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We generalize the relativistic flux tube model for arbitrary two- or three-body systems. The spin-
independent and spin-dependent contributions of the flux tube to the total Hamiltonian are computed in
perturbation theory. In particular, we show that the spin-dependent part exhibits a universal spin-orbit
form: It does not depend on the nature of the confined particles. The general equations we present, being
well defined for light particles, can thus be applied to usual as well as exotic hadrons such as hybrid
mesons and glueballs.
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I. INTRODUCTION

A successful way of understanding the mesons is to
approximate the gluon exchanges between the quark and
the antiquark by a straight string, which is responsible for
the confining interaction. The relativistic flux tube model
(RFTM) is an effective QCD model based on this picture
[1]. Apart from mesons, it has been generalized to baryons
[2], and to more exotic particles like glueballs and glue-
lumps (gluon attached to a pointlike q �q pair) [3]. As the
present application domain of the RFTM has exceeded its
original formulation, it is interesting to explicitly write its
equations for general two- or three-body systems, in order
to apply it to some cases of current interest like hybrid
mesons seen as q �qg states, three-gluon glueballs, etc. It is
done in Sec. II, where it is assumed that the dynamical
contribution of the flux tube is small enough to be treated in
perturbation theory. This approach, that we previously
called the perturbative flux tube model (PFTM), is rather
satisfactory since it reproduces the exact RFTM spectrum
up to 5% [4,5].

The RFTM and the PFTM neglect the spin of the quarks.
Recently, an attempt to exactly include spinning particles
in the RFTM has been made [6], but it quickly leads to very
complicated equations. In this work, we rather compute
these spin contributions within the PFTM framework in
order to get more tractable expressions. Similar calcula-
tions have already been performed for mesons and baryons
with the Wilson loop technique and the background per-
turbation theory [7,8]. But, the originality of our approach,
inspired by Ref. [9], is that the spin correction we obtain
remains valid for particles of arbitrary spin (not only 1=2 as
for the quarks) as well as of arbitrary mass (not only for
heavy quarks, but also for light and massless bodies). It has
a universal spin-orbit form, which is computed in Sec. III.
Some conclusions are finally drawn in Sec. IV.

II. PERTURBATIVE FLUX TUBE

A. Two-body systems

When the orbital angular momentum ‘ is equal to zero,
the two-body RFTM reduces to the spinless Salpeter

Hamiltonian (SSH) H0 �
������������������
~p2

1 �m
2
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q
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q
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where the linear confining potential ar is generated by
the straight flux tube linking the quark to the antiquark
[1], a being the energy density of the flux tube. For not too
large ‘, i.e. ‘ < 6, the dynamical contribution of the flux
tube can accurately be treated as a perturbation of H0. The
auxiliary field technique allows one to compute this per-
turbation, which is given by [3–5,10]

 �Hft��
a‘�‘�1�

2�1�2r
�4��2

1��
2
2��1�2����1��2�ar�

�12�1�2�4��1��2�ar��ar�2�
:

(1)

In this equation, �i can be interpreted as the constituent
mass of the particle whose bare mass is mi. It reads

 �i � h
������������������
~p2
i �m

2
i

q
i; (2)

the average being computed with the eigenstates of the
unperturbed Hamiltonian H0. Let us notice that �i > 0
even if mi � 0, as for u, d quarks and gluons. It ensures
that the correction (1) will be defined in every case. In the
heavy quark limit where �i � mi 	 ar, the flux tube
contribution becomes
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2

�
; (3)

in agreement with the spin-independent correction to po-
tential ar as predicted by the Wilson loop technique [7].
Our formula (1) actually generalizes Eq. (3) to the case of
light quarks. It is worth mentioning that, although the
discussion we made was based on the mesonic case only,
the PFTM Hamiltonian, given by H � H0 ��Hft, can be
applied to successfully describe glueballs and gluelumps
[3,11].

*fabien.buisseret@umh.ac.be
†claude.semay@umh.ac.be

PHYSICAL REVIEW D 76, 017501 (2007)

1550-7998=2007=76(1)=017501(4) 017501-1 © 2007 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.76.017501


B. Three-body systems

Lattice QCD calculations support the idea that the so-
called Y-junction is the more realistic configuration of the
static color field in baryons [12]. In this scheme, each
quark generates a flux tube, the three flux tubes meeting
at the point Y which minimizes the total energy

P
iairi. ai

and ri are, respectively, the energy density and the length
of the flux tube starting from particle i.

We assume here that the value of ai is given by the
Casimir scaling hypothesis [13]. Under that assumption,
the energy density ai of a flux tube is proportional to its
quadratic SU�3� Casimir operator. Then, one should have
ag � �9=4�aq. If the three particles are of the same nature
(quark, gluon, . . .), the ai are all equal, and Y is the
Toricelli point, minimizing the total length of the three
flux tubes. However, the three bodies can be different in
general systems. For example, in a hybrid meson seen as a
q �qg bound state, one can show that, assuming the Casimir
scaling hypothesis, the Y-junction is fixed on the gluon
[3,14], with two flux tubes linking the gluon to the quark
and to the antiquark.

The equations defining the three-body RFTM in the
center of mass (CM) frame read [2]
 

~0 �
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The different symbols appearing in these relations have to
be clarified. Let ~xY and ~vY be the position and the velocity
of the Y-junction respectively; similarly, ~xi and ~vi are the
position and the velocity of particle i. Then, ~ri � ~xi � ~xY ,
and ai is the energy density of the flux tube linking Y to that
particle. Moreover, ~vti � � ~vi? � �1� �� ~vYi?, where ~vi?
and ~vYi? are the components of ~vi and ~vY orthogonal to ~ri.
In order to find the PFTM Hamiltonian corresponding to
Eqs. (4), one should try to apply the auxiliary field formal-
ism as in the two-body case. However, this procedure is too
complex here because we are dealing with a three-body
problem. What can be done is to neglect the string con-
tribution in Eq. (4a). This approximation leads to ~vi �
~pi=�i, where �i is again defined by Eq. (2). Then, a
development of Hamiltonian (4b) at the order � ~vti�

2 leads
to H � H0 ��Hft, where H0 is a three-body SSH with an
Y-junction potential,
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and where
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is the dynamical contribution of the flux tubes. In the limit
of heavy quarks, Eq. (6) reduces to the results of Ref. [2].

This term can be further simplified in two cases, follow-
ing the position of the Y-junction. If ~xY � ~xi, as in baryons
and three-gluons glueballs, we can assume in good ap-
proximation that the Y-junction is located at the CM.
This approximation only overestimates the potential en-
ergy of the genuine junction by about 5% in most cases
[15]. Then, ~vY � ~0 as we work in the CM frame. By
definition, j ~pi?j � j ~Lij=ri with ~Li � ~ri 
 ~pi the orbital
angular momentum for the particle i, and Eq. (6) becomes

 �Hstr �
X3
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�
�
ai
6ri
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i

�2
i

�
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where ~Li and ri are now relative to the CM. It is worth
mentioning that this last formula is a three-body general-
ization of Eq. (3): If the sum in Eq. (7) is performed for a
two-body system only, formula (3) is recovered.

If the Y-junction is located on one of the three bodies, as
is the case in a hybrid meson [3], we can arbitrarily set
~xY � ~x3. Then, ~r3 � ~0 and ~vY � ~v3. Equation (6) can now
be written as
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i
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�2
3
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��
: (8)

This expression is more complicated than (7) since it
involves ~p3i?, that is the component of ~p3 which is or-
thogonal to ~ri � ~xi � ~x3. Let us notice that the general
equation (8) agrees with the results of Ref. [14] in the limit
of static quarks.

Let us note that, when the quarks are not static, it has
been shown in Refs. [16] that the Y-junction becomes
unstable at the classical level. Two quarks actually tend
to form a diquark linked to the third quark by a single flux
tube. Whether such an instability remains or not at the
quantum level is still a matter of research. Moreover, the
relevance of such an instability for resonances is question-
able [16]. It is also worth mentioning that the Y-picture can
give good description of baryon spectra, even for highly
excited states [17]. We suggest that the predictions of the
Y-junction and of the diquark-quark pictures could be
compared in a quantized version of our perturbative flux
tube model. We leave such a comparison for future works.

III. SPIN-DEPENDENT FLUX TUBE
CONTRIBUTION

Let us consider a pointlike particle of massm and charge
q, evolving in the vector potential A� generated by a fixed
source. Its equations of motion are different following its
spin, but, in every case, the momentum p� has to be
replaced by �� � p� � qA� in order to take into account
the interaction with the external field. In this section, we
will focus on particles whose spin is either 1=2 or 1 (quarks
or gluons). At the quantum level, the corresponding equa-
tions can all be written in a Schrödinger-like form i@t �
H , where  is a ‘‘spinor,’’ whose number of components
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is different following the spin of the considered particle: 4
for a Dirac spinor, and 6 for a spin-1 particle. In this last
case, one obtains the so-called Duffin-Kemmer-Petiau
equation [18].

Once Hamiltonian H is known, its nonrelativistic limit
can be computed thanks to a Foldy-Wouthuysen transfor-
mation [19]. For a spin-1=2 particle, one obtains for the
positive-energy part of the Hamiltonian [19]

 H � m� qA0 �
~�2

2m
�
q
m
~S ~B�

q

2m2
~S� ~�
 ~E�

�
q

8m2
~r ~E : (9)

The symmetrizations of noncommuting operators were not
written in order to simplify the notations. ~S � ~�=2 are the
spin-1=2 matrices, and the electric and magnetic fields are
given by ~E � � ~rA0; ~B � ~r
 ~A. The Foldy-Wouthuysen
Hamiltonian for a particle of spin 1 has been computed in
Ref. [20]. Its positive-energy part is

 H � m� qA0 �
~�2

2m
�

q
2m

~S ~B; (10)

with �Sj�kl � �i"jkl the spin-1 matrices.
Hamiltonians (9) and (10) were computed in the refer-

ence frame of the static source under the implicit assump-
tion that A� was an Abelian vector potential. So, they could
be seen as part of an effective model of QED, but not of
QCD. However, this approach can be applied to QCD by an
appropriate choice of A�, as it has already been shown in
Ref. [9]. We will recall here the main points of this work in
order to be self-contained. The question is: Can the PFTM
be simulated by a particular form of the vector potential?
The straight flux tube of the PFTM actually mimics the
configuration of the chromoelectric field as it can be ob-
served in lattice QCD calculations [12]. Consequently, in
the rest frame of the flux tube, denoted hereafter as the flux
tube (FT) frame, the corresponding gluon field is purely
chromoelectric. The Faraday tensor in the FT frame is thus
of the form

 FFT
�� � ���0��r � ��0��r�E

a�r�
�a
2
; (11)

with r the distance between the static source and the test
particle. The tensor (11) is such that

 �FFT
��; FFT

�	� � ifabcFFT
a;��FFT

b;�	

�c
2
/ fabcEaEb�c � 0:

(12)

Equation (12) actually shows that the QCD Faraday tensor
behaves as a QED one in this special case. Consequently,
we just have to search for the most general vector potential
ensuring ~EFT � �a~r=r, ~BFT � ~0, which corresponds to
the linearly rising potential AFT

0 � ar giving the static
energy of the flux tube. It is shown in Ref. [9] that this
condition is fulfilled if, in the static source’s frame, which
is also the CM frame,

 A0 � ar

��������������������������������
1�

�
~p

m� ar

�
2

s
; ~A �

ar
m� ar

~p; (13)

where ~p and r are the momentum of the particle and the
flux tube length in the CM frame. In the nonrelativistic
limit, ar� m, j ~pj=m� 1, and thus [9]

 A0 � ar; ~A�
ar
m
~p; ~E��a

~r
r
; ~B�

a ~L
mr

: (14)

Formula (14) can be injected in the Hamiltonians (9) and
(10). We set q � 1 because it can be absorbed in a rede-
finition of a. Finally, the spin-orbit terms we were looking
for can be collected. For a spin-1=2 particle,

 �H so � �
1

m
~S ~B�

1

2m2
~S� ~�
 ~E� � �

a ~S ~L

2m2r
; (15)

in agreement with Ref. [9]. For a spin-1 particle,

 �H so � �
1

2m
~S ~B � �

a ~S ~L

2m2r
: (16)

We can conclude from this discussion that, if one takes
into account the spin of the particles, a spin-orbit correc-
tion must be added to the PFTM. It has a universal spin-
orbit form for spin-1=2 and spin-1 particles, as it can be
seen by inspection of Eqs. (15) and (16), and can be
thought as a Thomas precession term in the color magnetic
field. This relativistic correction is consequently given in
the case of a general two-body system by

 �Hso �
X2

i�1

�
�
ai ~Li ~Si
2m2

i ri

�
� �

a
2r

� ~L ~S1

m2
1

�
~L ~S2

m2
2

�
; (17)

in agreement with the Wilson loop formalism in the heavy
quark case [7]. The last term of this equation is only valid
in the CM frame, with r the total flux tube length and ~L the
relative orbital angular momentum. Formula (17) is clearly
not valid for light particles (u, d quarks, and gluons).
However, another approach leads to corrections which
are defined even in the massless case, that is the back-
ground perturbation theory [8]. Within this formalism, it is
shown that the spin-dependent (SD) corrections in mesons
are given in the CM frame by

 �HSD �

�
a
r
�

2

r
dV1�r�
dr

�� ~L ~S1

2�2
1

�
~L ~S2

2�2
2

�
: (18)

V1�r� is a complicated function of the quarks correlators
which, at large r, becomes V1�r�jr!1 � �ar. Then,

 �HSD � �
a
2r

� ~L ~S1

�2
1

�
~L ~S2

�2
2

�
: (19)

Equation (19) is equal to (15) up to a substitution of mi by
the dynamical quark masses �i (2), which are always
nonzero. In agreement with our results, the correction
(19) also holds for gluons [8].

For a system in which the flux tubes meet at the CM, like
a meson, a baryon, or a glueball, the spin-orbit contribution
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is then given by

 �Hso �
X
i

�
�
ai ~Li ~Si
2�2

i ri

�
; (20)

with ri the distance between the junction point, located at
the CM, and the particle i. ~Li is the orbital angular mo-
mentum of particle i, relative to the CM. It is worth noting
that our formula (20) agrees with the results of Wilson loop
technique [7] and background perturbation theory [8]
although it has been established in a totally different
way. This gives us confidence in our result. Let us also
remark that the spin-orbit term (20) is expected to be
particularly relevant for the glueballs, since the spin inter-
actions are very important in this case, but also because of
the Casimir scaling of the energy density of the flux tubes.

Formula (20) has to be modified when the junction is
located on one of the particles, say particle 3, as for hybrid
mesons. The spin-orbit correction is then given by

 �Hhyb
so �

X
i�1;2

�
�
ai ~Li

~Si
2�2

i ri

�
; (21)

with ~ri � ~xi � ~x3 and ~Li � ~ri 
 ~pi, in agreement with
Ref. [7] for heavy particles.

Other studies reveal that the Foldy-Wouthuysen
Hamiltonian for a particle of arbitrary half-integer spin
has the same formal structure as the one for a spin-1=2
particle [21], and that the same conclusion holds for arbi-
trary integral spin particles [22]. So, we can assume that
the spin-orbit term we found is formally valid for any spin,

even if the spin-1=2 and 1 are the most relevant cases for
our purpose.

IV. CONCLUSION

We have explicitly written the equations ruling a general
two- or three-body relativistic flux tube model, where the
dynamical contribution of the flux tube is seen as a pertur-
bation. The unperturbed Hamiltonian is a spinless Salpeter
Hamiltonian with a linear confining potential, while the
flux tube perturbation is compatible with spin-independent
relativistic corrections arising from other effective ap-
proaches [2,8]. Moreover, we have computed the spin-
dependent part of the flux tube contribution. It appears to
have a universal spin-orbit form, which does not depend on
the spin of the confined particles.

The perturbative flux tube model we presented is ex-
pected to reproduce the exact spectrum of the relativistic
flux tube model with an accuracy of about 5% [4,5]. We
think that this approach, supplemented by appropriate
short-range potentials, is an interesting framework to build
effective models describing usual [17] as well as exotic
hadrons. Indeed, our relativistic corrections are more gen-
eral than the usual ones because they are also valid for light
particles. We leave the computation of hadron mass spectra
with such a model for future works.
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