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An asymptotically flat static solution of Einstein-Maxwell equations which describes the field of two
nonextreme Reissner-Nordström sources in equilibrium is presented. It is expressed in terms of physical
parameters of the sources (their masses, charges, and separating distance). Very simple analytical forms
were found for the solution as well as for the equilibrium condition which guarantees the absence of any
struts on the symmetry axis. This condition shows that the equilibrium is not possible for two black holes
or for two naked singularities. However, in the case when one of the sources is a black hole and another
one is a naked singularity, the equilibrium is possible at some distance separating the sources. It is
interesting that for appropriately chosen parameters even a Schwarzschild black hole together with a
naked singularity can be ‘‘suspended’’ freely in the superposition of their fields.
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I. INTRODUCTION

In the Newtonian physics two pointlike particles can be
in equilibrium if the product of their masses is equal to the
product of their charges (we use the units for which G �
c � 1). Until now, in general relativity the equilibrium
condition for two particlelike sources imposed on their
physical masses, charges and separating distance was not
known in explicit and reasonably simple analytical form
which would admit a rigorous analysis without a need for
numerical experiments. The only exceptional case was the
Majumdar-Papapetrou solution [1,2], for which the charge
of each source is equal to its mass. In this case, the
equilibrium is independent of the distance between the
sources. For each of the static sources of this sort its outer
and inner Reissner-Nordström horizons coincide and such
sources are called extreme ones. Accordingly, the sources
with two separated horizons are called underextreme and
the sources without horizons, superextreme.

The problem, which had been under investigation by
many researchers and which we solve in the present paper,
consists in the search of equilibrium configurations of
nonextreme sources. Since the advent of solution generat-
ing techniques for stationary axisymmetric Einstein-
Maxwell fields, a construction of an exact solution for
two charged masses at rest does not represent any principal
difficulty. However, in general, the asymptotically flat
solutions of this kind contain conical singularities on the
symmetry axis between the sources which can be inter-
preted as the presence of some extraneous struts preventing
the sources from falling onto or running away from each
other. The equilibrium condition just implies the absence
of such struts. Naturally, if the metric is known, so is the
equilibrium condition. In the static case, the latter means

that the product of the metric coefficients gtt and g�� (in
cylindrical Weyl coordinates) should be equal to unity at
the axis where � � 0. However, this equilibrium equation
in such general form usually is expressed by a set of formal
parameters, and it is so complicated that its analytical
investigation appears to be very difficult. Therefore, it is
desirable to have this equation expressed in terms of physi-
cal parameters and in a simple enough form, making it
accessible for an analytical examination of a possibility of
realization of equilibrium. Moreover, this realization
should be compatible with a condition of a positive value
of the distance between the sources. This task has not been
accomplished yet, and up to now only some results
achieved by numerical calculations were known.

The first researches of the equilibrium of nonextreme
sources [3–8] led to contradictory conclusions. The au-
thors of the indicated papers used both the exact techniques
and post-Newtonian and post-post-Newtonian approxima-
tions. The common opinion expressed in [3,4,6–8] is that
the equilibrium for nonextreme sources is impossible.
Nevertheless, in [7] one can find a remark that the analysis
performed was insufficient and the existence of equilib-
rium configurations for the nonextreme objects cannot be
excluded. The arguments in favor of such a possibility can
also be found in [5].

The next step which attracted attention to the problem
again has been done by Bonnor in [9], where the equilib-
rium condition for a charged test particle in the Reissner-
Nordström field was analyzed. Examination made there
also suggested some plausible assumptions for the exact
solutions. As has been indicated in [9] a charged test body
can be at rest in the field of the Reissner-Nordström source
only if theses two sources are both either extreme (for the
test particle the degree of its extremality is defined just by
the ratio between its charge and mass), balanced irrespec-
tive of distance, or one of them is superextreme and the
other is underextreme, and in this case the equilibrium
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depends on the distance. There is no way for equilibrium in
cases when both sources are either superextreme or under-
extreme. It is worth mentioning that in the very recent
papers [10] a new perturbative solution describing an
equilibrium state of a two-body system consisting of a
Reissner-Nordström black hole and a superextreme test
particle has been presented. The whole set of combined
Einstein-Maxwell equations has been solved there by using
the first order perturbation approach developed in [11] and
based on the tensor harmonic expansion of both the gravi-
tational and electromagnetic fields adopting the Regge-
Wheeler [12] gauge. (The basic equations for combined
gravitational and electromagnetic perturbations of the
Reissner-Nordström background in the decoupled form
were found in other gauges in [13] and also in the de-
coupled Hamiltonian form in [14].) Both the electromag-
netically induced gravitational perturbations and
gravitationally induced electromagnetic perturbations
[15] due to the mass as well as the charge of the particle
have thus been taken into account. The expressions in a
closed form for both the perturbed metric and electromag-
netic field have been explicitly given [10]. It is interesting
that the equilibrium equation (which arises in this case as a
self-consistency condition for the set of differential equa-
tions for perturbations) remains the same as that of Bonnor
[9].

Bonnor’s analysis allows one to expect that, qualita-
tively, the same can also happen for two Reissner-
Nordström sources. For two extreme sources this is indeed
the case because it is known that such generalization exists
and leads to the Majumdar-Papapetrou solution. Up to
1997 it remained unknown whether the analogous general-
ization for the nonextreme bodies could be found. The first
solid arguments in favor of the existence of a static equi-
librium configuration for the ‘‘black hole–naked singular-
ity’’ system was presented in [16]. These results have been
obtained there by numerical calculations and three ex-
amples of numerical solutions of the equilibrium equation
have been demonstrated. These solutions can correspond to
the equilibrium configurations free of struts. For the com-
plete proof it would be necessary to show that such con-
figurations indeed consist of two sources, separated by
physically sensible distance between them. However, in
[16] it was pointed out that the distance dependence for the
equilibrium state is unknown. The authors of [16] also
reported that a number of numerical experiments for two
black holes and for two naked singularities showed the
negative outcomes, i.e. all tested sets of parameters were
not in power to satisfy the equilibrium equation. These
findings are in agreement with Bonnor’s test particle analy-
sis. One year later a similar numerical analysis was made in
[17].

In this paper, we present an exact solution of the
Einstein-Maxwell equations which describes the field of
two Reissner-Nordström sources in static equilibrium as
well as the equilibrium condition itself which turns out to
have an unexpectedly simple form expressed in terms of

physical parameters of the sources. This simplicity permits
us to prove a validity of conjectures of the papers [9,16] on
an exact analytical level. It allows a direct analytical
investigation of the physical properties of the equilibrium
state of two nonextreme sources.

We precede a description of our results with a few
remarks about the method we used for derivation of our
solution. For derivation of this solution, an application of
the electrovacuum soliton generating technique (developed
in [18,19] and described in detail in the book [20]) does not
lead to the most convenient parametrization of the solution.
This gives rise to subsequent technical difficulties,
although there are no principal obstacles to use this tech-
nique. Instead, we used the integral equation method
[19,21] which opens a shorter way to the desirable results.
The first step was to construct the solution for the two-pole
structure of the monodromy data on the spectral plane with
a special choice of parameters providing asymptotical flat-
ness and the static character of the solution. This also
corresponds to the two-pole structure of the Ernst poten-
tials (as functions of the Weyl cylindrical coordinate z) on
the symmetry axis. Then the expressions for physical
masses and physical charges for both sources were found
with the help of the Gauss theorem, and the notion of
distance between these sources was also defined. We stress
here that the physical character of masses and charges of
the sources follows not only from their definition using the
Gauss theorem, but also from the analysis of that limiting
case in which one of the sources is a test particle [see the
formulas (12) and (13) below and the text after them].
After that, we derived the equilibrium equation in terms
of these five physical parameters. The miracle arises if one
substitutes this equilibrium equation back into the solution.
This results in the impressive simplification of all formu-
las. Below we expose the final outcome which is ready for
use in practical purposes without the necessity of knowl-
edge of any details of its derivation.

It is worthwhile to mention that a correctness of our
solution has been confirmed also by its direct substitution
into the Einstein-Maxwell field equations.

II. THE SOLUTION

For our static solution the metric and vector electromag-
netic potential in cylindrical Weyl coordinates have the
forms

 ds2 � Hdt2 � f�d�2 � dz2� �
�2

H
d’2; (1)

 At � �; A� � Az � A’ � 0; (2)

where H, f, and � are real functions of the coordinates �
and z. These functions take the most simple form in bipolar
coordinates which consist of two pairs of spheroidal vari-
ables �r1; �1�, �r2; �2� defined by their relations to the Weyl
coordinates:
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� �

�����������������������������������
�r1 �m1�

2 � �2
1

q
sin�1;

z � z1 � �r1 �m1� cos�1;�
� �

�����������������������������������
�r2 �m2�

2 � �2
2

q
sin�2;

z � z2 � �r2 �m2� cos�2:

(3)

Here and below, the indices 1 and 2 denote the coordinates
and parameters related to the Reissner-Nordström sources
located at the symmetry axis at the points z � z1 and z �
z2, respectively. A positive constant ‘ defined as

 ‘ � z2 � z1 (4)

characterizes the z distance separating these sources (for
definiteness we take z2 > z1). The constants m1 and m2 are
physical masses of the sources.

Each of the parameters �k (k � 1, 2) can be either real
or pure imaginary and this property characterizes the cor-
responding Reissner-Nordström source to be either a black
hole or a naked singularity: the real value of �k means that
this is a black hole whose horizon in Weyl coordinates is
f� � 0; zk � �k � z � zk � �kg while the imaginary �k
corresponds to a naked singularity whose critical spheroid
rk � mk is f0 � � � j�kj; z � zkg. So we define the coor-
dinate distance between two black holes (both �1 and �2

are real and positive) as the distance along the z axis
between the nearest points of its intersections with two
horizons, and this distance is ‘� �1 � �2. We define the
distance between the black hole located at the point z � z2

and the naked singularity at the point z � z1 (�2 is real and
positive but �1 is pure imaginary) as the distance between
the nearest points of intersections of the symmetry axis
with a black hole horizon and critical spheroid, and this
distance is ‘� �2. The distance between two naked sin-
gularities (both �1 and �2 are pure imaginary) is simply ‘,
and it is the length of the segment between the nearest
points of intersections of two critical spheroids with the z
axis.

In terms of bipolar coordinates our solution reads
 

H � ��r1 �m1�
2 � �2

1 � �
2sin2�2�

	 ��r2 �m2�
2 � �2

2 � �
2sin2�1�D

�2; (5)

 

� � ��e1 � ���r2 �m2� � �e2 � ���r1 �m1�

� ��m1 cos�1 �m2 cos�2��D
�1; (6)

 

f � ��r1 �m1�
2 � �2

1cos2�1�
�1

	 ��r2 �m2�
2 � �2

2cos2�2�
�1D2; (7)

where

 D � r1r2 � �e1 � �� � cos�2��e2 � �� � cos�1�:

(8)

In these expressions the quantities e1, e2 represent physical
charges of the sources. The parameter � and the parameters
�1, �2 are determined by the relations

 �2
1 � m2

1 � e
2
1 � 2e1�; �2

2 � m2
2 � e

2
2 � 2e2�;

� � �m2e1 �m1e2��‘�m1 �m2�
�1:

(9)

The formulas (1)–(9) give the exact solution of the
Einstein-Maxwell equations if and only if the five parame-
ters m1, m2, e1, e2, and ‘ satisfy the following condition:

 m1m2 � �e1 � ���e2 � ��: (10)

The condition (10) guarantees the equilibrium without any
struts on the symmetry axis between the sources.

III. PROPERTIES OF THE SOLUTION

First of all, one can see that the balance equation (10)
does not admit two black holes (�2

1 > 0, �2
2 > 0) to be in

equilibrium under the condition that there is some distance
between them, that is, if ‘� �1 � �2 > 0. This is in
agreement with a nonexistence of static equilibrium con-
figurations of charged black holes proved under rather
general assumptions in [22]. (To avoid confusion, we
mention here that the results of [22] do not apply in the
presence of naked singularities.) The equilibrium is also
impossible if one of the sources is extreme and the other is
a nonextreme one, and a positive distance exists between
them, i.e. if ‘� �2 > 0 for the case �1 � 0 and �2

2 > 0 (a
negative value for �2

2 is forbidden altogether if �1 � 0)
[23]. The condition (10) also implies that �2

1 and �2
2 can

never both be negative, that is, the equilibrium of two
naked singularities is impossible. So, for separated sources,
an equilibrium may exist either between a black hole and a
naked singularity or between two extreme sources. The
latter case can be realized only if�1 � �2 � 0, � � 0, and
it is easy to see that the formulas (1)–(9) reduce for this
case to the Majumdar-Papapetrou solution.

At spatial infinity the variables r1, r2 coincide and one
can choose either of them as the radial coordinate. In this
region the fields, as can be seen from (5) and (6), acquire
the standard Reissner-Nordström asymptotical form with
the total mass m1 �m2 and the total charge e1 � e2.

At the symmetry axis cos2�1 � cos2�2 � 1 and the
formulas (5) and (7) show that the condition fH � 1 is
satisfied there automatically, i.e. there are no conical sin-
gularities. Besides the singularities inherent to the sources
themselves, any other kinds of singularities (such as, for
example, the off-axis singularities found in the double-
Kerr solution in [24]) are also absent in our solution.

The constant � vanishes in the limit ‘! 1, whence it
follows from (10) that the equilibrium condition asymp-
totically reduces to the Newtonian formm1m2 � e1e2 for a
large distance between the sources.

If one of the sources disappears, e.g. m1 � e1 � 0, our
solution reduces to the exact Reissner-Nordström solution
with the mass m2 and the charge e2 in the standard spheri-
cal coordinates r2, �2.

Let us turn now to the limiting case in which one of the
sources can be considered as a test particle. For this we
assume that m1 and e1 are infinitesimally small but the
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ratio e1=m1 is finite. In this case, in the first nonvanishing
order with respect to the constants m1 and e1, the equilib-
rium condition (10) gives

 �‘�m2��m1m2 � e1e2� � �m1e2 �m2e1�e2: (11)

We introduce instead of m1 a new parameter �1 defined by
the relation

 m1 � �1�1� 2m2�‘�m2�
�1 � e2

2�‘�m2�
�2�1=2

� e1e2�‘�m2�
�1: (12)

Now the relation (11) takes the form
 

m2 � e2
2�‘�m2�

�1 � e1e2��1
1 �1� 2m2�‘�m2�

�1

� e2
2�‘�m2�

�2�1=2: (13)

This last equation is nothing more than Bonnor’s balance
condition [9] for the test particle of the rest mass �1 and
the charge e1 in the Reissner-Nordström field of the mass
m2 and the charge e2. The particle is at rest on the sym-
metry axis at the point R � ‘�m2 where R is the radius of
the standard spherical coordinates of the Reissner-
Nordström solution. If we calculate from (6) the potential
� in the linear approximation with respect to the small
parametersm1 and e1 for the particular case e2 � 0 (i.e. for
the Schwarzschild background), the result will coincide
exactly with the potential which was found first in [25–27]
in the form of multipole expansion and then in [28] in
closed analytical form.

The relation (12) is important since it exhibits clearly the
physical nature of the mass m1 and gives its correct inter-
pretation. This relation shows that the parameters m1, m2

are not the rest masses but they represent the total relativ-
istic energy of each source in the external field produced by
its partner.

Finally it is worth mentioning that our exact solution
remains physically sensible also in the case e2 � 0. This
corresponds to a Schwarzschild black hole of the mass m2

hovering freely in the field of a naked singularity of the
massm1 and the charge e1. Such configuration exists due to
the repulsive nature of gravity in the vicinity of the naked
Reissner-Nordström singularity.
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