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We present results for light meson masses and pseudoscalar decay constants from the first of a series of
lattice calculations with 2� 1 dynamical flavors of domain wall fermions and the Iwasaki gauge action.
The work reported here was done at a fixed lattice spacing of about 0.12 fm on a 163 � 32 lattice, which
amounts to a spatial volume of �2 fm�3 in physical units. The number of sites in the fifth dimension is 16,
which gives mres � 0:00308�4� in these simulations. Three values of input light sea quark masses, msea

l �
0:85ms, 0:59ms and 0:33ms were used to allow for extrapolations to the physical light quark limit, while
the heavier sea quark mass was fixed to approximately the physical strange quark mass ms. The exact
rational hybrid Monte Carlo algorithm was used to evaluate the fractional powers of the fermion
determinants in the ensemble generation. We have found that f� � 127�4� MeV, fK � 157�5� MeV
and fK=f� � 1:24�2�, where the errors are statistical only, which are in good agreement with the
experimental values.
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I. INTRODUCTION

The successful determination of the light hadron spec-
trum serves as an important test of lattice QCD. With the
emergence of powerful computers and new algorithms,
lattice QCD has entered an era of dynamical simulations
where two light quarks and one strange quark are included
in the vacuum polarization effects. (These simulations are
referred to as 2� 1 flavor simulations.) Since current
simulations use light quarks that are heavier than the
physical values, extrapolations to the light quark region
are still required, and having control of these extrapola-
tions is vital for a comparison with experimental results.
Chiral perturbation theory provides a framework for such
extrapolations, although the range of quark masses for
which a given order of chiral perturbation theory is accu-
rate is still under investigation.

Symmetry plays an important role in hadron physics.
The domain wall fermion (DWF) formulation [1–3] re-
spects flavor symmetry and has approximate chiral sym-
metry, with the introduction of an auxiliary fifth
dimension. When the extent of this fifth dimension, de-
noted as Ls, goes to infinity, chiral symmetry is fully
recovered. In addition, unlike Wilson and staggered fermi-
ons, domain wall fermions (and the closely connected
overlap fermions) allow chiral symmetry to be recovered
at finite lattice spacing. While certainly an important im-
provement for the light hadron spectrum calculation pre-
sented here, this good chiral symmetry is vital for accurate
operator renormalization and control of operator mixing in
a wide variety of important hadronic matrix elements. As
evidenced by existing work in quenched QCD, the chiral
properties of domain wall fermions make calculations
possible that cannot currently be done with other formula-
tions [4,5]. To move beyond the quenched approximation,
2� 1 flavor ensembles are needed. The production of
these ensembles and the determination of their basic prop-
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erties are important steps towards the goal of measuring a
wide variety of physically interesting quantities using this
formulation and are the focus of this paper.

In practice, Ls is taken to be on the order of 10–20 sites
so that some residual chiral symmetry breaking remains.
However, this residual chiral symmetry breaking is highly
suppressed. Compared to Wilson fermions where the re-
sidual chiral symmetry breaking is an O�1� effect, for DWF
it is of O�10�3� or smaller, depending on the size of Ls. To
leading-order in the lattice spacing a, the only effect of this
residual chiral symmetry breaking is a simple mass renor-
malization (denoted by mres) added to the input quark
mass. Additional chiral symmetry breaking effects enter
at higher-order in a, but they are suppressed by the addi-
tional powers of a and also vanish as Ls becomes large.
This situation simplifies the chiral extrapolation of physi-
cal observables, and allows us to study those aspects of
hadron phenomenology where chiral symmetry is impor-
tant with reduced systematic uncertainties.

Domain wall fermions are both on- and off-shell im-
proved, since for any quantity a traversal of the fifth
dimension is required to mix chiralities. Such a traversal
is suppressed for large Ls, a suppression which gives rise to
the small value for mres and which depends on Ls as
exp���Ls� if the generic, weak coupling behavior of
residual chiral symmetry breaking effects is used [6].
Thus, the resulting theory is accurate up to terms of
O�a exp���Ls�� and O�a2�.

For amplitudes which violate chiral symmetry by two
units, a suppression of order m2

res or exp��2�Ls� is ex-
pected. This estimate may fail in the case of composite
operators with many fields at the same space-time point
[6], where one must give special consideration to chiral
symmetry breaking arising from rare, localized modes that
are undamped in the fifth dimension. However, the detailed
flavor structure of the operator must be considered which,
in important cases, prevents these localized modes from
contributing [7]. The result is that chirally disallowed
operator mixings are generally under good control with
DWF at finite Ls.

For power divergent quantities, one finds that if an
operator receives an mf=a

n contribution, where mf is the
quark mass, then for finite Ls it will generally receive an
O�mres�=an contribution [8]. Because the residual chiral
symmetry breaking is entering a divergent amplitude, it
will not be determined by the chiral symmetry breaking at
low energies described by mres. However, it will be of
this order, as has been demonstrated in [4]. Thus, for
such quantities the simple replacement mf=an ! �mf �

mres�=a
n provides a sensible estimate of but not an accurate

value for the effects of residual symmetry breaking on the
quantity in question. For example, such a term enters the
chiral condensate h �qqi. This implies that to compute h �qqi
with domain wall fermions an extrapolation to large Ls
must be made or that this physical quantity should be

determined from the density of Dirac eigenvalues at zero,
so that ultraviolet chiral symmetry breaking effects do not
enter. In contrast, a similar, uncertain O�mres=a2� term
which appears in the matrix elements of the weak interac-
tion operator O6 does not effect the quantity of interest
which is proportional to mf [4]. For a more complete
discussion of the effects of residual chiral symmetry
breaking for domain wall fermions see, for example,
Refs. [3,4,8,9].

These benefits of controlled chiral symmetry breaking
must be weighed against the computing cost for domain
wall fermions, which are naively O�Ls� more expensive
than conventional fermion formulations [10]. In balance,
we believe that the benefits of domain wall fermions out-
weigh their extra numerical costs, because of the much
larger range of observables that are accessible to this
formulation.

Studies which established a set of parameter values
suitable for 2� 1 flavor simulations with domain wall
fermions were reported in [11]. In the present paper we
describe the first of a series of 2� 1 flavor DWF simula-
tions which use the parameters as determined in [11], and
explore in detail the systematic effects arising in such a
full dynamical simulation with domain wall fermions.
Specifically, we use the Iwasaki gauge action with gauge
coupling � � 2:13 on a lattice of 163 � 32, which gives a
lattice spacing of about 0.12 fm and a spatial lattice extent
of about 2 fm. This volume should be large enough to give
accurate results for the physics of the pseudoscalar mesons
simulated here: those with a mass ratio to vector meson
masses in the range 0:5 � mP=mV � 1:0. Larger volume
simulations at the same coupling using lighter quark
masses are underway, as are simulations at weaker cou-
plings, also with lighter quark masses. The volumes used in
the work presented here do not allow lighter dynamical
quark masses to be used, so the full benefits of DWF will
not be visible. However, the current simulations allow us to
demonstrate that more costly simulations at larger volumes
and lighter quark masses are feasible. Since baryonic ob-
servables may suffer from non-negligible finite volume
effects in the current volume, we will only focus on light
meson physics in this paper. In particular, we will present
results for light pseudoscalar meson masses and decay
constants, and calculate quantities of direct phenomeno-
logical interest, such as the light quark masses and fK=f�.

One of the many complexities of 2� 1 flavor simula-
tions is the presence of the fractional powers of the fermion
determinants in the path integral, which the conventional
hybrid Monte Carlo algorithm is not able to evaluate. We
employed the rational hybrid Monte Carlo (RHMC) algo-
rithm by Clark and Kennedy [12–14], which is not only
free of finite step size errors, but also has proved to be quite
efficient after recent improvements and tunings [15]. The
gauge configurations used in this work were mainly gen-
erated with one variant of the RHMC algorithm. We de-
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scribe the details of this algorithm in Sec. II. The algorithm
was further improved after the major part of this work had
been done. It is thus to our advantage to study how the
computing cost and ensemble properties change with the
new improvements. We compare these two variants of the
RHMC algorithm in Sec. VI.

This paper is organized as follows. In Sec. II we present
the details of generation of the gauge configurations using
the RHMC algorithm. We discuss the thermalization and
autocorrelations of the ensembles in Sec. III. Section IV
gives the results of the light meson masses and decay
constants, including the residual chiral symmetry breaking
in these simulations. The results for physical observables
in the chiral limit are presented in Sec. V. Section VI
discusses an extension of one of the ensembles using an
improved RHMC algorithm. Our conclusions are given in
Sec. VII.

II. GENERATION OF GAUGE CONFIGURATIONS

In this study we have used the Iwasaki renormalization-
group improved gauge action and 2� 1 flavors of dynami-
cal domain wall fermions; details of the action and our
notation may be found in [11]. Our ensembles were gen-
erated using two new variants of the RHMC algorithm as
described below.

For the case of two degenerate light quarks of mass, ml,
and a strange quark of mass, ms, integrating out the fer-
mion fields in the path integral leads to
 

det	DyDWF�M5; ml�DDWF�M5; ml�


det	DyDWF�M5; 1�DDWF�M5; 1�


�
det1=2	DyDWF�M5; ms�DDWF�M5; ms�


det1=2	DyDWF�M5; 1�DDWF�M5; 1�

; (1)

where DDWF�M5; m� is the domain wall Dirac operator,M5

is the height of the domain wall, andm is the fermion mass.
The determinants in the denominator arise from the Pauli-
Villars fields introduced to cancel the bulk infinity which
arises as the size of the fifth dimension Ls ! 1.

We may use the identity det�M� � 	det1=n�M�
n to simu-
late various different decompositions of the same fermi-
onic determinants using RHMC. If we adopt the short-hand
notation D�mi� � DyDWF�M5; mi�DDWF�M5; mi�, we may
write the ratio of determinants in Eq. (1) as

 

det1=2	D�ml�
det1=2	D�ml�
det1=2	D�ms�


det	D�1�
det1=2	D�1�

: (2)

In our previous paper [11], each determinant in Eq. (2)
was associated with a separate pseudofermion field, and a
standard RHMC algorithm [16,17] was employed.

The pseudofermion action for molecular dynamics evo-
lution of a single quark flavor of mass m takes the form
Spf � �yD�1=2�m��. We may improve the efficiency of
RHMC by taking advantage of the properties of the ex-

pansion coefficients in the partial-fraction formulation of
the pth-order rational approximation, x�1=2 ’ f�0 �Pp
k�1

�k
x��k
g. The ‘‘shifts,’’ �k, which are all real and posi-

tive, are ordered according to increasing magnitude, and
the �k are all real and positive. The fermion force is
 

�S0pf �
Xp
k�1

�k�
y�D�m���k�

�1D0�m��D�m���k�
�1�;

(3)

where the prime denotes differentiation with respect to the
gauge field. Somewhat remarkably, the inverses with the
smallest shifts, �k, which are the most expensive to evalu-
ate, are associated with the smallest residues �k, and thus
lead to relatively small contributions to the fermion force
[14,17]. It is then natural to split the sum in Eq. (3) into two
parts: ‘‘light poles’’ with 1 � k � r, and ‘‘heavy poles’’
with r < k � p, and evaluate their contributions to the
fermion force on different time scales using a Sexton-
Weingarten multi-time-scale integrator [18]. The light-
pole contributions are evaluated only on the largest time
scale, the heavy poles on an intermediate time scale, and
the gauge fields on the finest time scale.

In order to maximize the acceptance rate per unit com-
putational cost, we optimized the order of the rational
approximations and the points, r, at which the partial-
fraction sums are split, while also varying the three
Sexton-Weingarten time scales. The optimal rational ap-
proximations and splits were �p; r� � �10; 4� for the light
quarks, �p; r� � �10; 3� for the strange quark, and �p; r� �
�6; 1� for the Pauli-Villars field associated with the strange
quark.

In the RHMC accept/reject step, we used rational ap-
proximations of order 16 and 9, respectively, for the quark
and Pauli-Villars fields.

For all ensembles, we used the second-order minimum-
norm (2MN) integrator [18–21] with approximately unit-
length trajectories. We tuned the free parameter in 2MN to
� � 0:22 to minimize the root-mean-squared (RMS)
change in the Hamiltonian h��H�2i1=2, along a set of
RHMC trajectories.

This completes the description of the RHMC I algorithm
used to generate the ensembles in the main part of this
work. We used three values of ml to generate the gauge
configurations using this algorithm, with ms fixed to 0.04
(in lattice units). Further parameters and simulation details
are given in Table I.

Recently, we developed a more efficient implementa-
tion, RHMC II, which was used to generate the additional
ensemble discussed in Sec. VI. Following Aoki et al [22]
one may employ a single pseudofermion field to estimate
directly each ratio of determinants in Eq. (1). This reduces
the stochastic noise in the molecular dynamics evolution
and speeds up the calculation because a larger step size can
be used in the integration. Furthermore, we can rewrite the
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ratio of fermion determinants as
 

det
�
D�ml�

D�1�

�
det

�
D�ms�

D�1�

�
1=2
� det

�
D�ml�

D�ms�

�
det

�
D�ms�

D�1�

�
1=2

� det
�
D�ms�

D�1�

�
1=2

� det
�
D�ms�

D�1�

�
1=2
; (4)

thus preconditioning the light quark Dirac operator by the
strange quark [21,23]. We associate the first determinant on
the right-hand side (RHS) of Eq. (4) with a single pseudo-
fermion field, and introduce separate pseudofermion fields
for each of the three ‘‘strange quarks’’ in the rest of the
determinants on the RHS. Again we used a multiple-time-
scale integrator, with the preconditioned light quarks using
the largest step size, the strange/Pauli-Villars fields an
intermediate size, and the gauge fields the finest size.
The optimal free parameter of the 2MN integration scheme
was also found to be � � 0:22 in this case. The relevant
parameters are also given in Table I.

To distinguish the valence quark masses from the sea
quark masses, we will use msea

l to denote the light dynami-
cal quark masses, and m1 and m2 to denote the masses of
two valence quarks that make up a meson. Whenever a
meson is composed of two degenerate quarks, a short-hand
notation mval may be used to refer to the mass of each
component quark. We use the lattice units for various
quantities throughout the paper, unless physical units are
explicitly given.

III. THERMALIZATION AND
AUTOCORRELATIONS

In this section we will discuss the thermalization and
autocorrelations of the ensembles which build a foundation
for the data analysis of various quantities. For most of our

measurements, we discarded the first 500 molecular dy-
namics time units to account for the thermalization of the
gauge fields. Shown in Fig. 1 is the evolution history of the
plaquette for all three ensembles. The straight lines are the
average values of the plaquette for each ensemble from
time unit 2000 to 4000. It is evident that the gauge fields
have come to equilibrium after O�500� molecular dynam-
ics time units. We have also measured the chiral conden-
sate h �qqi through a stochastic estimator with one single hit
for the first 3000 molecular dynamics time units, starting
from time unit 500, and found no signs of further equili-
bration (Fig. 2). This supports our choice of cut to allow for
the thermalization of the ensemble.

To obtain reliable estimates for the statistical errors in
the physical observables, we also investigate the autocor-
relations in the ensembles. While the autocorrelation time
may differ from quantity to quantity, we calculate the
autocorrelations for the quantities of our direct interest,
such as meson correlation functions. We adopted the same
method as in [22] and calculated the integrated autocorre-
lation time, �int, for the two-point pseudoscalar correlation
function at time slice 12 obtained from a Coulomb gauge
fixed wall source at t � 0 with two degenerate valence
quarks with mval � 0:01 for the msea

l � 0:01 ensemble,
where the correlation function was measured every 5 mo-
lecular dynamics time units. This is shown in Fig. 3. We
can see that the integrated autocorrelation time reaches a
plateau of about 20 to 25 time units. The separation be-
tween two independent measurements is then about
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FIG. 1 (color online). Evolution history of the plaquette for all
three ensembles, measured every MD time unit. The straight
lines are the averages from trajectory 2000 to 4000 for each
ensemble.

TABLE I. Parameter values for 2� 1 flavor RHMC runs on
163 � 32 lattices with Ls � 16, M5 � 1:8, � � 2:13, msea

s �
0:04. NMD units is the number of molecular dynamics time units
obtained from an ordered start, except for the msea

l � 0:03
ensemble generated using RHMC II, which started from the
last configuration generated using RHMC I. Nstep1 is the number
of coarse integration steps of size �� per MD time unit. The
intermediate integration scale is ��=Nstep2 and the finest scale is
��=�Nstep2Nstep3�. The RHMC acceptance rate is given in the
second to last column. The final column denotes the variant of
the RHMC algorithm used.

msea
l NMD units �� Nstep1 Nstep2 Nstep3 Acc Alg

0.01 4015 0.13 8 2 8 70% RHMC I
0.02 4045 0.14 7 2 8 56% RHMC I
0.03 4020 0.14 7 2 8 57% RHMC I

0.03 3580 0.25 4 1 6 80% RHMC II
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2�int � 50 molecular dynamics time units. Thus we chose
to average the data over a block of measurements in such a
way that the span of the measurements in each block covers
at least 50 molecular dynamics time units whenever pos-
sible prior to the standard jackknife analysis.

The evolution of the topological charge is another indi-
cator of how fast the gauge fields decorrelate. On each
ensemble we measured the topological charge using the
classically O�a2� improved definition of the field tensor as
defined in [11]. Figure 4 shows that the gauge field moves
frequently between different topological charge sectors.
Also shown in Fig. 4 are the histograms of the topological
charge, which indicate that different topological sectors are
sampled reasonably well. However, it is also worth noting
that correlations on a scale of a few hundred molecular
dynamics time units are present in the msea

l � 0:03 en-
semble. This may imply that the value for the autocorrela-
tion time discussed in the previous paragraph is
underestimated. Ideally we should use a larger block size
prior to the jackknife analysis to have more robust error
estimates, but we are constrained by the moderate lengths
of the simulations and have chosen to use a block size that
is not too small, but at the same time leaves a reasonable
number of jackknife blocks to perform covariant fits when
necessary.

IV. HADRONIC OBSERVABLES

A. Calculation details and fitting procedures

We used several different source and sink operators to
calculate the quark propagators needed for the two-point
correlation functions. To be specific, we used a local
operator (denoted as L), a Coulomb gauge fixed wall
operator (denoted as W), and a Gaussian smeared operator
[24] (denoted as G), for the source and/or sink, in an
attempt to investigate the systematic uncertainties coming
from excited-state contamination. Here we adopt the same
notation as in [11] and denote the types of meson correla-

0 50 100 150 200
separation in MD time units

0

5

10

15

20

25

30

35

40

In
te

gr
at

ed
 A

ut
oc

or
re

la
tio

n 
T

im
e

FIG. 3 (color online). Integrated autocorrelation time for the
pseudoscalar two-point correlation function at time slice 12 with
msea
l � mval � 0:01.
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FIG. 4 (color online). The topological charge as measured by
gluonic fields on the three ensembles. The left three panels are
the topological charge as a function of the molecular dynamics
time. Each of the three graphs on the right represents the
normalized histogram of the corresponding topological charge
evolution on the left.

500 1000 1500 2000 2500 3000
0.0012
0.0014
0.0016
0.0018
0.002

0.0022
m

lse
a  =

 0
.0

1
Quark Condensate

500 1000 1500 2000 2500 3000
0.0022
0.0024
0.0026
0.0028

0.003
0.0032

m
lse

a  =
 0

.0
2

500 1000 1500 2000 2500 3000
molecular dynamics time units

0.0032
0.0034
0.0036
0.0038
0.004

m
lse

a  =
 0

.0
3

FIG. 2 (color online). Evolution history of the quark conden-
sate h �qqi for the first 3000 molecular dynamics time units at
three dynamical points: mval � msea

l � 0:01 (top), mval �
msea
l � 0:02 (middle) and mval � msea

l � 0:03 (bottom). The
measurements were taken every 5 molecular dynamics time
units.
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tion functions by the different source and sink operators
used in the quark propagators. For example, GL-GL means
a correlation function composed of two quark propagators,
each of which is computed using the Gaussian smeared
source operator and the local sink operator. The sources are
placed at multiple locations to reduce the short-term noise
induced by the fluctuations in the gauge fields. The corre-
lation functions are averaged over different source loca-
tions before the standard jackknife analysis is performed.
Details of the calculation parameters are tabulated in
Tables II and III.

In parallel to the spectrum calculations, we have also
done another set of measurements necessary for the ex-
traction of weak matrix elements (see, for example,
Ref. [4]), in which the quark propagators were calculated
from Coulomb gauge fixed wall sources at time slices
tsrc � 5 and tsrc � 27. In contrast to the standard spectrum
measurement, here the meson correlation functions were
constructed from the sum of propagators computed with
periodic (P) and antiperiodic (A) boundary conditions in
the time direction. This has the effect of doubling the
temporal extent of the lattice which gives a longer time
range to extract the meson masses. Five different valence
masses are used to compute the quark propagators and
the meson correlation functions are constructed from all
possible combinations of these propagators. The details of
measurements are given in Table IV. We will use ‘‘P� A’’
to refer to the results obtained from these data sets
hereafter.

To get the meson masses and the corresponding ampli-
tudes of the correlation functions, we performed the stan-
dard covariant �2 fits to the correlation functions using the
hyperbolic cosine form:

 C�t� � A	e�mGt � e�mG�T�t�
; (5)

wheremG is the ground-state meson mass, and t is the time
slice relative to the source. Note that here T is the extent in
the time direction of the lattice, i.e., 32 for the standard
spectrum measurements and 64 for the P� A measure-
ments. This relation assumes that the separation between
the source and sink operators is large enough that the
contamination from the excited states is negligible.
However, different source operators have different degrees
of overlap with excited states, and hence the minimum
time slice that should be included in each fit may differ.
To reduce the uncertainties in fit parameters from the
choice of fit range, we also performed simultaneous fits
to two types of correlation functions using a double cosh
form which give both the ground-state and the first-ex-
cited-state meson masses. We found that the ground-state
meson masses obtained from the double cosh fits were
consistent with the simple cosh fit in Eq. (5). Since we
are mostly interested in the ground-state meson masses in

TABLE II. Measurement parameters for the WL-WL correla-
tion functions for all three ensembles. msea

l denotes the light sea
quark mass. m1 and m2 denote the two valence quarks compos-
ing the mesons. � is the separation between measurements in
molecular dynamics time units.

msea
l m1 m2 range � Nmeas tsrc

0.01 0.01 0.01 500–3995 5 700 0, 16
0.01 0.02 0.02 500–3995 5 700 0, 16
0.01 0.03 0.03 500–3995 5 700 0, 16
0.01 0.04 0.04 500–3995 5 700 0, 16

0.02 0.01 0.01 500– 4045 5 710 0, 16
0.02 0.02 0.02 500– 4045 5 710 0, 16
0.02 0.03 0.03 500– 4045 5 710 0, 16
0.02 0.04 0.04 500– 4045 5 710 0, 16

0.03 0.01 0.01 500–3995 5 700 0, 16
0.03 0.02 0.02 500–3995 5 700 0, 16
0.03 0.03 0.03 500–3995 5 700 0, 16
0.03 0.04 0.04 500–3995 5 700 0, 16

TABLE IV. Measurement parameters for the correlation func-
tions measured with P� A boundary conditions for all three
ensembles. msea

l denotes the light sea quark mass. m1 and m2

denote the two valence quarks composing the mesons. � is the
separation between measurements in molecular dynamics time
units.

msea
l m1 m2 range � Nmeas tsrc

0.01 0.01–0.05 0.01–0.05 1000–4000 20 150 5, 27

0.02 0.01–0.05 0.01–0.05 1000–4000 20 150 5, 27

0.03 0.01–0.05 0.01–0.05 1000–4000 20 150 5, 27

TABLE III. Measurement parameters for the LL-LL, GG-GG
and GL-GL correlation functions for all three ensembles. msea

l
denotes the light sea quark mass. m1 and m2 denote the two
valence quarks composing the mesons. � is the separation
between measurements in molecular dynamics time units.

msea
l m1 m2 range � Nmeas tsrc

0.01 0.01 0.01 500–3990 10 350 0, 16
0.01 0.01 0.04 500–3990 10 350 0, 16
0.01 0.04 0.04 500–3990 10 350 0, 16
0.01 0.01 0.01 505–3995 10 350 8, 24
0.01 0.01 0.04 505–3995 10 350 8, 24
0.01 0.04 0.04 505–3995 10 350 8, 24

0.02 0.02 0.02 500–3990 10 350 0, 16
0.02 0.02 0.04 500–3990 10 350 0, 16
0.02 0.04 0.04 500–3990 10 350 0, 16
0.02 0.02 0.02 505–3995 10 350 8, 24
0.02 0.02 0.04 505–3995 10 350 8, 24
0.02 0.04 0.04 505–3995 10 350 8, 24

0.03 0.03 0.03 500–3990 10 350 0, 16
0.03 0.03 0.04 500–3990 10 350 0, 16
0.03 0.04 0.04 500–3990 10 350 0, 16
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this paper, we will only present results obtained from the
single cosh fits unless otherwise stated.

In order to determine a proper fit range for the meson
masses using Eq. (5), we examined the effective masses as
defined by

 meff � cosh�1

�
C�t� 1� � C�t� 1�

2C�t�

�
(6)

and chose the minimum time slice in the fit to be the onset
of the plateau in the effective mass. A more stringent way
to determine the best fit range is to check how the mass
obtained from the fit and the resulting �2=dof vary with the
fit range. Since the fits are insensitive to the maximum time
slice used, we only investigated the variations with respect
to the lower bound (denoted as tmin) and fixed the upper
bound (denoted as tmax) to T=2 for the GL-GL and WL-WL
data sets. In Fig. 5, the fitted masses and �2=dof for the
pseudoscalar correlation functions are plotted for each
light dynamical point with mval � msea

l . As we can see,
the central values of the fitted masses are insensitive to the
choice of tmin when tmin is above 8 or 9 for both GL-GL and
WL-WL data sets. To obtain high confidence level for the
fits, we also seek to have minimal �2=dof in the time range
where the fits are stable.

Typically the fitted pseudoscalar meson masses from
WL-WL and GL-GL correlation functions agree quite
well when tmin is above 9. An exception is the msea

l �
0:02 data set, where results from GL-GL correlation func-
tions are larger than those from WL-WL correlation func-
tions by a few standard deviations. The deviations result
from the fact that the GL-GL measurements were per-
formed at an additional set of source locations which
were not used in the WL-WL measurements. When only
the data with the source operator at time slices 0 and 16 are
included in the analysis, the results obtained from GL-GL
and WL-WL agree within statistical uncertainties, while
the GL-GL measurements from sources at time slices 8 and
24 give much larger values. Hence when all the sources are
combined in the analysis, the values of the fitted masses are
much higher from the GL-GL correlators than those from
the WL-WL correlators. The fact that the results are so
sensitive to the different source locations indicates that we
have not sampled phase space extremely well. Thus, the
errors obtained from the standard jackknife procedure may
be underestimated.

B. Meson masses

The pseudoscalar meson masses can be obtained from
several different correlation functions [8,11]. We will show
the results from both the pseudoscalar (PP) and axial vector
(AA) channels. The effective masses in the pseudoscalar
channel at the light dynamical points for all three ensem-
bles are shown in Fig. 6. The effective masses from LL-LL
correlation functions typically have later approaches to

plateaus and leave us with fewer time slices to perform
the fits. Thus we will not quote results from these data sets
unless otherwise noted. We also note that there are some
variations in the effective masses greater than estimates of
the standard deviation from the variance of the data. The
presence of these variations with 4000 MD time units may
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FIG. 5 (color online). Variation of the pseudoscalar masses
obtained from the correlated fits and the corresponding �2=dof
with respect to tmin for each of the dynamical points.
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be another indication of long-term autocorrelations in these
ensembles. Although we do not fully understand the cause
of this problem, it is likely due to the algorithm we used to
generate these gauge configurations. This will be further
addressed in Sec. VI.

We determined the vector meson masses by averaging
over the three polarizations to reduce statistical fluctua-
tions. Some representative effective masses for the vector
mesons are shown in Fig. 7. They are typically noisier than
the pseudoscalar effective masses, and approach plateaus
later. As the quark masses become lighter, the noise on the
effective masses increases.

As discussed already, we have chosen to fit the correla-
tion functions with different source/sink operators inde-
pendently to obtain the corresponding meson masses,
which are given in the Appendix. The sources differ not
only in their spatial characteristics, but also in their tem-
poral location in the lattices. As such, they sample different
parts of the gauge fields. The different combinations of
source/sink operators give masses which generally agree,
but there are a number of cases where the difference is
somewhat outside of the error bars. Since we are concerned
about effectively sampling phase space, the quoted statis-
tical errors may be underestimated due to possible long-

range autocorrelations. We can use the fact that the differ-
ent sources sample different parts of the lattice to compen-
sate for this. For example, for the msea

l � 0:02 ensemble,
we find them1 � m2 � 0:02 pseudoscalar meson mass has
a value of 0.3247(8), 0.3212(12) and 0.3251(18) from the
PP channel, and 0.3254(12), 0.3226(11) and 0.3287(19)
from the AA channel. Taking these six values as indepen-
dent and calculating a standard deviation from them gives
0.3246(26), which has an error bar larger than from any of
the individual measurements. From this example, amongst
the ones with the largest differences, we have chosen to
take the averages of the results for the meson masses
obtained from different measurements, wherever possible,
as our best estimates of the meson masses. Since the differ-
ent measurements involve different source locations on our
lattices, the spread of values is also an indication of the
statistical errors of our ensembles. We correspondingly
inflate the largest individual error by a factor of 1.5 to
bring it in rough agreement with this spread. The final
results are summarized in Table V, where the values of
mP are taken from the averages of both the PP and AA
channels in different measurements. These mass values
will then be used in the subsequent discussions of the
paper.
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FIG. 7 (color online). Vector effective masses from WL-WL
and GL-GL correlation functions for the three ensembles. The
valence quarks are degenerate, with the masses equal to the light
sea quark mass of that ensemble.
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C. Residual mass

The quantitative description of the explicit chiral sym-
metry breaking for domain wall fermions is the residual

mass, mres [8,11], which is determined from the ratio

 R�t� �
h
P
x J

a
5q�x; t��

a�0�i

h
P
x J

a
5 �x; t��

a�0�i
: (7)

The definitions of Ja5q�x; t� and Ja5 �x; t� for domain wall
fermions can be found in Ref. [8]. We follow [11] and
determine mres at a given quark mass, denoted bym0res�mf�,
by fitting R�t� to a constant over a time range where R�t�
shows a good plateau. The results from the WL-WL cor-
relation functions are shown in Table VI.

While by definition mres should be a constant, the op-
erator we choose to determine it happens to depend on the
quark mass, as shown in Fig. 8. This quark mass depen-

TABLE VI. Residual mass obtained with the Coulomb gauge
fixed wall source.

msea
l m1 m2 tmin � tmax �2=dof m0res�mf�

0.01 0.01 0.01 8–16 0.9(7) 0.003102(25)
0.01 0.02 0.02 8–16 1.0(7) 0.002962(23)
0.01 0.03 0.03 8–16 1.0(7) 0.002846(21)
0.01 0.04 0.04 8–16 0.9(7) 0.002752(19)

0.02 0.01 0.01 8–16 1.0(7) 0.003332(23)
0.02 0.02 0.02 8–16 0.9(7) 0.003197(20)
0.02 0.03 0.03 8–16 0.9(7) 0.003070(19)
0.02 0.04 0.04 8–16 0.9(7) 0.002961(18)

0.03 0.01 0.01 8–16 1.3(8) 0.003479(27)
0.03 0.02 0.02 8–16 1.5(9) 0.003337(24)
0.03 0.03 0.03 8–16 1.7(9) 0.003201(22)
0.03 0.04 0.04 8–16 1.9(10) 0.003085(20)
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FIG. 8 (color online). The residual mass determined from the
WL-WL correlators. The solid line is a linear fit to the dynamical
points with mval � msea

l .

TABLE V. Results of the pseudoscalar and vector meson
masses averaged from different measurements. The quoted er-
rors are the largest statistical errors of the different measure-
ments multiplied by 1.5 to account for possible underestimation
of errors as described in the text.

msea
l m1 m2 mP mV

0.01 0.01 0.01 0.247(3) 0.549(20)
0.01 0.02 0.01 0.290(3) 0.564(14)
0.01 0.02 0.02 0.323(3) 0.577(11)
0.01 0.03 0.01 0.325(3) 0.580(11)
0.01 0.03 0.02 0.357(3) 0.595(9)
0.01 0.03 0.03 0.385(3) 0.609(8)
0.01 0.04 0.01 0.356(3) 0.599(10)
0.01 0.04 0.02 0.387(3) 0.611(8)
0.01 0.04 0.03 0.414(3) 0.626(7)
0.01 0.04 0.04 0.438(3) 0.642(6)
0.01 0.05 0.01 0.387(3) 0.613(9)
0.01 0.05 0.02 0.414(3) 0.627(7)
0.01 0.05 0.03 0.440(3) 0.642(6)
0.01 0.05 0.04 0.465(3) 0.657(6)
0.01 0.05 0.05 0.489(3) 0.672(5)

0.02 0.01 0.01 0.250(3) 0.546(20)
0.02 0.02 0.01 0.292(3) 0.560(14)
0.02 0.02 0.02 0.325(3) 0.585(11)
0.02 0.03 0.01 0.327(3) 0.579(12)
0.02 0.03 0.02 0.358(3) 0.597(9)
0.02 0.03 0.03 0.386(3) 0.615(8)
0.02 0.04 0.01 0.359(3) 0.597(10)
0.02 0.04 0.02 0.388(3) 0.618(8)
0.02 0.04 0.03 0.415(3) 0.631(7)
0.02 0.04 0.04 0.440(3) 0.649(6)
0.02 0.05 0.01 0.388(3) 0.614(9)
0.02 0.05 0.02 0.415(3) 0.631(7)
0.02 0.05 0.03 0.441(2) 0.647(6)
0.02 0.05 0.04 0.466(2) 0.663(6)
0.02 0.05 0.05 0.490(2) 0.679(5)

0.03 0.01 0.01 0.251(3) 0.599(24)
0.03 0.02 0.01 0.289(3) 0.589(17)
0.03 0.02 0.02 0.325(3) 0.613(12)
0.03 0.03 0.01 0.324(3) 0.603(13)
0.03 0.03 0.02 0.355(3) 0.616(10)
0.03 0.03 0.03 0.387(3) 0.643(9)
0.03 0.04 0.01 0.356(3) 0.618(11)
0.03 0.04 0.02 0.385(3) 0.631(9)
0.03 0.04 0.03 0.412(3) 0.655(8)
0.03 0.04 0.04 0.442(3) 0.670(7)
0.03 0.05 0.01 0.386(3) 0.633(10)
0.03 0.05 0.02 0.413(3) 0.646(8)
0.03 0.05 0.03 0.438(3) 0.660(7)
0.03 0.05 0.04 0.463(3) 0.675(6)
0.03 0.05 0.05 0.488(2) 0.690(6)
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dence comes from the higher-dimension operators in the
divergence of the axial current, which should be sup-
pressed by powers of a [9,11,25]. We choose to deal with
these lattice artifacts by extrapolating m0res�mf� to the zero
quark mass limit in both the sea and valence sectors. Doing
so gives

 mres � 0:00308�4�: (8)

This is about 1=3 of the lightest quark mass in our simu-
lations, which may seem larger than ideal. Nevertheless,
from a field theoretic point of view, to leading order the
residual mass is just an additive renormalization to the
input quark mass. Neglecting higher-order corrections,
the chiral limit is defined at mf �mres � 0 or mf �

�mres, where mf is the input quark mass. This is the basis
for the chiral extrapolations discussed in Sec. V. In this
paper we do not attempt to discuss higher-order corrections
to the residual mass, which should be small in our
simulations.

D. Pseudoscalar decay constants

The decay constant fP for a charged pseudoscalar meson
is defined by

 � ifPq	e
�iq�x � h0jA	�x�j��q�i; (9)

where A	�x� is the (partially) conserved axial vector
current operator for domain wall fermions [8], and j��q�i
is the state vector for a pseudoscalar meson with momen-
tum q. We normalize the state vector such that
h��q�j��q0�i � �2��32Eq��q� q0�. A	 is related to the
local axial vector operator by A	 � ZAA	 for physics at
long distances. It is conventional to determine the matrix
element of h0jA0j�i from the amplitude of the LL-LL
correlation functions [8,11], ALLA0;A0

. Here a double cosh
fit to the LL-LL and GG-GG correlation functions was
performed to get a more reliable estimate of the amplitude
of the LL-LL correlation functions. fP is obtained by

 f�1�P � ZA

���������������
2ALLA0;A0

mP

vuut : (10)

A novel way of determining fP is from the WL-WL
correlators. In contrast to the pointlike sources, the nor-
malization of the Coulomb gauge fixed wall source is not
known analytically, and we need to compute the relative
normalization of the source operator to the conserved
current numerically. This can be done by employing the
following ratio,

 NW �

P
xhA0�x; t�PW�0�iP
xhA

W
0 �x; t�P

W�0�i
; (11)

where PW�0� is the Coulomb gauge fixed pseudoscalar
source operator. The pseudoscalar decay constant can
then be computed using the following formula:

 f�2�P �

����������������������������
2ZANWA

WL
A0;A0

mP

vuut : (12)

This method has the advantage of giving smaller statistical
errors compared to the conventional way of determining fP
from the pointlike sources. We note that here NW is merely
a normalization factor for the two operators A0�x; t� and
AW0 �x; t� computed under the same condition. Unlike ZA,
which is a constant up to corrections of O�a2�, the mass
dependence of NW has physical significance and thus it is
the value of NW evaluated at each valence quark mass that
should be used in Eq. (12).

The value of ZA is determined using the method de-
scribed in [8,11]. We quote the results obtained from the
WL-WL functions in Table VII. Results from other source-
sink combinations are in good agreement with the shown
values, although we do not display them in the paper.
Taking the chiral limit removes an O�a2� lattice artifact
and gives

 ZA � 0:7162�2�: (13)

TABLE VII. ZA from WL-WL correlation functions for all
three ensembles.

msea
l m1 m2 tmin � tmax �2=dof ZA

0.01 0.01 0.01 8–16 0.5(5) 0.71807(14)
0.01 0.02 0.02 8–16 0.7(6) 0.71930(11)
0.01 0.03 0.03 8–16 0.8(6) 0.72071(9)
0.01 0.04 0.04 8–16 0.9(7) 0.72222(8)

0.02 0.01 0.01 8–16 1.2(8) 0.71799(14)
0.02 0.02 0.02 8–16 1.0(7) 0.71925(10)
0.02 0.03 0.03 8–16 0.9(7) 0.72069(8)
0.02 0.04 0.04 8–16 0.8(7) 0.72221(7)

0.03 0.01 0.01 8–16 1.7(9) 0.71806(15)
0.03 0.02 0.02 8–16 2.0(10) 0.71931(11)
0.03 0.03 0.03 8–16 2.2(11) 0.72073(10)
0.03 0.04 0.04 8–16 2.2(10) 0.72226(9)

TABLE VIII. Pseudoscalar decay constants as computed from
the double cosh fits to the LL-LL and GG-GG axial vector
correlation functions for all three ensembles.

msea
l m1 m2 f�1�P

0.01 0.01 0.01 0.0893(13)
0.01 0.01 0.04 0.1007(12)
0.01 0.04 0.04 0.1116(10)

0.02 0.02 0.02 0.1003(8)
0.02 0.02 0.04 0.1070(6)
0.02 0.04 0.04 0.1133(7)

0.03 0.03 0.03 0.1094(13)
0.03 0.03 0.04 0.1111(12)
0.04 0.04 0.04 0.1143(12)
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This is then used to extract fP from the axial vector
correlators using either Eq. (10) or Eq. (12), the results
of which are given in Tables VIII and IX, respectively.
These two methods of extracting fP agree well, with the
errors on f�2�P being smaller than f�1�P in most cases.

V. OBSERVABLES IN THE CHIRAL LIMIT

Since we perform our simulations at quark masses that
are heavier than the physical up and down quark masses,
extrapolations are needed to obtain physical values for
various quantities. Chiral perturbation theory is the correct
effective theory to describe low-energy QCD and should be
used to guide the extrapolations. However, the quark
masses in our simulations are too heavy for next-to-lead-
ing-order (NLO) chiral perturbation theory to be consistent
with our results [25]. Although independent NLO fits for
the pseudoscalar meson masses and decay constants are
consistent with our data, our attempt to fit both simulta-
neously fails badly. This is to be expected since the pion
masses at the light dynamical points in our simulations
range from 400 MeV to 627 MeV. This mass scale is likely
to be outside of the region where chiral perturbation theory
is applicable. As will be demonstrated in the following, our
data exhibits linear behavior in the range of quark masses
in our simulations. Thus we resort to simple linear extrap-
olations to obtain physical results in the light quark mass
limit. In many cases this coincides with the predictions of
the leading-order chiral perturbation theory, but in fact the
reason we are doing this is based purely on phenomeno-
logical observations, not from the underlying effective
theory.

A. Determination of the lattice scale

We start out by setting the lattice scale for these simu-
lations from the vector 
 mass. Although at the lightest

quark masses the vector meson mass in our simulations is
slightly larger than the 2m� threshold, the requirement for
nonzero relative momentum for the two pions prohibits the
vector meson from decaying. We have chosen to do a
partially quenched linear fit to the values of mV in
Table V, restricted to m1�m2� � 0:03, with the following
phenomenological form:

 mV � A�msea
l �mres� � B�m1 �m2 � 2mres� � C: (14)

The values of the fit parameters are shown in Table X. As
an illustration, we show the fit curves through the msea

l �
0:01 data points [26] and the unitary points in Fig. 9.
Setting m1 � m2 � msea

l � �mres gives the 
 mass in
the chiral limit, from which we determine the lattice scale
to be

 a�1j
 � 1:61�3� GeV: (15)

We also determined the lattice scale from the static
quark potential using the Coulomb gauge method [27].

TABLE X. Linear fit parameters for various quantities.

mV A � 1:42�23� B � 1:58�16� C � 0:483�9�

m2
P B � 2:285�24�

f�1�P L � 1:01�9� f0 � 0:0767�20�

f�2�P L � 1:02�5� f0 � 0:0765�11�
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FIG. 9 (color online). Linear extrapolations of the vector mass
using Eq. (14). Here the circles are partially quenched data
points from the msea

l � 0:01 ensemble, the squares are the
unitary points with m1 � m2 � msea

l and the diamond is the
value of mV in the chiral limit.

TABLE IX. Pseudoscalar decay constants as computed from
the WL-WL axial vector correlation functions for all three
ensembles.

msea
l m1 m2 f�2�P

0.01 0.01 0.01 0.0895(7)
0.01 0.02 0.02 0.0977(7)
0.01 0.03 0.03 0.1046(7)
0.01 0.04 0.04 0.1108(7)

0.02 0.01 0.01 0.0939(7)
0.02 0.02 0.02 0.1006(6)
0.02 0.03 0.03 0.1067(6)
0.02 0.04 0.04 0.1123(6)

0.03 0.01 0.01 0.0980(6)
0.03 0.02 0.02 0.1042(6)
0.03 0.03 0.03 0.1101(6)
0.03 0.04 0.04 0.1157(6)
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The preliminary analysis of these ensembles was reported
in [28]. More detailed analysis of this calculation is the
subject of another paper in progress and will not be ad-
dressed here. We simply quote the updated value of the
lattice scale determined using r0 � 0:5 fm, which is

 a�1jr0
� 1:63�5� GeV: (16)

Our third choice for determining the lattice scale is the
‘‘method of lattice planes’’ [29]. In this approach the vector
meson mass is plotted against the pseudoscalar meson
mass squared and the interception of this data with the
physical point �m2

K;mK�� is found. Since the lattice data
straddles the kaon data, a chiral interpolation rather than
extrapolation is required in the valence quark sector. The
results for the inverse lattice spacing for each of the sea
quark masses is shown in Fig. 10. Shown in this figure is a
linear extrapolation in the sea quark mass to the chiral
limit, msea

l � �mres. In this limit, we obtain

 a�1jlattice plane � 1:62�5� GeV: (17)

All these methods give consistent results for the lattice
scale. However, each method has its own limitations. The
physical 
 meson is unstable and has the probability of
decaying into two pions (though it is not the case in our
simulations). The static quark potential suffers a small (few
percent) uncertainty concerning the value of r0. For the
method of lattice planes, the extrapolation in the sea sector
is purely phenomenological. Nevertheless, the three deter-

minations of a�1 agree well, so we take the average of
these for our central value, and take as an error an average
of the statistical errors. This gives

 a�1 � 1:62�4� GeV; (18)

which will be used whenever a lattice scale is needed, and
the errors will be propagated accordingly by quadrature.

B. Quark masses and decay constants

A precise determination of the physical quark masses
demands well-controlled chiral extrapolations in the light
quark limit. As already mentioned, the relatively heavy
quark masses in our simulations prevent us from using the
next-to-leading-order chiral perturbation theory to do the
extrapolations. Again we restrict ourselves to linear ex-
trapolation. We chose to fit only to the dynamical points
where mval � msea

l , using the following formula:

 m2
P � 2B�msea

l �mres�: (19)

The value of B is given in Table X. We then used the
physical pion and kaon masses as inputs to determine the
average light quark mass and the strange quark mass, as
shown in Fig. 11. The bare quark masses in lattice units are
listed in the following:

 �m � 0:00162�8�; (20)

 ms � 0:0390�21�: (21)
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FIG. 11 (color online). Linear extrapolation of the pseudosca-
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The above results have combined the bare input quark
masses and the residual mass, and the quoted errors
come from the errors on the pseudoscalar meson masses,
the residual mass, and the lattice scale. Systematic uncer-
tainties associated with the finite lattice spacing, chiral
extrapolation and e-m splitting, etc. have not been inves-
tigated yet. We will employ the nonperturbative renormal-
ization (NPR) technique [9] to obtain the renormalized
quark masses. The NPR analysis is still in progress.

To obtain the physical results of f� and fK, we fit the
results of the pseudoscalar decay constants in Tables VIII
and IX to the following linear form separately:

 fP � f0 � L�msea
l �mres�: (22)

We can see from Fig. 12 that the data points are quite linear
with our current statistics. The fitting parameters are also
tabulated in Table X. Using the quark masses and lattice
scale determined in the above, we found the physical
values of f�, fK and fK=f� to be 126.9(45) MeV,
157.3(51) MeV and 1.240(31), respectively, using f�1�P .
Similar analysis using f�2�P gives f� � 126:7�36� MeV,
fK � 157:6�45� MeV and fK=f� � 1:244�20�, which are
consistent with the results from f�1�P . We take the averages
of these two methods as our best estimates for these
quantities, which are summarized in the following:

 f� � 127�4� MeV; (23)

 fK � 157�5� MeV; (24)

 fK=f� � 1:24 �2�: (25)

Our convention for the pseudoscalar decay constant is such
that the experimental value of f� is about 131 MeV, fK
about 160 MeVand fK=f� about 1.22. Thus our results are
in good agreement with the experiment.

We stress that these physical results are obtained in the
context of simple linear extrapolations. Systematic uncer-
tainties may arise from the presence of chiral logs. More
sophisticated examination of the chiral behavior of various
observables requires simulations at lighter quark masses,
which will be further addressed in the near future.
Nevertheless, such agreement is encouraging, and demon-
strates that simulations with 2� 1 flavors of domain wall
fermions are promising.

VI. COMPARISON OF RHMC I AND RHMC II

As discussed in Sec. III, there seem to be some long-
range autocorrelations in these ensembles generated with
2� 1 flavors of domain wall fermions. However, early
simulations with two flavors of dynamical domain wall
fermions did not have this problem [22]. The biggest
difference between those two-flavor simulations and this
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FIG. 12 (color online). Linear extrapolation of the pseudosca-
lar meson decay constant through the light dynamical points.
The diamonds are the values of f� and fK obtained from f�2�P .
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work lies in the way the following ratio is evaluated,

 

det	DyDWF�M5; ms�DDWF�M5; ms�


det	DyDWF�M5; 1�DDWF�M5; 1�

: (26)

In the two-flavor case, this ratio was evaluated using one
pseudofermion field in the HMC evolution [22], which was
found to reduce the stochastic noise substantially, and a
larger step size could be used. At the beginning of these
simulations this method had not yet been implemented in
the RHMC algorithm, and two separate pseudofermion
fields were needed to evaluate Eq. (26). Upon completion
of the work reported in the previous sections, the new code
was ready, and we were motivated to perform an extension
of the msea

l � 0:03 ensemble using this new code to inves-
tigate any effects it might have on the ensemble properties.
This variant of the RHMC algorithm, RHMC II, has been
described in detail in Sec. II. From Table I we can see that
the coarsest step size, ��, of RHMC II is almost twice as
large as RHMC I, and fewer steps of intermediate and
finest integration sizes are needed. We even obtained
higher acceptance with these parameters. There is clearly
at least a factor of 2 speedup by switching from RHMC I to
RHMC II.

Figure 13 shows the comparison of the evolution of the
topological charge on the lattices generated using RHMC I
and RHMC II. The tunneling of topological charge in
RHMC II appears to be much better than RHMC I. The
long-range autocorrelations present in RHMC I do not
show up in RHMC II. This can be partly attributed to the

use of a larger step size in the molecular dynamics evolu-
tion. Intuitively, a larger step size allows more efficient
movement through, and the evolution is less likely to be
trapped in a small region of, phase space. This conse-
quently helps to move the topological charge from one
sector to another. However, the histograms of the topologi-
cal charge from these two segments of the ensemble are
quite similar, indicating that RHMC I, while showing
longer-range autocorrelations, does give the same results
as the improved version of the algorithm, RHMC II. We
have also seen large fluctuations of the effective masses in
Sec. IV. As a comparison, we show the effective masses for
the pseudoscalar and vector WL-WL correlation functions,
measured every 20 trajectories with tsrc � 0 at the unitary
point in Fig. 14. While the vector effective mass remains
noisy for RHMC II, there is noticeable improvement in the
pseudoscalar effective mass, where a better plateau can be
identified from t � 8 to t � 24.

We believe that RHMC II not only speeds up the gauge
field generation by more than a factor of 2, but also helps to
move through phase space more quickly and improve the
quality of the ensembles we generate. The interplay of
these two factors makes it a more favorable algorithm to
use than RHMC I.

VII. CONCLUSIONS

We have presented the results of light meson physics
from lattice simulations with 2� 1 flavors of dynamical
domain wall fermions at a lattice spacing of about 0.12 fm
in a �2 fm�3 volume. We used the improved RHMC algo-
rithm to generate the gauge configurations, which turned
out to be quite efficient in reducing the computing cost.
Although there are some long-range autocorrelations in
these ensembles, we have been able to obtain physical
results with better than 5% statistical accuracy. The resid-
ual chiral symmetry breaking in these calculations is small
compared to the earlier calculation with Ls � 8 [11],
which gives us better control over chiral symmetry break-
ing effects. We have shown results for the bare physical
quark masses and decay constants, the latter in good agree-
ment with their experimental values. We have also shown
that a newly improved variant of the RHMC algorithm,
RHMC II, not only speeds up the gauge field generation by
more than a factor of 2, but also moves through phase space
more efficiently.

There are of course some systematic uncertainties that
we have yet to control. One is the failure of even our
lightest quark mass data to permit chiral extrapolations
which follow the form predicted by chiral perturbation
theory. We did not attempt to perform simulations at
even lighter quark masses on these lattices, because the
volume for such simulations may be too small, which could
result in sizable finite volume effects. To pursue this issue
further, the RBC and UKQCD collaborations are perform-
ing 2� 1 flavor simulations on a 243 � 64 volume, or
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about �3 fm�3 in physical units, at about the same lattice
spacing. This larger volume allows calculations with ligh-
ter quark masses, from which we hope to investigate the
light quark limit in the context of chiral perturbation
theory. Comparing the physical results in two different
volumes will also enable us to quantitatively study finite
volume effects. This will be especially important for
baryon physics. Secondly, more than one lattice spacing
is needed to investigate the scaling behavior for domain
wall fermions and the Iwasaki gauge action, and the con-
tinuum limit should be taken to remove lattice artifacts. We
will address this question in upcoming simulations in a
�3 fm�3 volume at a weaker coupling.

With good control over chiral symmetry and an exact
and efficient algorithm, we are vigorously pursuing 2� 1
flavor domain wall QCD. The theoretical promise of this
approach is now producing numerical results for the physi-
cally interesting 2� 1 flavor case.

ACKNOWLEDGMENTS

We thank Dong Chen, Calin Cristian, Zhihua Dong,
Alan Gara, Andrew Jackson, Changhoan Kim, Ludmila
Levkova, Xiaodong Liao, Guofeng Liu, Konstantin
Petrov and Tilo Wettig for developing with us the
QCDOC machine and its software. This development and
the resulting computer equipment used in this calculation
were funded by the U.S. DOE Grant No. DE-FG02-
92ER40699, PPARC JIF Grant No. PPA/J/S/1998/00756,
and by RIKEN. This work was supported by DOE Grants
No. DE-FG02-92ER40699 and DE-AC02-98CH10886 and
PPARC Grants No. PPA/G/O/2002/00465, PP/D000238/1,
PP/C504386/1, PPA/G/S/2002/00467, and PP/D000211/1.
A. H. is supported by the U.K. Royal Society. We thank
BNL, EPCC, RIKEN, and the U.S. DOE for supporting the
computing facilities essential for the completion of this
work.

APPENDIX: TABLES OF MESON MASSES

TABLE XII. Pseudoscalar meson masses from GL-GL corre-
lation functions as determined from the axial vector channel.

msea
l m1 m2 tmin � tmax �2=dof mP

0.01 0.01 0.01 8–16 2.4(10) 0.2467(15)
0.01 0.01 0.04 8–16 1.9(8) 0.3547(14)
0.01 0.04 0.04 8–16 2.0(9) 0.4379(10)

0.02 0.02 0.02 9–16 2.1(10) 0.3254(12)
0.02 0.02 0.04 9–16 1.8(9) 0.3877(10)
0.02 0.04 0.04 9–16 1.7(9) 0.4413(10)

0.03 0.03 0.03 7–16 3.2(11) 0.3881(16)
0.03 0.03 0.04 7–16 2.8(10) 0.4170(16)
0.03 0.04 0.04 7–16 1.7(9) 0.4425(13)

TABLE XI. Pseudoscalar meson masses from GL-GL correla-
tion functions as determined from the pseudoscalar channel.

msea
l m1 m2 tmin � tmax �2=dof mP

0.01 0.01 0.01 8–16 0.6(6) 0.2460(10)
0.01 0.01 0.04 8–16 0.8(6) 0.3545(8)
0.01 0.04 0.04 8–16 1.1(7) 0.4382(7)

0.02 0.02 0.02 8–16 0.9(7) 0.3247(8)
0.02 0.02 0.04 8–16 0.9(7) 0.3868(8)
0.02 0.04 0.04 8–16 0.9(7) 0.4410(7)

0.03 0.03 0.03 8–16 3.8(15) 0.3907(15)
0.03 0.03 0.04 8–16 3.6(14) 0.4184(14)
0.03 0.04 0.04 8–16 3.5(14) 0.4446(13)

TABLE XIII. Vector meson masses from GL-GL correlation
functions for all three ensembles.

msea
l m1 m2 tmin � tmax �2=dof mV

0.01 0.01 0.01 10–16 0.7(7) 0.558(12)
0.01 0.01 0.04 10–16 0.6(6) 0.6016(45)
0.01 0.04 0.04 10–16 0.7(7) 0.6443(23)

0.02 0.02 0.02 10–16 1.4(10) 0.5914(69)
0.02 0.02 0.04 10–16 0.7(8) 0.6217(47)
0.02 0.04 0.04 10–16 0.4(6) 0.6524(35)

0.03 0.03 0.03 10–16 0.7(8) 0.6519(75)
0.03 0.03 0.04 10–16 0.7(7) 0.6643(63)
0.03 0.04 0.04 10–16 0.6(7) 0.6771(54)

TABLE XIV. Pseudoscalar meson masses as determined from
the WL-WL pseudoscalar correlation functions.

msea
l m1 m2 tmin � tmax �2=dof mP

0.01 0.01 0.01 9–16 1.1(9) 0.2474(16)
0.01 0.02 0.02 9–16 1.3(9) 0.3223(14)
0.01 0.03 0.03 9–16 1.4(10) 0.3836(12)
0.01 0.04 0.04 9–16 1.6(10) 0.4373(11)

0.02 0.01 0.01 9–16 1.1(8) 0.2458(15)
0.02 0.02 0.02 9–16 1.3(9) 0.3212(12)
0.02 0.03 0.03 9–16 1.6(10) 0.3832(11)
0.02 0.04 0.04 9–16 1.9(11) 0.4378(10)

0.03 0.01 0.01 9–16 3.5(15) 0.2551(19)
0.03 0.02 0.02 9–16 3.6(15) 0.3282(16)
0.03 0.03 0.03 9–16 3.5(15) 0.3891(15)
0.03 0.04 0.04 9–16 3.4(15) 0.4429(13)
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TABLE XVI. Vector meson masses from WL-WL correlation
functions for all three ensembles.

msea
l m1 m2 tmin � tmax �2=dof mV

0.01 0.01 0.01 9–16 1.2(9) 0.542(11)
0.01 0.02 0.02 9–16 1.9(11) 0.5742(58)
0.01 0.03 0.03 9–16 1.9(11) 0.6078(38)
0.01 0.04 0.04 9–16 1.6(10) 0.6402(29)

0.02 0.01 0.01 6–16 0.8(6) 0.5533(44)
0.02 0.02 0.02 6–16 0.8(6) 0.5845(30)
0.02 0.03 0.03 6–16 0.9(6) 0.6162(23)
0.02 0.04 0.04 6–16 1.1(7) 0.6475(19)

0.03 0.01 0.01 10–16 0.9(8) 0.621(16)
0.03 0.02 0.02 10–16 0.8(8) 0.6253(82)
0.03 0.03 0.03 10–16 1.0(9) 0.6464(55)
0.03 0.04 0.04 10–16 1.4(11) 0.6718(42)

TABLE XVII. Pseudoscalar meson masses from WL-WL cor-
relation functions with P� A boundary conditions as deter-
mined from the pseudoscalar channel.

msea
l m1 m2 tmin � tmax mP

0.01 0.01 0.01 10–22 0.2509(22)
0.01 0.02 0.01 10–22 0.2913(21)
0.01 0.02 0.02 10–22 0.3262(19)
0.01 0.03 0.01 10–22 0.3270(20)
0.01 0.03 0.02 10–22 0.3583(19)
0.01 0.03 0.03 10–22 0.3877(18)
0.01 0.04 0.01 10–22 0.3594(20)
0.01 0.04 0.02 10–22 0.3881(18)
0.01 0.04 0.03 10–22 0.4155(18)
0.01 0.04 0.04 10–22 0.4416(17)
0.01 0.05 0.01 10–22 0.3894(20)
0.01 0.05 0.02 10–22 0.4161(18)
0.01 0.05 0.03 10–22 0.4418(18)
0.01 0.05 0.04 10–22 0.4666(17)
0.01 0.05 0.05 10–22 0.4906(17)

0.02 0.01 0.01 10–22 0.2527(20)
0.02 0.02 0.01 10–22 0.2910(19)
0.02 0.02 0.02 10–22 0.3251(18)
0.02 0.03 0.01 10–22 0.3253(19)
0.02 0.03 0.02 10–22 0.3564(17)
0.02 0.03 0.03 10–22 0.3855(17)
0.02 0.04 0.01 10–22 0.3567(19)
0.02 0.04 0.02 10–22 0.3856(17)
0.02 0.04 0.03 10–22 0.4129(16)
0.02 0.04 0.04 10–22 0.4390(15)
0.02 0.05 0.01 10–22 0.3859(19)
0.02 0.05 0.02 10–22 0.4131(17)
0.02 0.05 0.03 10–22 0.4390(16)
0.02 0.05 0.04 10–22 0.4639(15)
0.02 0.05 0.05 10–22 0.4878(15)

0.03 0.01 0.01 10–22 0.2496(21)
0.03 0.02 0.01 10–22 0.2885(19)
0.03 0.02 0.02 10–22 0.3227(19)
0.03 0.03 0.01 10–22 0.3235(19)
0.03 0.03 0.02 10–22 0.3544(18)
0.03 0.03 0.03 10–22 0.3837(18)
0.03 0.04 0.01 10–22 0.3556(19)
0.03 0.04 0.02 10–22 0.3841(18)
0.03 0.04 0.03 10–22 0.4116(17)
0.03 0.04 0.04 10–22 0.4379(17)
0.03 0.05 0.01 10–22 0.3854(19)
0.03 0.05 0.02 10–22 0.4120(18)
0.03 0.05 0.03 10–22 0.4380(17)
0.03 0.05 0.04 10–22 0.4631(17)
0.03 0.05 0.05 10–22 0.4873(16)

TABLE XV. Pseudoscalar meson masses from WL-WL corre-
lation functions as determined from the axial vector channel.

msea
l m1 m2 tmin � tmax �2=dof mP

0.01 0.01 0.01 8–16 0.8(7) 0.2466(16)
0.01 0.02 0.02 8–16 0.6(6) 0.3215(14)
0.01 0.03 0.03 8–16 0.8(7) 0.3828(13)
0.01 0.04 0.04 8–16 1.2(8) 0.4365(12)

0.02 0.01 0.01 8–16 1.4(9) 0.2479(13)
0.02 0.02 0.02 8–16 1.6(10) 0.3226(11)
0.02 0.03 0.03 8–16 1.7(10) 0.3842(10)
0.02 0.04 0.04 8–16 1.9(10) 0.4385(9)

0.03 0.01 0.01 8–16 2.2(11) 0.2526(14)
0.03 0.02 0.02 8–16 3.0(13) 0.3268(14)
0.03 0.03 0.03 8–16 2.9(13) 0.3884(13)
0.03 0.04 0.04 8–16 2.8(13) 0.4427(11)
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TABLE XIX. Vector meson masses from WL-WL correlation
functions with P� A boundary conditions for all three ensem-
bles.

msea
l m1 m2 tmin � tmax mV

0.01 0.01 0.01 6–14 0.546(13)
0.01 0.02 0.01 6–14 0.563(9)
0.01 0.02 0.02 6–14 0.579(7)
0.01 0.03 0.01 6–14 0.580(7)
0.01 0.03 0.02 6–14 0.595(6)
0.01 0.03 0.03 6–14 0.610(5)
0.01 0.04 0.01 6–14 0.597(6)
0.01 0.04 0.02 6–14 0.611(5)
0.01 0.04 0.03 6–14 0.626(5)
0.01 0.04 0.04 6–14 0.641(4)
0.01 0.05 0.01 6–14 0.613(6)
0.01 0.05 0.02 6–14 0.627(5)
0.01 0.05 0.03 6–14 0.642(4)
0.01 0.05 0.04 6–14 0.657(4)
0.01 0.05 0.05 6–14 0.672(3)

0.02 0.01 0.01 6–14 0.538(13)
0.02 0.02 0.01 6–14 0.560(10)
0.02 0.02 0.02 6–14 0.579(7)
0.02 0.03 0.01 6–14 0.579(8)
0.02 0.03 0.02 6–14 0.597(6)
0.02 0.03 0.03 6–14 0.614(5)
0.02 0.04 0.01 6–14 0.597(7)
0.02 0.04 0.02 6–14 0.614(5)
0.02 0.04 0.03 6–14 0.631(5)
0.02 0.04 0.04 6–14 0.647(4)
0.02 0.05 0.01 6–14 0.614(6)
0.02 0.05 0.02 6–14 0.631(5)
0.02 0.05 0.03 6–14 0.647(4)
0.02 0.05 0.04 6–14 0.663(4)
0.02 0.05 0.05 6–14 0.679(4)

0.03 0.01 0.01 6–14 0.577(15)
0.03 0.02 0.01 6–14 0.589(11)
0.03 0.02 0.02 6–14 0.601(8)
0.03 0.03 0.01 6–14 0.603(9)
0.03 0.03 0.02 6–14 0.616(7)
0.03 0.03 0.03 6–14 0.630(6)
0.03 0.04 0.01 6–14 0.618(7)
0.03 0.04 0.02 6–14 0.631(6)
0.03 0.04 0.03 6–14 0.645(5)
0.03 0.04 0.04 6–14 0.660(4)
0.03 0.05 0.01 6–14 0.633(6)
0.03 0.05 0.02 6–14 0.646(5)
0.03 0.05 0.03 6–14 0.660(5)
0.03 0.05 0.04 6–14 0.675(4)
0.03 0.05 0.05 6–14 0.690(4)

TABLE XVIII. Pseudoscalar meson masses from WL-WL
correlation functions with P� A boundary conditions as deter-
mined from the axial vector channel.

msea
l m1 m2 tmin � tmax mP

0.01 0.01 0.01 10–22 0.2473(23)
0.01 0.02 0.01 10–22 0.2878(21)
0.01 0.02 0.02 10–22 0.3231(19)
0.01 0.03 0.01 10–22 0.3236(20)
0.01 0.03 0.02 10–22 0.3552(18)
0.01 0.03 0.03 10–22 0.3847(17)
0.01 0.04 0.01 10–22 0.3560(20)
0.01 0.04 0.02 10–22 0.3850(17)
0.01 0.04 0.03 10–22 0.4124(16)
0.01 0.04 0.04 10–22 0.4386(15)
0.01 0.05 0.01 10–22 0.3860(19)
0.01 0.05 0.02 10–22 0.4130(17)
0.01 0.05 0.03 10–22 0.4388(16)
0.01 0.05 0.04 10–22 0.4637(15)
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