is of course present implicitly.

IV. THE CLASSICAL LIMIT

In the classical case x	 1, we find that the equation of
state takes the form

 P � K1�
1�2=D; (25)

with

 K1 �
1

D� 2

�
D

2SD

�
2=D h2

m��H��D�2�=D
: (26)

Therefore a classical white dwarf star is equivalent to a
polytrope of index [21,29]:

 n3=2 �
D
2
: (27)

Polytropic stars are described by the Lane-Emden equation
[9]. This can be recovered as a limit of the Chandrasekhar
equation. For x	 1, we have y0 ’ 1� 1

2 x
2
0. We define

� � �2 � 1=y2
0. To leading order, � � 1� �x2

0 � ��=2.
Setting 	 �

���
2
p
� and combining the foregoing results,

we find that Eq. (19) reduces to the Lane-Emden equation
with index D=2:

 

1

	D�1

d
d	

�
	D�1 d�

d	

�
� ��D=2; (28)

 ��0� � x2
0; �0�0� � 0: (29)

Note that the condition at the origin is ��0� � x2
0 instead of

��0� � 1 as in the ordinary Lane-Emden equation.
However, using the homology theorem for polytropic
spheres [30], we can easily relate � to �D=2, the solution
of the Lane-Emden equation with index n3=2 � D=2 and
condition at the origin ��0� � 1.

The structure and the stability of polytropic spheres in
various dimensions of space has been studied by Chavanis
and Sire [21]. For D> 2, this study exhibits two important
indices:

 n3 �
D

D� 2
; n5 �

D� 2

D� 2
: (30)

According to this study, a classical white dwarf star is self-
confined (complete) if n3=2 < n5, i.e. D< 2�1�

���
2
p
� �

4:828 427 1 . . . . In that case, the density vanishes at a finite
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radius R identified as the radius of the star. On the other
hand, it is nonlinearly dynamically stable with respect to
the Euler-Poisson system if n3=2 < n3, and linearly un-
stable otherwise. Therefore, classical white dwarf stars
are stable for D< 4 and unstable for D � 4 (see Fig. 1
and Appendix B). For D � 2, classical white dwarf stars
are always self-confined and stable. Using the results of
[21], the mass-radius relation for complete polytropes with
index n3=2 � D=2 in D dimensions is

 M�D�2�=DR4�D �
K1�D� 2�

2GS2=D
D

!�D�2�=D
D=2 ; (31)

where we have defined

 !D=2 � �	
�D�2�=�D�2�
1 �0D=2�	1�; (32)

where 	1 is such that �D=2�	1� � 0. Using Eq. (26), we find
that the mass-radius relation for classical white dwarf stars
in D dimensions is

 M�D�2�=DR4�D �
1

2

�
D

2S2
D

�
2=D h2

mG��H��D�2�=D
!�D�2�=D
D=2 :

(33)

For 2<D< 4, the mass M decreases as the radius R
increases while for D< 2 and for 4<D< 2�1�

���
2
p
� it

increases with the radius (see Fig. 2).
For D � 4 the mass is independent on the radius and

given in terms of fundamental constants by

 M �
!2

2S2
4

h4

m2G2��H�3
’ 0:0143 958 . . .

h4

m2G2��H�3
:

(34)

We recall that the value of the gravitational constant G
depends on the dimension of space so that we cannot give
an explicit value to this limiting mass. The central density
is related to the radius by

 �0R4 �
	4

1

16�6

h4

m2G2��H�3
’ 0:105 468 . . .

h4

m2G2��H�3
:

(35)

For D � 2, the radius is independent on mass and given in
terms of fundamental constants by

 R �
	1

2
���
2
p
�

h

�Gm�1=2�H
’ 0:270 638 . . .

h

�Gm�1=2�H
:

(36)

Furthermore, for D � 2, the Lane-Emden equation (28)
with index n3=2 � 1 can be solved analytically, yielding
�1 � J0�	� and 	1 � 
0;1 where 
0;1 � 2:404 826 . . . is
the first zero of Bessel function J0. We obtain a density
profile

 ��r� � �0J0�	1r=R�; (37)

where the central density is related to the total mass by

 M � �
�0

4�
h2

Gm��H�2
	1�01 � 0:099 349 2 . . .

�0h
2

Gm��H�2
:

(38)

Finally, for D � 3, using the mass-radius relation (33), we
find that the average density is related to the total mass by

-2 0 2 4 6
ln(α)

0

2

4

6

8

10

η

D=5

D=4.5

D=4

D=3.5

D=3

D=1

n3/2=D/2

FIG. 1. Relation between the mass (ordinate) and the central
density (abscissa) of box-confined polytropes with index n3=2 �

D=2 in an appropriate system of coordinates (see [21,23] for
details). Complete polytropes correspond to the terminal point in
the series of equilibria. The series becomes dynamically unstable
with respect to the Euler-Poisson system (saddle point of the
energy functional) after the turning point of mass � which
appears for D � 4. Thus, classical white dwarf stars are stable
for D< 4 and unstable for D � 4.

0 1 2 3 4
M/M0

0

1

2

3

4

R
/R

0

D=3

D=1

D=4

D=2

FIG. 2. Mass-radius relation for classical white dwarf stars in
different dimensions of space. The radius is independent on mass
in D � 2 and the mass is independent on radius in D � 4. The
dimensional factors M0 and R0 are defined in Sec. VI.

P.-H. CHAVANIS PHYSICAL REVIEW D 76, 023004 (2007)

023004-4



�� � 2:162 106�M=M��
2 g=cm2 (for � � 2:5). Histor-

ically, this result was obtained by Chandrasekhar (1931)
[6] who first applied the theory of polytropic gas spheres
with index n � 3=2 to classical white dwarf stars. It im-
proves an earlier result �� � 3:977 106�M=M��2 g=cm2

obtained by Stoner (1929) [31] on the basis of his model
of stars with uniform density (see Sec. VII).

V. THE ULTRARELATIVISTIC LIMIT

In the ultrarelativistic limit x
 1, we find that the
equation of state takes the form

 P � K2�
1�1=D; (39)

with

 K2 �
1

D� 1

�
D

2SD

�
1=D hc

��H��D�1�=D
: (40)

Therefore, an ultrarelativistic white dwarf star is equivalent
to a polytrope of index

 n03 � D: (41)

This also directly results from the Chandrasekhar equation.
For x
 1, it reduces to

 

1

	D�1

d
d	

�
	D�1 d�

d	

�
� ��D; (42)

 ��0� � 1; �0�0� � 0; (43)

where we have set � � � and 	 � �. This is the Lane-
Emden equation with index n03 � D.

Using the results of [21] for D> 2, we deduce that an
ultrarelativistic white dwarf star is self-confined if n03 < n5,
i.e. D< �3�

������
17
p
�=2 � 3:561 552 8 . . . . In addition, it is

nonlinearly dynamically stable with respect to the Euler-
Poisson system if n03 < n3 and linearly unstable otherwise.
Therefore, ultrarelativistic white dwarf stars are stable
for D � 3 and unstable for D> 3 (see Fig. 3 and
Appendix B). ForD � 2, ultrarelativistic white dwarf stars
are self-confined and stable. On the other hand, using the
results of [21], the mass-radius relation for complete poly-
tropes with index n03 � D in D dimensions is

 M�D�1�=DR3�D �
K2�D� 1�

GS1=D
D

!�D�1�=D
D ; (44)

where we have defined

 !D � �	
�D�1�=�D�1�
1 �0D�	1�: (45)

Using Eq. (40), we find that the mass-radius relation for
ultrarelativistic white dwarf stars in D dimensions is

 M�D�1�=DR3�D �

�
D

2S2
D

�
1=D hc

G��H��D�1�=D
!�D�1�=D
D :

(46)

For 3<D< �3�
������
17
p
�=2, the mass M increases as the

radius R increases while for 1<D< 3 it decreases with
the radius (see Fig. 4).

For D � 1, the radius is independent on mass and given
in terms of fundamental constants by

0 2 4 6 8
ln(α)

0

1

2

3

η

n’3=D
D=2

D=3

D=3.3

D=4

FIG. 3. Relation between the mass (ordinate) and the central
density (abscissa) of box-confined polytropes with index n03 � D
in an appropriate system of coordinates (see [21,23] for details).
Complete polytropes correspond to the terminal point in the
series of equilibria. The series becomes dynamically unstable
with respect to the Euler-Poisson system (saddle point of the
energy functional) after the turning point of mass � which
appears for D � 3. Thus, ultrarelativistic white dwarf stars are
stable for D � 3 and unstable for D> 3.

0 1 2 3 4
M/M0

0

R
/R

0

D=2

D=3

D=1

FIG. 4. Mass-radius relation for ultrarelativistic white dwarf
stars in different dimensions of space. The radius is independent
on mass in D � 1 and the mass is independent on radius in D �
3 (Chandrasekhar’s mass).
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 R �
	1���
2
p
S1

�
hc
G

�
1=2 1

�H
� 0:555 360 . . .

�
hc
G

�
1=2 1

�H
:

(47)

Furthermore, for D � 1, the Lane-Emden equation (42)
with index n03 � 1 can be solved analytically, yielding
�1 � cos�	� and 	1 � �=2. We obtain a density profile

 ��r� � �0 cos�	1r=R�; (48)

where the central density is related to the total mass by

 M �
�0���

2
p

�
hc
G

�
1=2 1

�H
: (49)

For D � 3, the mass is independent on radius and given in
terms of fundamental constants by

 M �
�

3

32�2

�
1=2
!3

�
hc
G

�
3=2 1

��H�2
: (50)

This is the Chandrasekhar mass

 M � 0:196 701 . . .
�
hc
G

�
3=2 1

��H�2
’ 5:76M�=�2: (51)

Coming back to Eq. (19), we can show that for this limiting
value, the radius R of the configuration tends to zero (see
Sec. VI). Historically, the existence of a maximum mass
for relativistic white dwarf stars was first published by
Anderson (1929) [16] who considered a relativistic exten-
sion of the model of Stoner (1929) [31] for classical white
dwarf stars. He obtained a limiting mass M � 1:37 1033 g
(for � � 2:5). The relativistic treatment of Anderson was
criticized and corrected by Stoner (1930) [17] who ob-
tained a value of the limiting mass M � 2:19 1033 g. The
uniform density model of Stoner was in turn criticized and
corrected by Chandrasekhar (1931) [8] who applied the
theory of polytropic gas spheres with index n � 3 to
relativistic white dwarf stars and obtained the value (51)
of the limiting mass M � 1:822 1033 g. It seems that these
historical details are not well known because the references
to the works of Anderson and Stoner progressively disap-
peared from the literature.

VI. THE GENERAL CASE

Collecting together the results of Sec. III, the mass-
radius relation for relativistic white dwarf stars in D di-
mensions can be written in the general case under the
parametric form

 

M
M0
� yD�3�D�=2

0 ��y0�;
R
R0
�

1

y�D�1�=2
0

�1; (52)

where we have defined

 M0 � SD

�
8A2

SDG

�
D=2 1

BD�1 ; R0 �

�
8A2

SDG

�
1=2 1

B
; (53)

and

 ��y0� � �

�
�D�1 d�

d�

�
���1

: (54)

The mass M0 and the radius R0 can be expressed in terms
of fundamental constants as

 R0 �

�
D

2S2
D

�
1=2 hD=2

G1=2m�D�1�=2c�D�2�=2�H
; (55)

 M0 �

�
D

2S2
D

�
�D�2�=2 hD�D�2�=2c�4�D�D=2

m�D�3�D=2GD=2

1

��H�D�1 : (56)

We can now obtain the mass-radius curve M-R by the
following procedure. We fix a value of the parameter y0

and solve the differential equation (19) with initial condi-
tion (20) until the point � � �1, determined by Eq. (21), at
which the density vanishes. The radius and the mass of the
corresponding configuration are then given by Eq. (52). By
varying y0, we can obtain the full curve R�y0�-M�y0�
parametrized by the value of the central density �0 given
by Eq. (23). To solve the differential equation (19), we
need the behavior of � at the origin. Expanding ���� in
Taylor series and substituting this expansion in Eq. (19) we
obtain for �! 0:

 � � 1�
qD

2D
�2 �

1

8�D� 2�
q2�D�1��4 � . . . (57)

where

 q2 � 1�
1

y2
0

: (58)

We note, in particular, that �00�0� � �qD=D.

0 2 4 6 8 10
M/M0

0

1

2

R
/R

0

D=1

(R)

(C)

FIG. 5. Mass-radius relation in D � 1. The radius increases
with the mass. The configurations are always stable and there
exists a maximum radius achieved in the ultrarelativistic limit for
M ! �1.
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Finally, we give the asymptotic expressions of the mass-
radius relation. In the classical limit, using Eq. (33), we
obtain

 

�
M
M0

�
�D�2�=D

�
R
R0

�
4�D
�

1

2
!�D�2�=D
D=2 : (59)

In the ultrarelativistic limit, using Eq. (46), we get

 

�
M
M0

�
�D�1�=D

�
R
R0

�
3�D
� !�D�1�=D

D : (60)

In Figs. 5–12, we plot the mass-radius relation of relativ-
istic white dwarf stars (full line) for different dimensions of
space. The asymptotic relations (59) and (60) valid in the

classical (C) and ultrarelativistic (R) limits are also shown
for comparison (dashed line) together with the analytical
approximation (dotted line) derived in Sec. VII.

VII. ANALYTICAL APPROXIMATION OF THE
MASS-RADIUS RELATION

We present here an analytical approximation of the
mass-radius relation in various dimensions of space based
on the treatment by Nauenberg [19] in D � 3. This treat-
ment amounts to considering that the density is uniform in
the star and the mass-radius relation is obtained by mini-

0 5 10 15 20
M/M0

0

0.5

1

1.5

2
R

/R
0

D=1.5

(C)

(R)

FIG. 6. Mass-radius relation in D � 1:5. The configurations
are always stable and there exists a maximum radius for partially
relativistic distributions.
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R
/R

0

D=2

(C)

(R)

FIG. 7. Mass-radius relation in D � 2. The radius decreases
with the mass. The configurations are always stable and there
exists a maximum radius achieved in the classical limit for M !
0.
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3
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6

R
/R

0

(R)

(C) D=3

FIG. 9. Mass-radius relation in D � 3. The radius decreases
with the mass. The configurations are always stable and there
exists a limiting mass (Chandrasekhar’s mass) achieved in the
ultrarelativistic limit for R � 0. For M>MChandra, quantum
mechanics cannot arrest gravitational collapse.
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FIG. 8. Mass-radius relation in D � 2:5. The radius decreases
with the mass. The configurations are always stable.
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mizing the energy functional (see Appendix C) with re-
spect to the radius (or to the density) at fixed mass. As
mentioned in the introduction, this is similar to the sim-
plified model of relativistic white dwarf stars made by

Stoner [17] before Chandrasekhar’s treatment [8].
Following Nauenberg [19], we approximate the kinetic
energy K by the form

 K � Nmc2

��
1�

p2

m2c2

�
1=2
� 1

�
; (61)

where N is the number of electrons and p is an average
over the star of the momentum of the electrons [32]. We
assume that it is determined by an appropriate average
value of the density by the relation

 � �
2SD
DhD

�HpD; (62)

based on the Pauli exclusion principle. Now, for the den-
sity, we write

 � � �
M

SDR
D ; (63)

where � is a dimensionless parameter. We also write the
potential energy in the form

 W � �
�

D� 2

GM2

RD�2 ; (64)

where � is another dimensionless parameter. By writing
Eq. (64), we have assumed thatD � 2 but we shall see that
the following results pass to the limit for D! 2. We
introduce two dimensionless variables n and r and two
fixed constants M� � N��H and R� such that

 M � nM�; R � rR�: (65)

We determine M� and R� by the requirement that the
relativity parameter x � p=mc have the form

0 0.2 0.4 0.6 0.8
M/M0

0

5

10

15

20
R

/R
0

D=3.3
(C)

(R)

FIG. 10. Mass-radius relation in D � 3:3. There exists a limit-
ing mass for partially relativistic distributions. Classical configu-
rations are stable and the series of relativistic equilibria becomes
unstable after the turning point of mass. Thus, highly relativistic
configurations in D> 3 cannot be in hydrostatic equilibrium.

0 0.5 1 1.5 2
M/M0

0

10

20

30

40

R
/R

0

D=3.8 (C)

(R)

FIG. 11. Mass-radius relation in D � 3:8. For D> �3�������
17
p
�=2 the ultrarelativistic configurations (equivalent to poly-

tropes of index n03 � D) are not self-confined anymore and a
spiral develops in the mass-radius relation. This is somehow
similar to the classical spiral occurring in the �E;
� plane in the
thermodynamics of isothermal self-gravitating systems [38–41]
and to the spiral occurring in the �M;R� plane in the general
relativistic treatment of neutron stars [46,55]. The series of
equilibria becomes unstable at the first turning point of mass
and new modes of instability occur at the secondary turning
points [33].
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FIG. 12. Mass-radius relation in D � 4. There exists a limiting
mass achieved in the classical limit for R! �1. In fact, for
D � 4, all the configurations (classical and relativistic) are
unstable. Quantum mechanics cannot balance gravitational at-
traction even in the classical limit.
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 x �
n1=D

r
; (66)

and that the potential energy can be written

 W � �
1

D� 2
mc2N�

n2

rD�2 : (67)

This yields

 R� �
�
D�

2�S2
D

�
1=2 hD=2

G1=2m�D�1�=2c�D�2�=2�H
; (68)

 M� �
1

�D=2

�
D�

2S2
D

�
�D�2�=2 hD�D�2�=2cD�4�D�=2

mD�D�3�=2GD=2

1

��H�D�1 :

(69)

Comparing with Eqs. (55) and (56), we find that

 M� �
1

�D=2
� �D�2�=2M0; R� �

�
�
�

�
1=2
R0: (70)

Now, the energy E � K �W of the star can be written

 E � N�mc
2n
�
�1� x2�1=2 � 1� n2=D xD�2

D� 2

�
: (71)

In the classical limit x	 1, we get

 Eclass � N�mc
2

�
n1�2=D

2r2 �
n2

�D� 2�rD�2

�
; (72)

and in the ultrarelativistic limit x
 1, we obtain

 Erelat � N�mc
2

�
n1�1=D

r
�

n2

�D� 2�rD�2

�
: (73)

We shall consider the energy as a function of the radius R,
with the mass M fixed. Thus, the mass-radius relation will
be obtained by minimizing the energy E versus xwith fixed
n. Writing @E=@x � 0, we obtain the equations

 n �
xD�4�D�=2

�1� x2�D=4
; (74)

 x �
n1=D

r
; (75)

defining the mass-radius relation in parametric form in the
framework of the simplified model. Note that xD represents
the value of the density in units of M�=RD� , i.e. � �
xDM�=R

D
� . Therefore, Eq. (74) can be viewed as the rela-

tion between the mass and the density. Eliminating the
relativity parameter x (or density) between Eqs. (74) and
(75), we explicitly obtain

 n �
r3��������������

1� r4
p �D � 1�; (76)

 n �
1� r4

r2 �D � 2�; (77)

 r �
�1� n4=3�1=2

n1=3
�D � 3�; (78)

 r �
n3=4������������
1� n
p �D � 4�: (79)

In D � 1, there exists a maximum radius r � 1 achieved
for n! �1, and we have the scaling

 n� 1
2�1� r�

�1=2: (80)

In D � 2, there exists a maximum radius r � 1 achieved
for n! 0, and we have the scaling

 n� 4�1� r�: (81)

In D � 3, there exists a maximum mass n � 1 (Chan-
drasekhar’s mass) achieved for r! 0, and we have the
scaling

 r� 2��
3
p �1� n�1=2: (82)

In D � 4, there exists a maximum mass n � 1 achieved
for r! �1, and we have the scaling

 r� �1� n��1=2: (83)

In order to compare Eqs. (76)–(79) with the exact results,
we need to estimate the values of the constants � and �.
This can be done by considering the limiting forms of
Eqs. (74) and (75). In the classical limit x	 1, we obtain

 n�D�2�=Dr4�D � 1; (84)

and in the ultrarelativistic limit x
 1, we get

 n�D�1�=Dr3�D � 1: (85)

Comparing with Eqs. (59) and (60), we find that

 � �
�
1

2

�
D !D�2

D=2

!D�1
D

; � �
1

2

!�D�2�=D
D=2

!2�D�1�=D
D

; (86)

where the quantities !D and!D=2 can be deduced from the
numerical study of the Lane-Emden equation. The analyti-
cal approximations of the mass-radius relation (76)–(79)
are plotted in dotted lines in Figs. 5, 7, and 9, and they give
a fair agreement with the exact results (full line). Of
course, they cannot reproduce the spiral in D � 4 which
requires the resolution of the full differential equation (19).

Let us address the stability of the configurations within
this simplified analytical model. If we view a white dwarf
star as a gas of electrons at statistical equilibrium at tem-
perature T, stable configurations are those that minimize
the free energy F � E� TS at fixed mass, where E is the
total energy (kinetic� potential) and S is the Fermi-Dirac
entropy (see Appendix C). For a completely degenerate gas
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at T � 0, stable configurations are those that minimize the
energy E at fixed mass. As we have seen previously, the
first order variations E0�x� � 0 determine the mass-radius
relation. Then, the configurations are stable if the energy is
minimum, i.e. E00�x�> 0. Now, we have

 E00 �
N�mc

2n

�1� x2�3=2

4�D� �D� 3�x2�: (87)

For D � 3, all the solutions are stable while for D � 4, all
the solutions are unstable. For 3<D< 4, the solutions
with x < xc are stable and the solutions with x > xc are
unstable where

 xc �
�
4�D
D� 3

�
1=2
: (88)

We now show that the onset of instability precisely corre-
sponds to the turning point of mass, i.e. to the point where
the mass is maximum in the series of equilibria M�R�. In
terms of reduced variables, this corresponds to dn=dr � 0,
or equivalently n0�x� � 0. Taking the logarithmic deriva-
tive of Eq. (74), we have

 

dn
n
�
D
2
�4�D�

dx
x
�
D
2

x

1� x2 dx; (89)

so that the condition n0�x� � 0 yields x � xc. Thus, insta-
bility sets in precisely at the maximum mass as could have
been directly inferred from the turning point criterion [33].

It is also useful to discuss the classical and the ultrarela-
tivistic limits specifically. In the classical limit, using
Eq. (72), we get

 E00class � N�mc2n�4�D�; (90)

so that a classical white dwarf star is stable for D< 4 and
unstable for D � 4. In the ultrarelativistic limit, using
Eq. (73), we get

 E00relat �
N�mc

2n
x

�3�D�; (91)

so that an ultrarelativistic white dwarf star is stable forD �
3 and unstable for D> 3. This returns the results obtained
in Secs. IV and V.

Finally, considering the function E�R� given by Eq. (71)
and assuming that the system evolves so as to minimize its
energy (this requires some source of dissipation), we have
the following results [34]: for D< 3, there exists a stable
equilibrium state (global minimum of E) with radius R for
all mass M. For D � 3, there exists a maximum mass Mc
so that: (i) for M<Mc, there exists a stable equilibrium
state (global minimum of E) with radius R> 0; (ii) for
M � Mc, the system collapses to a point (R � 0) but its
energy remains finite (lower bound); (iii) for M>Mc, the
system collapses to a point R! 0 and E! �1. For 3<
D< 4, there exists a maximum mass Mc so that: (i) for
M<Mc, there exists a metastable equilibrium state (local
minimum of E) with x < xc and an unstable equilibrium

state (global maximum of E) with x > xc. The system can
either reach the metastable state or collapse to a point (R!
0, E! �1); the choice probably depends on a notion of
basin of attraction; (ii) for M � Mc, the system collapses
to a point (R! 0, E! �1). For D � 4, there exists a
critical mass Mc so that: (i) for M<Mc, there exists an
unstable equilibrium state (global maximum of E) so the
system either collapses (R! 0 and E! �1) or evapo-
rates (R! �1 and E! 0); (ii) for M>Mc, the system
collapses to a point (R! 0 and E! �1). For D> 4,
there exists an unstable equilibrium state (global maximum
of E) for all mass M so the system either collapses (R! 0
and E! �1) or evaporates (R! �1 and E! 0).

VIII. CONCLUSION

‘‘Why is our universe three dimensional? Does the di-
mension D � 3 play a special role among other space
dimensions?’’

Several scientists have examined the role played by the
dimension of space in determining the form of the laws of
physics. This question goes back to Ptolemy who argues in
his treatise On dimensionality that no more than three
spatial dimensions are possible in nature. In the 18th
century, Kant realizes the deep connection between the
inverse square law of gravitation and the existence of three
spatial dimensions. Interestingly, he regards the three spa-
tial dimensions as a consequence of Newton’s inverse
square law rather than the converse. In the twentieth cen-
tury, Ehrenfest [26], in a paper called ‘‘In what way does it
become manifest in the fundamental laws of physics that
space has three dimensions?’’ argues that planetary orbits,
atoms, and molecules would be unstable in a space of
dimension D � 4. This idea has been followed more re-
cently by Gurevich and Mostepanenko [35] who argue that
if the universe is made of metagalaxies with a various
number of dimensions, atomic matter and life are possible
only in three-dimensional space. Other investigations on
dimensionality are reviewed in the paper of Barrow [36].
We have found that the relativistic self-gravitating Fermi
gas at T � 0 (a white dwarf star) possesses a rich structure
as a function of the dimension of space. We have exhibited
several characteristic dimensions D � 1, D � 2, D � 3,
D � �3�

������
17
p
�=2, D � 4, and D � 2�1�

���
2
p
�. For D<

3, there exists stable configurations for any value of the
mass. For D � 3, the sequence of equilibrium configura-
tions is stable but there exists a maximum mass
(Chandrasekhar’s limit) above which there is no equilib-
rium state. For 3<D< 4, the sequence of equilibrium
configurations is stable for classical white dwarf stars but it
becomes unstable for relativistic white dwarf stars with
high density after the turning point of mass. Therefore, the
dimension D � 3 is special because it is the largest dimen-
sion at which the sequence of equilibrium configurations is
stable all the way long; for D> 3, a turning point of mass
appears so that ultrarelativistic white dwarf stars become
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unstable. Therefore, the dimension D � 3 is marginal in
that respect. Finally, for D � 4, the whole sequence of
equilibrium configurations is unstable. Therefore, as al-
ready noted in our previous papers [21–23], the dimension
D � 4 is critical because at that dimension quantum me-
chanics cannot stabilize matter against gravitational col-
lapse, even in the classical regime, contrary to the situation
in D � 3 [4,24,25]. Interestingly, this result is similar to
that of Ehrenfest [26] although it applies to white dwarf
stars instead of atoms.

Our exact description of D-dimensional white dwarf
stars based on Chandrasekhar’s seminal paper [11] shows
that relativistic white dwarf stars become unstable in D>
3 and that classical white dwarf stars become unstable in
D � 4. Therefore, for D � 4, a self-gravitating Fermi gas
forms a black hole or evaporates (see Appendix B). These
conclusions have also been reached by Bechhoefer and
Chabrier [28] on the basis of simple dimensional analysis.
This suggests that a D � 4 universe is not viable (see also
Appendix D) and gives insight why our universe in appar-
ently three dimensional. We note that extra dimensions can
appear at the microscale, an idea originating from Kaluza-
Klein theory. This idea took a renaissance in modern
theories of grand unification which are formulated in
higher-dimensional spaces [37]. Our approach shows that
already at a simple level, the coupling between Newton’s
equations (gravitation), Fermi-Dirac statistics (quantum
mechanics), and special relativity reveals a rich structure
as a function of D. In this respect, it is interesting to note
that the critical masses (34) and (50) and radii (36) and (47)
that we have found occur for simple integer dimensions
D � 1, 2, 3, and 4, which was not granted a priori.

It is interesting to develop a parallel between the mass-
radius relation M�R� of white dwarf stars and the caloric
curve T�E� giving the temperature as a function of the
energy in the thermodynamics of self-gravitating systems
[38–41]. In this analogy, the Chandrasekhar mass in D �
3 is the counterpart of the critical temperature for isother-
mal systems in D � 2 (in both cases, the equilibrium
density profile is a Dirac peak containing all the mass)
[42]. On the other hand, forD> 3, the mass-radius relation
for white dwarf stars exhibits turning points, and even a
spiraling behavior for D> 1

2 �3�
������
17
p
�, which is similar to

the spiraling behavior of the caloric curve for isothermal
systems in D � 3. In this analogy, the maximum mass,
corresponding to a critical value of the central density
which parametrizes the series of equilibria, is the counter-
part of the Antonov energy (in the microcanonical en-
semble) [38] or of the Emden temperature (in the
canonical ensemble) [41]. The series of equilibria becomes
unstable after this turning point. In addition, there is no
equilibrium state above this maximum mass, or below the
minimum energy or minimum temperature in the thermo-
dynamical problem. In that case, the system is expected to
undergo gravitational collapse.

As a last comment (notified by the referee), it should be
emphasized that the conclusions reached in this paper
concerning dimensionality implicitly assume that the
laws of physics that we know remain the same in a universe
of arbitrary dimension D. This is of course not granted at
all. There may be a new cosmological theory, a new theory
of star formation and stellar evolution in higher dimen-
sions. We also emphasize that our approach does not take
into account general relativistic effects that can sensibly
modify the results [43].
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APPENDIX A: THE EQUATION OF STATE

We provide here the explicit expression of the function
f�x� defined by Eq. (10) for different dimensions of space
D � 1, 2, 3, and 4, respectively:

 f�x� � 4x�1� x2�1=2 � 4sinh�1x; (A1)

 f�x� � 16
3 �

8
3�x

2 � 2��1� x2�1=2; (A2)

 f�x� � x�2x2 � 3��1� x2�1=2 � 3sinh�1x; (A3)

 f�x� � �64
15�

8
15�3x

4 � 4x2 � 8��1� x2�1=2: (A4)

APPENDIX B: STABILITY CRITERIA FOR
POLYTROPIC SPHERES IN D DIMENSIONS

We generalize in D dimensions the usual stability crite-
ria for polytropic gaseous spheres, and apply them to
classical and ultrarelativistic white dwarf stars.

1. The Euler-Poisson system

Let us consider the Euler-Poisson system [44]:

 

@�
@t
�r � ��u� � 0; (B1)

 

@u
@t
� �u � r�u � �

1

�
rP�r�; (B2)

 �� � SDG�; (B3)

describing the dynamical evolution of a barotropic gas with
an equation of state P � P���. The Euler-Poisson system
conserves the mass M and the energy [23]:

 W �
Z
�
Z � P��0�

�02
d�0dr�

1

2

Z
��dr�

1

2

Z
�u2dr:

(B4)
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In the following, we shall essentially consider the case of a
polytropic equation of state P��� � K�� where � � 1�
1=n. For � � 1, the energy functional W is given by

 W �
K

�� 1

Z
��dr�

1

2

Z
��dr�

1

2

Z
�u2dr:

(B5)

It can be rewritten

 W �
1

�� 1

Z
Pdr�

1

2

Z
��dr�

1

2

Z
�u2dr: (B6)

For an isothermal equation of state P � �kBT=m, corre-
sponding to �! 1 or n! �1, we have

 W � kBT
Z �
m

ln
�
m
dr�

1

2

Z
��dr�

1

2

Z
�u2dr:

(B7)

For a general polytropic equation of state P � K�� with
arbitrary �, it is convenient to write the energy of the gas in
the form

 W �
K

�� 1

Z
��� � ��dr�

1

2

Z
��dr�

1

2

Z
�u2dr:

(B8)

We have added a constant term � K
��1

R
�dr proportional

to the total mass (which is a conserved quantity) so as to
recover the energy (B7) of an isothermal gas in the limit
�! 1 [45].

2. The eigenvalue equation

We first consider the linear dynamical stability of a
polytropic star described by the Euler-Poisson system
and generalize the approach developed in Chavanis
[21,23,41,46–49]. We consider a steady solution of the
Euler-Poisson system satisfying u � 0 and the condition
of hydrostatic balance rP� �r� � 0. For a polytropic
equation of state P � K�1�1=n, the equilibrium density
profile is solution of theD-dimensional Lane-Emden equa-
tion [21]. We consider complete polytropes such that the
density vanishes at a finite radius R. For n � n3, there
exists a unique steady state for any mass M. The mass-
radius relation is [21]:

 M�n�1�=nR�D�2��n3�n�=n �
K�1� n�

GS1=n
D

!�n�1�=n
n ; (B9)

where

 !n � �	
�n�1�=�n�1�
1 �0n�	1�; (B10)

is a constant given in terms of the solution �n�	� of the
Lane-Emden equation of index n in D dimensions. For the
critical index n � n3, steady state solutions exist only for a
unique value of the mass

 Mc �

�
K�1� n�

GS1=n
D

�
n=�n�1�

!n: (B11)

These solutions have the same mass Mc but an arbitrary
radius R. We already anticipate that the index n � n3 will
correspond to a case of marginal stability separating stable
and unstable solutions.

Linearizing the equations of motion (B1)–(B3) around a
stationary solution in hydrostatic balance and writing the
perturbation in the form ��� e�t, we obtain after some
calculations [41,47,49] the eigenvalue equation

 

d
dr

�
P0���

SD�rD�1

dq
dr

�
�

Gq

rD�1 �
�2

SD�rD�1 q; (B12)

where we have restricted ourselves to spherically symmet-
ric perturbations and defined q�r� �

R
r
0 ��SDr

D�1dr. For
a polytropic gas with an equation of state P � K��, the
foregoing equation becomes [47]:

 K�
d
dr

�
���2

SDr
D�1

dq
dr

�
�

Gq

rD�1 �
�2

SD�r
D�1 q: (B13)

The polytrope is stable if �2 < 0 (yielding oscillatory
modes with pulsation ! �

����������
��2
p

) and unstable if �2 > 0
(yielding exponentially growing modes with growth rate
� �

������
�2
p

). Considering the point of marginal stability
(� � 0) and introducing the Emden variables [21,30,47],
Eq. (B13) reduces to

 

d
dr

�
�1�n

	D�1

dF
d	

�
�

nF

	D�1 � 0: (B14)

This equation has the exact solution [21,47]:

 F�	� � c1

�
	D�n �

�D� 2�n�D
n� 1

	D�1�0
�
: (B15)

The point of marginal stability is then determined by the
boundary conditions. One can show [47,49] that the veloc-
ity perturbation is given by �u � ��q=�SD�rD�1�.
Therefore, if the density of the configuration vanishes at
r � R, one must have q�R� � 0 to avoid unphysical diver-
gences. Thus, if 	1 denotes the value of the normalized
radius R of the star [21,30,47] such that ��	1� � 0, the
natural boundary condition for the eigenvalue
equation (B13) is F�	1� � 0. Substituting this condition
in Eq. (B15), we obtain the critical index

 n �
D

D� 2
� n3; (B16)

corresponding to a marginally stable gaseous polytrope
(� � 0). Our method gives the form (B15) of the neutral
perturbation �� at the critical index n � n3. We conclude
that the infinite family of steady state solutions with equal
mass Mc and arbitrary radius R that exists for n � n3 is
marginally stable.
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We now consider the nonlinear dynamical stability prob-
lem. Since the Euler-Poisson system (B1)–(B3) conserves
the mass M and the energy W , a maximum or a minimum
of the energy functional W 
�;u� at fixed massM
�� � M
determines a steady state of the Euler-Poisson system that
is formally nonlinearly dynamically stable [23]. Because
of the presence of the kinetic term �
u� � �1=2�

R
�u2dr,

the functional W 
�;u� has no absolute maximum. Thus,
we need to investigate the possible existence of a minimum
of W 
�;u� at fixed mass M
�� � M. A barotropic star
that minimizes the energy functional W at fixed massM is
nonlinearly dynamically stable with respect to the Euler-
Poisson system. The cancellation of the first order varia-
tions �W � 
�M � 0, where 
 is a Lagrange multiplier,
yields u � 0 and the condition of hydrostatic balance
rP� �r� � 0. Then, the condition of nonlinear dy-
namical stability is

 �2W �
Z P0���

2�
����2dr�

1

2

Z
����dr � 0; (B17)

for all perturbations that conserve mass, i.e.
R
��dr � 0.

After some calculations [23], this can be put in the qua-
dratic form

 �2W � �
1

2

Z R

0

�
d
dr

�
P0���

SD�rD�1

dq
dr

�
�

Gq

rD�1

�
qdr:

(B18)

We are led therefore to consider the eigenvalue problem

 

�
d
dr

�
P0���

SD�r
D�1

d
dr

�
�

G

rD�1

�
q��r� � �q��r�: (B19)

If all the eigenvalues � are negative, then �2W > 0 and
the configuration is a minimum of W at fixed mass. This
implies that it is nonlinearly dynamically stable. If at least
one eigenvalue � is positive, the configuration is a saddle
point of W and the star is dynamically unstable. The
marginal case is when the largest eigenvalue � is equal
to zero. Now, for � � 0, Eqs. (B12) and (B19) coincide.
This implies that the conditions of linear and nonlinear
dynamical stability are the same. In the case of polytropic
stars, the case of marginal stability corresponds to the
critical index n � n3. At that index, the equilibrium con-
figurations with mass Mc and radius R all have the same
value of energy W � 0 (see Eq. (B43) later). This is
therefore a very degenerate situation.

The nonlinear dynamical stability of gaseous polytropes
can also be investigated by plotting the series of equilibria
M��0� (mass vs central density) of box-confined configu-
rations and using the turning point argument of Poincaré
[21,23,47]. We can thus determine whether the last point
on the series of equilibria, which corresponds to a complete
polytrope whose density vanishes precisely at the box
radius, is stable or not. ForD � 2, there is no turning point
of mass (we restrict ourselves to n � 0), implying that the
gaseous polytropes are always stable. For D> 2, a turning

point of mass M��0� appears precisely for n � n3 (see
Fig. 5 of [21]). This method shows that, for D> 2, com-
plete polytropes with n < n3 are nonlinearly dynamically
stable (they are minima of W at fixed mass M) while
complete polytropes with n > n3 are dynamically unstable
(they are saddle points of W at fixed mass M). Complete
polytropes with n � n3 and M � Mc are marginally
stable.

3. The Ledoux criterion

We can also investigate the linear dynamical stability of
gaseous polytropic spheres by using the method introduced
by Eddington [50] and Ledoux [51]. If we introduce the
radial displacement

 	�r� � �
�u
�r
�

q
SD�r

D /
�r
r
; (B20)

we can rewrite the eigenvalue equation (B13) in the form
[49,52]:

 

d
dr

�
P�rD�1 d	

dr

�
� rD�D�� 2� 2D�

dP
dr
	

� �2�rD�1	: (B21)

This is the Eddington equation of pulsations, which has
been written here in the form of a Sturm-Liouville prob-
lem. It must be supplemented by the boundary conditions

 �r � 	r � 0; in r � 0; (B22)

 dP � ��P
�
D	� r

d	
dr

�
� 0; in r � R; (B23)

where dP=dt � @�P=@t� �udP=dr is the Lagrangian
derivative of the pressure. Since P � 0 at the surface of
the star, it is sufficient to demand that 	 and d	=dr be finite
in r � R. Multiplying Eq. (B21) by 	 and integrating
between 0 and R, we obtain
 

�2
Z R

0
�rD�1	2dr � �

Z R

0
dr
�
P�rD�1

�
d	
dr

�
2

� 	2rD�D�� 2� 2D�
dP
dr

�
: (B24)

The system is linearly dynamically stable if �2 < 0 and
unstable otherwise. Since dP=dr < 0, a sufficient condi-
tion of stability is D�� 2� 2D> 0, i.e.

 � > �4=3 �
2�D� 1�

D
;

1

n
>

1

n3
�
D� 2

D
: (B25)

It can be shown furthermore (see below) that the system is
unstable if � < �4=3 so that the criterion (B25) is a neces-
sary and sufficient condition of dynamical stability (the
case � � �4=3 is marginal). In terms of the index n, a
complete polytrope is stable with respect to the Euler-
Poisson system in D � 1 for n � 0 and for n <�1, in
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D � 2 for n > 0, inD � 3 for 0 � n < 3, and inD> 2 for
0 � n < n3.

From the theory of Sturm-Liouville problems, it is
known that expression (B24), which can be written �2 �
I
	�, forms the basis of a variational principle. The func-
tion 	�r� which maximizes the functional I
	� is the fun-
damental eigenfunction and the maximum value of this
functional gives the fundamental eigenvalue �2.
Furthermore, any trial function underestimates the value
of �2 so this variational principle may prove the existence
of instability but can only give approximate information
concerning stability. As shown by Ledoux and Pekeris
[51], we can get a good approximation of the fundamental
eigenvalue by taking 	�r� to be a constant (note that 	 �
Cst, i.e. �r / r, is the exact solution of the Sturm-Liouville
equation (B21) at the point of marginal stability � � 0 for
a polytropic equation of state). For the trial function 	 �
Cst, expression (B24) gives

 �2
Z
�r2dr � �D�� 2� 2D�

Z
r
dP
dr
dr: (B26)

According to the condition of hydrostatic balance,

 

dP
dr
� ��

d�

dr
; (B27)

we have

 

Z
r
dP
dr
dr � �

Z
�r � r�dr; (B28)

where we recognize the Virial

 Wii � �
Z
�r � r�dr: (B29)

Inserting

 r� � G
Z
��r0�

r� r0

jr� r0jD
dr0; (B30)

in Eq. (B29), interchanging the dummy variables r and r0

and taking the half-sum of the resulting expressions, we get

 Wii � �
G
2

Z ��r���r0�
jr� r0jD�2 drdr0: (B31)

Therefore, the Virial can be written

 Wii � �D� 2�W; �D � 2�; (B32)

 Wii � �
GM2

2
; �D � 2�; (B33)

where

 W �
1

2

Z
��dr; (B34)

is the potential energy and

 � � �
G

D� 2

Z ��r0�
jr� r0jD�2 dr0; (B35)

is the gravitational potential. Therefore, we can rewrite
Eq. (B26) in the form

 �2 � �D�� 2� 2D�
Wii

I
; (B36)

where

 I �
Z
�r2dr; (B37)

is the moment of inertia. Since Wii < 0, we conclude that
the system is unstable if D�� 2� 2D< 0, which com-
pletes the proof above. On the other hand, Eq. (B36)
provides an estimate of the pulsation period ! �

����������
��2
p

when the system is stable. This is the D-dimensional gen-
eralization of the Ledoux stability criterion.

Note finally that, for a spherically symmetric system,
using the Gauss theorem

 r� �
GM�r�

rD�1 er; (B38)

we get

 Wii � �SDG
Z
��r�M�r�rdr � �

Z GM�r�

rD�2 dM�r�:

(B39)

This expression may be useful to calculate the potential
energy.

4. Virial theorem and Poincaré argument

The Virial theorem associated with the barotropic Euler-
Poisson system (B1)–(B3) is [44,49]:

 

1

2

d2I

dt2
� 2����Wii; (B40)

where � � �1=2�
R
�u2dr is the kinetic energy of the

macroscopic motion and � � D
R
Pdr. For a polytropic

equation of state, the energy functional (B4), which is a
conserved quantity, can be written

 W � U�W ��; (B41)

where

 U �
1

�� 1

Z
Pdr; (B42)

is the internal energy. We note that � � D��� 1�U �
�D=n�U for a polytrope. At equilibrium, �I � � � 0, we
get �D=n�U�Wii � 0 and W � U�W. ForD � 2, this
implies that U � nGM2=4. For D � 2, this implies that

 W �

�
1�

n
n3

�
W; (B43)
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where we recall that

 W � �
G

2�D� 2�

Z ��r���r0�
jr� r0jD�2 drdr0: (B44)

For D> 2 and n � 0, the system is dynamically stable if
W < 0 and unstable otherwise (Poincaré argument [30]).
Since W < 0, we find from Eq. (B43) that the polytropic
star is stable if and only if n < n3. At the point of marginal
stability n � n3, where several steady configurations exist
with the same massMc given by Eq. (B11) and an arbitrary
radius R, the energy of these configurations is W � 0 for
all R.

Using W � �n=D���W �� and eliminating the
pressure term in Eq. (B40), the Virial theorem for D � 2
can be put in the form

 

1

2

d2I

dt2
�

�
2�

D
n

�
��

D
n
W �

�
D� 2�

D
n

�
W: (B45)

Alternatively, eliminating the kinetic energy in Eq. (B40),
the Virial theorem for D � 2 can be written

 

1

2

d2I

dt2
� 2W �

�
D
n
� 2

�
U� �D� 4�W: (B46)

For n � n3=2, corresponding to classical white dwarf stars,
the Virial theorem becomes

 

1

2

d2I

dt2
� 2W � �D� 4�W: (B47)

For n � n03, corresponding to relativistic white dwarf stars,
we have

 

1

2

d2I

dt2
� ��W � �D� 3�W: (B48)

Finally, considering the polytropic index n � n3 of mar-
ginal stability, the Virial theorem (B45) takes the form

 

1

2

d2I

dt2
� �4�D��� �D� 2�W : (B49)

If we consider the dimension D � 4, it reduces to

 

d2I

dt2
� 4W : (B50)

This equation describes the case of classical white dwarf
stars at the critical dimensionD � 4 where n3=2 � n3 � 2.
It can be integrated into

 I�t� � 2W t2 � C1t� C2: (B51)

For W > 0, we find that I�t� ! �1 for t! �1 so that
the system evaporates. Alternatively, for W < 0, we find
that I�t� ! 0 in a finite time, so that the system collapses
and forms a Dirac peak in a finite time. If we consider the
dimension D � 3, Eq. (B49) reduces to

 

1

2

d2I

dt2
� ��W : (B52)

This equation describes the case of relativistic white dwarf
stars at the critical dimension D � 3 where n03 � n3 � 3.
For W > 0, we find that I�t� ! �1 for t! �1 indicat-
ing that the system evaporates.

5. Dimensional analysis

Finally, we show that the instability criterion for poly-
tropic stars can be obtained from simple dimensional
analysis. We shall approximate the internal energy (B42)
and the potential energy (B34) by

 U �
K�
�� 1

�
M
RD

�
�
RD; (B53)

 W � �
�

D� 2

GM2

RD�2 ; (B54)

where M is the total mass of the configuration and R its
radius (� and � are dimensionless parameters). For homo-
geneous spheres, the values of � and � are given by
Eq. (B70). With these expressions, the energy functional
(B5) becomes

 W �
K�
�� 1

�
M
RD

�
�
RD �

�
D� 2

GM2

RD�2 ��: (B55)

We now need to minimize this functional with respect to R
for a given mass M (a minimum necessarily requires � �
0). We first look for the existence of critical points (ex-
trema). The cancellation of the first order variations

 

dW
dR

� 0 � �K�DM�RD�1����1 �G�M2R1�D;

(B56)

yields the mass-radius relation

 M�n�1�=nR�D�2��n3�n�=n �
K�D
G�

: (B57)

This relation determines the radius R of the star as a
function of its mass M. This expression is consistent with
the exact mass-radius relation (B9) deduced from the
Lane-Emden equation (of course, our simple approach
can only model compact density profiles corresponding
to n < n5 for D> 2) [21]. For n � n3, there is one, and
only one, extremum of W �R� for each mass M. In order to
have a true minimum, we need to impose

 

d2W

dR2
� �G�DM2R�D

�
1

n3
�

1

n

�
> 0: (B58)

Therefore, the system is stable if

 

1

n
>

1

n3
; (B59)
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and unstable otherwise. This simple dimensional analysis
returns the exact stability criterion (B25).

We can be a little more precise. For 1=n > 1=n3, the
functional W �R� has a global minimum reached for a
finite, and nonzero, value of R. This solution is stable.
For 1=n < 1=n3, the functional W �R� has an unstable
global maximum: for D< 2, W ! �1 when R! �1
(evaporation) and W ! 0 when R! 0 (collapse); for
D � 2, W ! �1 when R! 0 and R! �1; for D>
2 and n < 0, W ! �1 when R! 0 and R! �1; for
D> 2 and n > n3, W ! �1 when R! 0 and W ! 0
when R! �1. Since we have constructed a particular
configuration (homogeneous sphere) which makes the en-
ergy W diverge to �1, the above arguments prove that
the exact functional W 
�;u� given by Eq. (B4) has no
absolute minimum at fixed mass for 1=n < 1=n3. Since the
functional W 
�;u� has only one critical point (cancelling
the first variations) at fixed mass, we conclude that, for
1=n < 1=n3, this critical point is a saddle point. Therefore,
there is no stable steady state of polytropic spheres for
1=n < 1=n3. For the critical index n � n3, the relation
(B57) shows the existence of a critical mass

 Mc �

�
K�D
G�

�
D=2
: (B60)

The functional (B55) can be rewritten

 W � K�
D

D� 2

M2�D�1�=D

RD�2

�
1�

�
M
Mc

�
2=D

�
��:

(B61)

For M � Mc, W �R� � 0 for all R (at equilibrium � � 0).
This determines an infinite family of solutions with the
same massMc and different radii. These solutions have the
same energy and are marginally stable. This returns the
result of the exact model where the configurations are the
solution of the Lane-Emden equation (see Sec. B 2). For
M<Mc, the function W �R� is monotonically decreasing
with R (so the system tends to evaporate): for D< 2,
W �R� goes from 0 to �1 and for D> 2, W �R� goes
from �1 to 0. For M>Mc, the function W �R� is mono-
tonically increasing with R (so the system tends to col-
lapse): for D< 2, W �R� goes from 0 to �1 and for
D> 2, W �R� goes from �1 to 0.

We can obtain a simple dynamical model by using the
Virial theorem (B40). At equilibrium ( �I � � � 0), we
have

 

D
n
U� �D� 2�W � 0: (B62)

Inserting the expressions (B53) and (B54) in Eq. (B62), we
recover the mass-radius relation (B57). For n � n3 and for
any given mass M, there is only one steady state. Its radius
R0 is given by Eq. (B57) and its energy W 0 is given by
Eq. (B43). It corresponds to the extremum value of W �R�.
Estimating the moment of inertia by

 I � 
MR2; (B63)

and inserting the expressions (B53) and (B54) in Eq. (B46),
we obtain
 

1

2

M

d2R2

dt2
� 2W � �D� 2n�K�M1�1=nR�D=n

�
��D� 4�

D� 2

GM2

RD�2 : (B64)

This equation determines the evolution of the radius of the
star for a fixed mass M and a fixed energy W . The
evolution of the kinetic energy is then given by � �W �
U�W. The solution of Eq. (B64) depends on two control
parameters M and W and on the initial condition R�0� and
_R�0�. We shall consider the case where W is equal to the

value W 0 corresponding to the steady state, such that the
right-hand side (r.h.s.) of the above equation is equal to
zero at equilibrium. Then, we can rewrite Eq. (B64) as
 

1

2

M

d2R2

dt2
� �D� 2n�K�M1�1=n�R�D=n � R�D=n0 �

�
��D� 4�

D� 2

�
GM2

RD�2 �
GM2

RD�2
0

�
; (B65)

where R0 is the radius of the star at equilibrium. Since the
dynamics is nondissipative [53], the system does not
evolve towards the minimum of W �R� (unless R � R0

initially). The system can either oscillate around the mini-
mum (stable) or evolve away from it (unstable).
Considering small perturbations around equilibrium, writ-
ing R � R0�1� �� with �	 1, and linearizing the fore-
going equation, we obtain

 

d2�

dt2
� �D�� 2� 2D�

�GM

RD0

� � 0; (B66)

where we have used the mass-radius relation (B57) to
simplify the expression. This is the equation for a harmonic
oscillator with pulsation

 !2 � �D�� 2� 2D�
�GM

RD

: (B67)

The star is stable if !2 > 0 and unstable otherwise. This
returns the exact stability criterion (B25). Furthermore,
using Eqs. (B54) and (B63), the pulsation can be rewritten
in the form

 !2 � ��D�� 2� 2D�
Wii

I
; (B68)

which exactly coincides with the Ledoux formula (B36).
Therefore, our simple dimensional model allows to obtain
a lot of interesting results. The case of arbitrary perturba-
tions around equilibrium will be considered in a future
work. Finally, we note that for n � n3, Eq. (B64) becomes
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1

2

M

d2R2

dt2
� 2W � K�

D�D� 4�

D� 2

M2�D�1�=D

RD�2

�

�
1�

�
M
Mc

�
2=D

�
; (B69)

and Eq. (B65) corresponds to W � 0 and M � Mc yield-
ing d2R2=dt2 � 0. Hence, R2 � C1t� C2 corresponding
to a marginal evolution.

In our dimensional analysis, the constants � , �, and 

are dimensionless parameters that could be chosen to fit the
exact results at best. Alternatively, we can try to obtain
quantitative predictions by calculating their values for
homogeneous spheres. This yields

 � �
�
D
SD

�
1=n
; � � 
 �

D
D� 2

: (B70)

Note that the potential energy of a homogeneous sphere in
D dimensions can be easily calculated from Eq. (B39). On
the other hand, in D � 2, a direct calculation gives W �
�1=2�GM2 ln�R=L� �GM2=8 where L is a reference ra-
dius where ��L� � 0. All the results given above pass to
the limit D! 2 provided that we take � � 1=2. Using
Eq. (B70), we find that the approximate value of the
pulsation (B67) becomes

 !2 � �D�� 2� 2D�
GM
RD

: (B71)

On the other hand, if we compare the approximate mass-
radius relation (B57) with the exact mass-radius relation
(B9), we obtain an estimate of the constant !n in the form

 !approx
n �

�
D� 2

n� 1

�
n=�n�1�

D1=�n�1�: (B72)

This has to be compared with the exact value (B10) given
in terms of the solution �n�	� of the Emden equation of
index n inD dimensions [21]. Let us consider the caseD �
3. For n � 3=2, corresponding to classical white dwarf
stars, we find !approx

3=2 � 72 instead of the exact value
!3=2 � 132:3843 . . . . For n � 3, corresponding to relativ-
istic white dwarf stars, we find!approx

3 � 2:42 . . . instead of
the exact value !3=2 � 2:018 24 . . . This suggests that the
homogeneous star model will provide a fair description of
relativistic white dwarf stars and a poorer description of
classical white dwarf stars. We shall come back to these
different issues (static and dynamics) in a future work.

APPENDIX C: ENERGY FUNCTIONALS

In this appendix, we show that the condition of thermo-
dynamical stability in the canonical ensemble is equivalent
to the condition of nonlinear dynamical stability with
respect to the barotropic Euler-Poisson system. We apply
this result to white dwarf stars.

1. Energy of a barotropic gas

We consider a barotropic gas with an equation of state
P � P��� described by the Euler-Poisson system [44]. We
introduce the energy functional

 W �
Z
�
Z � P��0�

�02
d�0dr�

1

2

Z
��dr�

1

2

Z
�u2dr:

(C1)

The first term W 1 is the work �P���d�1=�� done in
compressing the system from infinite dilution, the second
term W is the gravitational energy, and the third term � is
the kinetic energy associated with the mean motion. For a
gas in local thermodynamic equilibrium, the equation of
state is P � P��; T� or P � P��; s� and the first law of
thermodynamics can be written d�u=�� � �Pd�1=�� �
Td�s=�� where s is the entropy density and u is the density
of internal energy. For a gas without interaction (apart from
the long-range gravitational attraction), the internal energy
is equal to the kinetic energy. There are two important
cases where the gas is barotropic. The first case is when
Td�s=�� � 0. This concerns either adiabatic (or isen-
tropic) fluids so that d�s=�� � 0 or fluids at zero tempera-
ture so that T � 0. When Td�s=�� � 0, the first law of
thermodynamics reduces to d�u=�� � �Pd�1=��. It can
be integrated into u � �

R
�
P��0�=�02�d�0. Then, the work

W 1 done by the pressure force (first term in Eq. (C1))
coincides with the internal energy U of the gas. In that
case, we get W 1 � U and the energy functional (C1) can
be written

 W � U�W �� � E: (C2)

Thus, at T � 0 or for an adiabatic evolution, the total
energy of the gas E is conserved by the Euler-Poisson
system (since W is conserved). Alternatively, for an iso-
thermal gas dT � 0, the first law of thermodynamics
d�u=�� � �Pd�1=�� � Td�s=�� can be written d��u�
Ts�=�� � �Pd�1=��. It can be integrated into u� Ts �
�
R
�
P��0�=�02�d�0. Therefore, the work W 1 done by the

pressure force (first term in Eq. (C1)) coincides with the
free energy U� TS of the gas. In that case, we get W 1 �
U� TS and the energy functional (C1) can be written

 W � U� TS�W �� � E� TS � F: (C3)

Thus, for an isothermal evolution, the free energy of the
system F is conserved by the Euler-Poisson system (since
W is conserved). At T � 0, we recover the conservation
of the energy E.

Let us apply these results to white dwarf stars. We can
view a white dwarf star as a barotropic gas described by an
equation of state P � P���. According to the discussion of
Appendix B 2 (see also [23]), it is nonlinearly dynamically
stable with respect to the Euler-Poisson system if it is a
minimum of the energy functional W at fixed mass. If a
minimum exists, it is necessary that u � 0. As a result, a
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steady state of the Euler-Poisson system is nonlinearly
dynamically stable if, and only if, it is a minimum of
~W 
�� �W 
�;u� ��
u� at fixed mass M. In conclu-

sion, the condition of nonlinear dynamical stability can be
written

 minf ~W 
��jM
�� � Mg: (C4)

For a white dwarf star at zero temperature (T � 0), accord-

ing to Eqs. (C2) and (C3), the functional ~W reduces to the
energy E � U�W, where U is the kinetic energy.

2. Free energy of self-gravitating fermions

We can also view a white dwarf star as a gas of self-
gravitating relativistic fermions at statistical equilibrium in
the canonical ensemble. It is thermodynamically stable if,
and only if, it is a minimum of free energy F at fixed mass
M. The free energy is given by
 

F � E� TS

�
Z
f��p�dpdr�

1

2

Z
��dr

�
T�0

m

Z � f
�0

ln
f
�0
�

�
1�

f
�0

�
ln
�
1�

f
�0

��
drdp;

(C5)

where�0 � 2=hD is the maximum value of the distribution
function fixed by the Pauli exclusion principle. For a white
dwarf star at zero temperature (T � 0), the free energy F
reduces to the energy E � U�W. The condition of ther-
modynamical stability in the canonical ensemble can be
written

 minfF
f�jM
f� � Mg: (C6)

The critical points of free energy at fixed mass, determined
by the variational principle �F� 
�M � 0, correspond to
the relativistic mean-field Fermi-Dirac distribution

 f �
�0

1� e

��p���H��r���0�
; (C7)

where �0 is a Lagrange multiplier (related to 
) deter-
mined by the mass M and ��p� is given by Eq. (4). Using
Eqs. (2), (5), and (C7), the density and the pressure are of
the form � � ���H��r� � �0� and P � P��H��r� �
�0�. Eliminating �H��r� � �0 between these two expres-
sions, we find that P � P��� so that the gas is barotropic.
The equation of state is parametrized by T and is fully
determined by the entropic functional in Eq. (C5), which is
here the Fermi-Dirac entropy. At T � 0 we obtain the
explicit relations of Sec. II. Furthermore, the condition
that f�r;p� is a function of the energy e � ��p� �
�H��r� implies that the corresponding barotropic gas is
at hydrostatic equilibrium. Indeed, using Eq. (6),

 rP �
1

D

Z @f
@r
p�0�p�dp � �Hr�

1

D

Z
f0�e�p�0�p�dp

� �Hr�
1

D

Z �
p �

@f
@p

�
dp � ��Hr�

Z
fdp;

(C8)

so that

 rP � ��r�: (C9)

The relativistic mean-field Fermi-Dirac distribution
(C7) is just a critical point of free energy at fixed mass
M. To determine whether it corresponds to a true minimum
of free energy, we can proceed in two steps. We first
minimize F
f� for a fixed density profile ��r�. Since the
potential energy W
�� and the mass M
�� are entirely
determined by the density profile, this is equivalent to
minimizing U
f� � TS
f� at fixed ��r�, where U is the
kinetic energy. This gives a distribution

 

~f �
�0

1� e

��p����r��
; (C10)

where ��r� is a local Lagrange multiplier determined by
the density ��r�, using � � �H

R
fdp. Since �2�U�

TS� � 0, the distribution (C10) is a true minimum of
F
f� at fixed ��r�. Substituting the optimal distribution
function (C10) in Eq. (C5), we obtain a functional ~F
�� �
F
~f� of the density ��r�. Using Eqs. (2), (5), and (C10), we
note that the density and the pressure are of the form
��r� � ����r�� and P�r� � P���r��. Eliminating ��r� be-
tween these expressions, we find that P � P��� where the
equation of state is the same as the one determined from the
Fermi-Dirac distribution (C7) at equilibrium. Now, we can
show that

 

~F
�� � ~W 
��; (C11)

where ~W 
�� is the functional defined in Sec. C 1. The
relation (C11) can be obtained by an explicit calculation
which extends the proof given in Appendix B of [23] for
classical particles (this will be shown in a future work; see
also particular cases in Sec. C 3) but it also results from a
straightforward argument. We note that the distribution
function (C10) corresponds to a condition of local thermo-
dynamical equilibrium with uniform temperature and zero
average velocity. Thus, it locally satisfies the first law of
thermodynamic d�u=�� � �Pd�1=�� � Td�s=�� with
dT � 0. Integrating this relation like in Sec. C 1, we find
that U
�� � TS
�� �W 1
�� where U
�� � U
~f� and
S
�� � S
~f�. This directly yields the identity (C11).

We can now conclude that F
f� has a minimum f��r;p�
at fixed mass M if, and only if, ~F
�� � ~W 
�� has a
minimum ���r� at fixed mass M. In that case, f��r;p� is
given by Eq. (C10) where ���r� is determined by ���r�,
writing �� � �H

R
f�dp. Therefore, a system is thermo-

dynamically stable in the canonical ensemble if, and only

P.-H. CHAVANIS PHYSICAL REVIEW D 76, 023004 (2007)

023004-18



if, the corresponding barotropic gas with the same equilib-
rium distribution is nonlinearly dynamically stable with
respect to the barotropic Euler-Poisson system. Said differ-
ently, a system that minimizes the functional (C11) is
(i) thermodynamically stable in the canonical ensemble
and (ii) nonlinearly dynamically stable with respect to
the barotropic Euler-Poisson system. This result applies
to white dwarf stars at arbitrary temperature.

3. Application to white dwarf stars at T � 0

Although the above results are general, it may be useful
to explicitly compute the functionals (C1) and (C5) for
white dwarf stars at T � 0 and check the relation (C11). If
we view a white dwarf star as a barotropic gas described by

an equation of state P���, its energy ~W can be written

 

~W �
Z
�����dr�

1

2

Z
��dr; (C12)

with

 ���� �
Z � P��0�

�02
d�0: (C13)

A white dwarf star is nonlinearly dynamically stable with
respect to the Euler-Poisson system if it is a minimum of
~W at fixed mass M. At T � 0, the equation of state is

given by Eq. (8). In the classical limit (polytrope n3=2 �

D=2) we have

 

~W �
DK1

2

Z
��D�2�=Ddr�

1

2

Z
��dr; (C14)

and in the ultrarelativisitic limit (polytrope n03 � D) we
have

 

~W � DK2

Z
��D�1�=Ddr�

1

2

Z
��dr: (C15)

In the general case, using Eq. (8), the function (C13) can be
written

 ���� �
A2D
B

Z x f�x0�

x0D�1 dx
0: (C16)

Integrating by parts and using Eqs. (9) and (10), we find
after straightforward calculations that

 

�H

mc2
���� �

��������������
1� x2

p
�

1

xD
Z x

0

tD�1

�1� t2�1=2
dt: (C17)

Alternatively, we can view a white dwarf star as a gas of
self-gravitating relativistic fermions at statistical equilib-
rium in the canonical ensemble. At T � 0, its free energy
F � E� TS coincides with its energy E. Using Eq. (C5),
it is given by

 F � E �
Z �
�H

����dr�
1

2

Z
��dr; (C18)

with

 

�
�H���� �

Z
f��p�dp: (C19)

A white dwarf star at T � 0 is thermodynamically stable if
it is a minimum of the energy E at fixed mass M. In the
classical limit, � � p2=2m and P � 1

D

R
�f=m�p2dp so

��=�H � �D=2�P. Therefore, the free energy can be
written

 

~F �
D
2

Z
Pdr�

1

2

Z
��dr: (C20)

Using Eq. (25), this is equivalent to Eq. (C14). In the
ultrarelativistic limit, � � pc and P � 1

D

R
fpcdp so

��=�H � DP. Therefore, the free energy can be written

 

~F � D
Z
Pdr�

1

2

Z
��dr: (C21)

Using Eq. (39), this is equivalent to Eq. (C15). In the
general case, we have

 ���� �
2SD
nhD

Z p0

0
��p�pD�1dp: (C22)

Using Eq. (4), it can be put in the form

 

����

mc2
�
D
xD

Z x

0

�������������
1� t2

p
tD�1dt: (C23)

Now, it is straightforward to check that the two expressions
in the r.h.s. of Eqs. (C17) and (C23) are equal so that
���� � ����=�H implying the relation (C11).

Finally, if we consider a classical isothermal self-
gravitating gas at temperature T with an equation of state
P � �kBT=m, its free energy (C5) can be written

 

~F �
D
2
NkBT � kBT

Z �
m

ln
�
m
dr�

1

2

Z
��dr: (C24)

Comparing with Eq. (B7), we find that relation (C11) is
indeed satisfied. Therefore, a classical isothermal self-
gravitating gas that minimizes the functional (B7) or
(C24) at fixed mass is (i) thermodynamically stable in the
canonical ensemble and (ii) nonlinearly dynamically stable
with respect to the barotropic Euler-Poisson system. We
had already made this observation in [41]. In [23], this
result was extended to an arbitrary form of entropic func-
tional, including the Fermi-Dirac entropy, for nonrelativ-
istic systems. The present paper shows that, due to relation
(C11), the equivalence between nonlinear dynamical
stability with respect to the barotropic Euler-Poisson sys-
tem and thermodynamical stability in the canonical en-
semble is general.

APPENDIX D: NONVIABILITY OF A D � 4
UNIVERSE

If we consider, in a D-dimensional universe, a
Hamiltonian system of self-gravitating classical point
masses whose dynamics is described by the Newton equa-
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tions

 

�r 
 �
X

�


Gm�r
 � r
�
jr
 � r
jD

; (D1)

the scalar Virial theorem reads [54]:

 

1
2

�I � 2K �Wii; (D2)

where K is the kinetic energy and Wii the trace of the
potential energy tensor for the N-body system [54]. For
D � 2, using Eq. (B32) and introducing the total energy
E � K �W, which is a constant of the motion for an
isolated system, we have [54]:

 

1
2

�I � 2K � �D� 2�W � 2E� �D� 4�W: (D3)

We note that the dimension D � 4 is critical. In that case,
�I � 4E which yields after integration I � 2Et2 � C1t�
C2. For E> 0, I ! �1 indicating that the system evapo-
rates. For E< 0, I goes to zero in a finite time, indicating
that the system forms a Dirac peak (‘‘black hole’’) in a
finite time. More generally, for D � 4, since �D� 4�W �
0, we have I � 2Et2 � C1t� C2 so that the system forms
a Dirac peak in a finite time if E< 0. Therefore, self-
gravitating systems with E< 0 are not stable in a space
of dimension D � 4. The study of the present paper in-
dicates that this observation remains true if quantum (Pauli
exclusion principle for fermions) and relativistic effects are
taken into account. In this sense, a universe with D � 4 is
not viable.
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