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2Departamento de Fı́sica Atómica, Molecular y Nuclear, Universidad de Granada, E-8071 Granada, Spain

(Received 15 May 2007; published 31 July 2007)

We study the semileptonic decays of the lowest-lying bc baryons to the lowest-lying cc baryons
(��0��bc ! ����cc and ��0��bc ! ����cc ), in the limit mb;mc � �QCD and close to the zero-recoil point. The
separate heavy quark spin symmetries make it possible to describe all these decays using a single form
factor. We recover results derived previously by White and Savage in a manner which we think is more
straightforward and parallels the method applied later to study Bc semileptonic decays. We further discuss
the resemblance between the bc baryon decays and those of Bc mesons to �c and J= mesons and
comment on the relation between the slopes of the single functions describing each set of decays. Our
results can straightforwardly be applied to the decays of bb baryons to bc baryons.
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I. INTRODUCTION

The static theory for a system with two heavy quarks has
infrared divergences which can be regulated by the kinetic
energy term �hQ�D

2=2mQ�hQ. This term breaks the heavy
quark flavor symmetry, but not the spin symmetry for each
heavy quark flavor. The spin symmetry is sufficient to
derive relations between form factors for decays of doubly
heavy hadrons in the heavy quark limit, as was first shown
in [1]. The consequences for semileptonic decays of Bc
mesons were worked out in [2]. Here we extend the formal-
ism to describe semileptonic decays of bc baryons to cc
baryons. In Ref. [1], the two heavy quarks Q in a QQq
baryon were treated as a pointlike color-triplet antiquark �Q
interacting with the light degrees of freedom. We will
compare our results with those obtained using this diquark
picture and make a link to the Bc to�c and J= decays. For
recent developments using the diquark picture see [3–5].

We are interested in semileptonic decays of baryons
containing two heavy quarks and a light quark.
Specifically we study the decays of the cascade bc baryons
�bc, �0bc, and ��bc to cascade cc baryons �cc and ��cc. The
quantum numbers of these particles are listed in Table I.
We find, in agreement with [1], that in the heavy quark
limit a unique function describes the entire family of
decays. This function satisfies a normalization condition
(a consequence of vector current conservation) at zero
recoil if the heavy quarks are degenerate. Our results can
be straightforwardly applied to the corresponding decays
involving � baryons and also to the decays of bb baryons
to bc baryons. Some of these decays have also been studied
in various quark model approaches [6–10].

II. SPIN SYMMETRY

The invariance of the effective Lagrangian under sepa-
rate spin rotations of the b and c quarks leads to relations
between the form factors for vector and axial-vector cur-
rents between the cascade bc baryons and cascade cc

baryons. These decays are induced by the semileptonic
weak decay of the b quark to a c quark. Near the zero-
recoil point the velocities of the initial and final baryons are
approximately the same. If the momenta of the initial bc
and final cc baryons are p� � mbcv� and p0� � mccv0� �
mccv� � k�, respectively, then k will be a small residual
momentum near the zero-recoil point. Since the final
baryon is on shell, k � v � O�1=mcc�. We will work near
zero recoil and thus neglect v � k below.

Heavy quark spin symmetry implies that all baryons
with the same flavor content listed in Table I are degener-
ate. The consequences of spin symmetry for weak matrix
elements can be derived using the ‘‘trace formalism’’
[11,12]. To represent the lowest-lying S wave bcq baryons
we will use wave functions comprising tensor products of
Dirac matrices and spinors, namely:

 B0bc � �
�
�1� 6v�

2
�5

�
��
u��v; r�; (1)

 Bbc �
�
�1� 6v�

2
��

�
��

�
1���
3
p �v� � ����5u�v; r�

�
�
; (2)

TABLE I. Quantum numbers of double-heavy baryons. S and
JP are the strangeness and the spin parity of the baryon, I is the
isospin, and S�hh0 is the spin parity of the heavy degrees of
freedom, well defined in the infinite heavy mass limit. l denotes
a light u or d quark.

S JP I S�hh S JP I S�hh

�cc 0 1
2
� 1

2 1� ccl �cc �1 1
2
� 0 1� ccs

��cc 0 3
2
� 1

2 1� ccl ��cc �1 3
2
� 0 1� ccs

�0bc 0 1
2
� 1

2 0� bcl �0bc �1 1
2
� 0 0� bcs

�bc 0 1
2
� 1

2 1� bcl �bc �1 1
2
� 0 1� bcs

��bc 0 3
2
� 1

2 1� bcl ��bc �1 3
2
� 0 1� bcs
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 B�bc � ��bc �
�
�1� 6v�

2
��

�
��
u�� �v; r�; (3)

where we have indicated Dirac indices �, �, and � ex-
plicitly on the right-hand sides and r is a helicity label for
the baryon. For the B�bc, u

�
� �v; r� is a Rarita-Schwinger

spinor. These wave functions can be considered as matrix
elements of the form h0jc� �qc�b�jB

�0��
bc i where �qc � qTC

with C the charge-conjugation matrix. We couple the c
quark and light quark to spin 0 for the B0bc or 1 for the Bbc
and B�bc states. Under a Lorentz transformation, �, and b
and c quark spin transformations Sb and Sc, a wave func-
tion of the form ���u� transforms as

 �u! S����S�1���S���u; �u! Sc�Sbu: (4)

The states in Eqs. (1)–(3) have a common normalization
�uuTr�� ��� and are mutually orthogonal.

To build states where the b and c quarks are coupled to
definite spin, we need the linear combinations

 j0; 1=2;Mibc � �
1
2j0; 1=2;Micq �

��
3
p

2 j1; 1=2;Micq (5)

 j1; 1=2;Mibc �
��
3
p

2 j0; 1=2;Micq �
1
2j1; 1=2;Micq (6)

 j1; 3=2;Mibc � j1; 3=2;Micq; (7)

where the second and third arguments are the total spin
quantum numbers of the baryon and the first argument
denotes the total spin of the bc or cq subsystem. We
have chosen the relative phase of the states in Eqs. (5)
and (6) to agree with that adopted above in Eqs. (1) and (2)
(we will comment again on this when constructing the cc
baryon states). We have not used definite spin combina-
tions for the b and c quarks in Eqs. (1) and (2). This is to
make both the spin transformations on the heavy quarks
and the Lorentz transformation of the states convenient,
making it straightforward to build spin-invariant and
Lorentz covariant quantities.

Finally we observe that we could have combined the b
quark with the light quark to a definite spin in Eqs. (1)–(3).
This would clearly interchange the spin transformations in
Eq. (4) (and alter the appearance of the matrix element
expression in Eq. (11) below). Note also that when rewrit-
ing Eq. (5) with the roles of b and c exchanged, an extra
minus sign arises from the antisymmetry of the Sbc � 0
state under b$ c interchange. Physical results should be
unaltered and we have checked that this is the case.

For the cc baryons there are some differences because
we have two identical quarks. In this case the states are

 B0cc � �

���
2

3

s �
�1� 6v�

2
�5

�
��
u��v; r�; (8)

 Bcc �
���
2
p �
�1� 6v�

2
��

�
��

�
1���
3
p �v� � ����5u�v; r�

�
�
;

(9)

 B�cc � ��cc �

���
1

2

s �
�1� 6v�

2
��

�
��
u�� �v; r�: (10)

Two comments are in order here. First, the two charm
quarks can only be in a symmetric spin-1 state and there-
fore B0cc and Bcc correspond to the same baryon state �cc
(or �cc if the light quark is s). We can thus use either of
them to build up spin invariants and we have confirmed that
we obtain the same results from each. Second, in the
normalization, there are two ways to contract the charm
quark indices, leading to �uuTr�� ��� � �u� ��u. In order to
have the same normalization as for the bc case, we have to
include extra numerical factors as shown in Eqs. (8)–(10).
Note that the equality between the B0cc and Bcc states fixes
the relative phase between them.

We can now construct amplitudes for semileptonic cas-
cade bc to cascade cc baryon decays, determined by matrix
elements of the weak current J� � �c���1� �5�b. We first
build transition amplitudes between the B�0��bc and ����cc
states and subsequently take linear combinations to obtain
transitions from ��0��bc states. The most general form for the
matrix element respecting the heavy quark spin symmetry
is1

 h����cc ; v; k;M0jJ��0�jB
�0��
bc ; v;Mi

� �ucc�v; k;M
0����1� �5�ubc�v;M�Tr	�bc� ��cc


� �ucc�v; k;M0��bc� ��cc���1� �5�ubc�v;M�;

(11)

where M and M0 are the helicities of the initial and final
states and � � ���!�=

���
2
p

, with ! � v � v0. We use the
standard relativistic normalization for hadronic states and
our spinors satisfy �uu � 2m, �u�u� � �2mwherem is the
mass of the state. Terms with a factor of 6v can be omitted
because of the equations of motion ( 6vu � u, 6v� � �,
��u� � 0, v�u� � 0), while terms with 6k will always
lead to contributions proportional to v � k which is set to 0
at the order we are working. In performing the calculations,
we make use of the relations �u��u � �uv�u, �u�5u � 0,
�u6ku � 0 and, �u6k���5u � � �u6kv��5u. Our results for
cascade bc to cascade cc transition matrix elements are

 �bc ! �cc � �ucc�2�� �
4
3�

��5�ubc; (12)

 �0bc ! �cc
�2��

3
p � �ucc�����5�ubc; (13)

 �bc ! ��cc
�2��

3
p � �u�ccubc; (14)

 �0bc ! ��cc � 2� �u�ccubc; (15)

 ��bc ! �cc
�2��

3
p � �uccu

�
bc; (16)

 ��bc ! ��cc � 2� �u�cc��� � ���5�ubc�: (17)

1If the roles of the b and c quarks were interchanged, the
matrix element would read �uccubc Tr	�bc� ��cc�

��1� �5�
 �
�ucc���1� �5��bc� ��ccubc.
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If the b and c quarks become degenerate, then vector
current conservation ensures that ��1� � 1.

The consequences of taking the heavy quark limit for
semileptonic decays of baryons with two heavy quarks
were considered some time ago by Savage and White [1].
They adopted an approach where the two heavy quarks
bind into a color antitriplet which appears as a pointlike
color source to the light degrees of freedom. Applying the
‘‘superflavor’’ formalism of Georgi and Wise [13–15]
allowed the matrix elements of the heavy-flavor-changing
weak current to be evaluated between different baryon
states. We find two differences to their results which cannot
be eliminated by redefining the phases of the physical
states. One difference, already pointed out in [16], is for
the spin-3=2 to spin-1=2 transition in Eq. (16), where they
find a vanishing weak transition matrix element, while ours
is nonzero. The second difference is the relative sign of the
vector and axial contributions in the �bc ! �cc transition
of Eq. (12). This does not affect the differential decay rate
although it could change angular correlations between the
outgoing charged lepton and baryon.

Spin symmetry for both the b and c quarks enormously
simplifies the description of all of the above transitions in
the heavy quark limit and near the zero-recoil point. All the
weak transition matrix elements are given in terms of a
single universal function. Lorentz covariance alone allows
a large number of form factors (six form factors to describe
�bc ! �cc, another six for �0bc ! �cc, eight each for
�bc ! ��cc, �0bc ! ��cc, and ��bc ! �cc, and even more
for ��bc ! ��cc). The spin symmetry provides further sim-
plifications beyond those coming from working at v0 � v.
For example, the transitions ��0�bc ! �cc are each described
by six form factors in general, corresponding to the struc-
tures v� � ��, v0� � ��, ��, v��5, v0��5, and ���5. At
the zero-recoil point only �� and ���5 survive, leaving
four form factors to describe these two decays. Spin sym-
metry reduces this to a single function �, which also
describes the rest of the transitions shown above.

III. DIQUARK PICTURE AND LINK TO Bc MESON
DECAYS

Up to now we have used only the separate spin symme-
tries for the heavy charm and bottom quarks and our results
are completely model independent. Now we will use con-
stituent quark model ideas to estimate the scale of variation
of the form factors and to make a link to Bc to �c and J= 
semileptonic decays.

The form factor � is calculable in terms of the overlap of
the spatial wave functions of the bcq and ccq baryon
states. Considering the �bc ! �cc transition with the
initial baryon at rest, we can find � using

 ��!� �
Z
d3r1d

3r2 exp	�ik � r12=2


� 	��
cc�r1; r2; r12�


���
bc�r1; r2; r12�; (18)

where r1;2 are the distances between each of the heavy

quarks and the light quark, while r12 is the heavy quark
separation. The wave functions depend on distances be-
cause we are assuming that the lowest-lying baryons are
purely S wave and so the integral depends on k2 �

m2
�cc
	�!�2 � 1
 (see Eq. (34) in [10]).

If the distance between the two heavy quarks is much
smaller than the distance of the light quark from either
heavy quark, as expected in the heavy mass limit of a
strong Coulomb binding potential where the radius of the
QQ bound state should decrease as 1=mQ, then the baryon
wave functions can be approximated by (see Appendix B
of [10])

 ��
Qc�r1; r2; r12� � �Qc�r12���rQ�; (19)

where rQ is the distance of the light quark from the center
of mass of the two heavy quarks. We ignore all spin-
dependent interactions which are suppressed by inverse
powers of heavy quark masses, allowing us to drop the
superscript � from now on, and making all interquark
potentials flavor independent. �Qc is the ground-state
wave function of the Qc diquark, while � is the ground-
state wave function for the relative motion of the light
quark and a pointlike diquark of infinite mass with a
potential which is twice the quark-quark potential. In these
circumstances we have
 

��!� �
Z
d3r12 exp	�ik � r12=2
	�cc�r12�


��bc�r12�

�
Z
d3r���r���r�; (20)

where r � rc and in the d3r integral we have replaced
��rb� by��r� since rb � rc �O�r12�. This approximation
leads to uncertainties of O�r2

12� after integration. The d3r
integration then gives 1 and thus

 ��!� �
Z
d3r12 exp	�ik � r12=2
	�cc�r12�


��bc�r12�;

(21)
which has an identical form to Eq. (4.11) in [2], where the
unique form factor � describing the Bc to �c and J= 
semileptonic decays is given in terms of wave functions of
the �bc and �cc bound states.2 This does not mean that � and
� are identical because the QQ and Q �Q potentials used to
compute the diquark and meson wave functions are not the
same. For example a �i�j color dependence (�i are the
usual Gell-Mann matrices) would lead to VQQ � VQ �Q=2.

Assuming Coulomb wave functions, �Qc�r� / e
�r=aQ ,

with the diquark radius aQ / 1=���Q�, where �Q is the
Qc reduced mass and � is the strength of the �1=r
potential, we find

 ��!� � 8
a3=2
b a3=2

c

�ab � ac�
3

�
1�

k2a2
ba

2
c

4�ab � ac�
2

�
�2
; (22)

which agrees with the expression given in Eq. (3) of [1] and

2We believe that there should not be an explicit factor of 2 in
(4.11) of [2].
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clearly resembles Eq. (4.12) of [2]. Assuming VQQ �
VQ �Q=2, we would expect the Bc and �c radii a0 and a�
introduced in [2] to be approximately one-half of ab and
ac, respectively. The !2 slopes of the form factors � and �
would then be in the ratio 1 to 4�m�cc

=m�c�
2 � 6.

To check the use of Coulomb wave functions and the
slope prediction, we have calculated � and � using wave
functions from a nonrelativistic quark model [10,17] and
show the results in Fig. 1. The !2 slope of the � form
factor is indeed smaller than that of �, but the ratio is
around 1 to 3 rather than 1 to 6, so there are significant
corrections to the Coulomb wave function description.

IV. CONCLUSION

We have studied the semileptonic decays of the lowest-
lying bc baryons to lowest-lying cc baryons in the limit
mb;mc � �QCD and close to the zero-recoil point. The
separate heavy quark spin symmetries make it possible to
describe all these decays using a single form factor. We
have discussed the resemblance of the bc baryon decays to
those of Bc mesons to �c and J= mesons and commented
on the relation between the slopes of the single functions
describing each set of decays. Lattice QCD simulations
work best near the zero-recoil point and thus are well-
suited to check the validity of the results.

We studied specifically the semileptonic decays of cas-
cade bc baryons to cascade cc baryons. Our results can be
straightforwardly applied also to the corresponding decays
involving � baryons as well as to the decays of bb baryons
to bc baryons. It is also straightforward to extend the
analysis to transitions involving the heavy-to-light weak
current, using the bc baryon wave functions defined in
Eqs. (1)–(3) together with the usual spinor wave function
for a single heavy quark baryon. For example, to study

��0��bc ! �b semileptonic decays, we would evaluate ex-
pressions like �ububcTr	���1� �5��bc�
 where � �
�1 � 6k�2 and ub is the spinor for the �b.
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FIG. 1 (color online). Form factors in the heavy quark limit:
��!� for cascade bc to cascade cc baryon decays and ��!� for
Bc to �c, J= decays, calculated from a nonrelativistic quark
model [10,17] (using the AL1 potential). The solid lines are
calculated from the wave function overlaps, illustrated for ��!�
in Eq. (21), while the dashed lines are constructed from appro-
priate combinations of form factors: for � we consider �F1 �
F2 � F3�=2, where F1;2;3 are defined in Eq. (23) of [10], while
for � we use	�0�1 defined in Eq. (52) of [17]. The solid and
dashed curves should agree close to zero recoil (!! 1).
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