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We present a numerical simulation of the Gross-Neveu model on the lattice using a new representation
in terms of fermion loops. In the loop representation all signs due to Pauli statistics are eliminated
completely and the partition function is a sum over closed loops with only positive weights. In the loop
representation a different type of boundary condition appears: sectors of constant winding number. We
demonstrate that the new formulation allows one to simulate volumes which are 2 orders of magnitude
larger than those accessible with standard methods.
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I. INTRODUCTION

Numerical simulations with fermions are notoriously
difficult. The reason is that the minus signs due to Pauli
statistics give rise to cancellation effects. In quantum field
theories the fermions are usually integrated out and the
fermion determinant appears as a weight factor. Even in
cases where the fermion determinant is real and positive its
numerical treatment is very costly, since it essentially
couples all degrees of freedom with each other.

Finding alternative strategies for dealing with fermions
would considerably improve the quality of numerical
simulations. Such strategies could either be new algorithms
(see, e.g., [1] for a prominent example) or a reformulation
of the problem. Here we discuss the latter: In [2] an
alternative representation was given for a two-dimensional
fermionic quantum field theory, the Gross-Neveu model.
The partition function was rewritten as a sum over closed
loops where each contribution has a real positive weight.
This allows for a new approach to simulate the model
which avoids dealing with the fermion determinant.

This paper presents the first test of the loop approach for
the Gross-Neveu model in a numerical simulation, and we
explore the prospects and limitations of using loop-type
representations in a numerical simulation of a fermionic
system. Our results demonstrate that the method is prom-
ising and it is worthwhile to pursue it in higher dimensions.
In higher dimensions loop representations of quantum field
theories are known, but so far have exclusively been used
in the strong coupling limit [3]. Our study here, although 2-
dimensional, is performed at arbitrary coupling. We are
currently exploring the generalization to higher dimen-
sions and believe that for certain four-fermi interactions,
representations similar to the one used here can be found
and successfully applied in numerical simulations.

For gauge theories the situation is more complicated.
Since gauge fields are oriented one has to use oriented
loops dressed with the gauge links and complex phases
appear. This was seen in the Schwinger model, where a
loop representation exists [4], but a numerical simulation
suffers from the fermion sign problem. Upon going to the

strong coupling limit, the sign problem disappears [5] and
a numerical simulation with loops again unleashes its
power [6]. Four-fermi interactions may be generated with
a Hubbard-Stratonovich transformation using scalar fields.
These do not introduce complex phases and a loop repre-
sentation without signs is possible.

II. THE LOOP REPRESENTATION

We begin with discussing the Gross-Neveu model [7]
and its loop representation. In the continuum the action of
the Gross-Neveu model is given by S � SF � SS with

 SF �
Z
d2x � �x����@� � ’�x� �m� �x�;

SS �
1

2g

Z
d2x’�x�2:

(1)

Here  and � are Grassmann valued vectors ofN flavors of
2-spinors and we use vector/matrix notation for both,
spinor and flavor indices. The Euclidean partition function
is defined by integrating over all fields,

 Z �
Z Y

x

d’�x�d � �x� �x� exp��S�’; � ; ��: (2)

Upon integrating out the scalar fields ’, the model turns
into a purely fermionic theory with a 4 Fermi interaction
given by�g=2

R
d2x� � �x� �x��2. The Gross-Neveu model

is well understood analytically (see e.g. [8]) and has been
analyzed on the lattice in various settings [9].

As it stands, the path integral (2) is only formally defined
and a cutoff needs to be introduced. Here we use lattice
regularization, which replaces the Euclidean space time R2

by a finite regular lattice �. The path integral (2) is well
defined when the measure is understood as the product over
individual measures over the fields living on the lattice
points. The action is discretized using the Wilson formu-
lation such that it reads
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SF �
X
x2�

� �x�
�
�

X�2

���1

1	 ��
2

 �x� �̂� � ’�x� �x�

� �2�m� �x�
�
;

SS �
1

2g

X
x2�

’�x�2: (3)

For the scalar field ’ we use periodic boundary conditions
for both directions, the fermions are periodic in the spatial
direction and antiperiodic in time.

Using hopping expansion techniques, the N-flavor lat-
tice Gross-Neveu model (3) can be mapped into a model of
2N sets of loops [2]. For convenience we will often refer to
the loops in different sets as blue, red, etc. loops. Within
each set the loops are nonoriented, closed, and self-
avoiding. However, when loops belong to different sets,
e.g., a red and a blue loop, they may touch or cross each
other. The partition function of the lattice Gross-Neveu
model is then a sum over all possible configurations of
the loops in the 2N sets. Each configuration has a positive
weight computed from the loops.

Although [2] gives the partition function for arbitrary N,
we here only quote the one-flavor expression which we use
in our simulation. We remark that for N � 1 the 4-fermi
interaction is equivalent to the interaction of the Thirring
model. For N � 1 the model is invariant under continuous
chiral rotations, while for N > 1 only a discrete symmetry
remains. Thus the physics for N � 1 is different from the
N > 1 case, where the model is asymptotically free.

For the loop representation at N � 1 we need two sets of
self-avoiding loops, red and blue, denoted by r and b. The
one-flavor partition function in the loop representation
reads (up to an overall normalization factor)

 Z �
X
r;b

�1=
���
2
p
�c�r;b�fn1�r;b�

1 fn2�r;b�
2 : (4)

In this formula c�r; b� is the total number of corners for
both red and blue loops. Thus every corner contributes a
factor of 1=

���
2
p

to the weight of a configuration. n1�r; b� is
the number of lattice sites which are singly occupied by
either r or b and n2�r; b� is the number of doubly occupied
sites. We remark that, since the loops in the two sets are
self-avoiding, double occupation can appear only when a
red and a blue loop cross or run alongside each other. The
weight factors f1 and f2 are related to the mass m and the
coupling g through

 f1 � �2�m���2�m�
2 � g��1;

f2 � ��2�m�2 � g��1:
(5)

We stress that the mapping (4) and (5) is exact in the
thermodynamic limit. For finite volume different types of
boundary conditions in the two representations lead to
finite size effects: In the loop representation we need to

have closed loops and in a finite volume the loops can wind
around the periodic boundary. The loop configurations fall
into three equivalence classes, Cee; Ceo; Coo, depending on
the numbers of red and blue nontrivially winding loops
(see also [6]): Cee (even-even): The total number of wind-
ings for both, red and blue loops is even for both directions.
Ceo (even-odd): One of the colors has an odd number of
windings for one of the directions. Coo (odd-odd): Both
colors have an odd number of windings in one of the
directions. These equivalence classes cannot be linked in
a simple way to the boundary conditions in the standard
representation which we discussed above. However, below
we will demonstrate that the boundary effects vanish as
1=

����
V
p

, with V denoting the volume.

III. NUMERICAL SIMULATION

The numerical simulation of the Gross-Neveu model
now is performed directly in the loop representation (4)
using a local Metropolis update (see e.g. [10]). We update
the red and the blue loops alternately, by performing a full
sweep through the lattice for one of the colors and treating
the other one as a background field. A sweep consists of
visiting all plaquettes of the lattice. For each plaquette we
generate a trial configuration by inverting the occupation of
the color we want to update for all the links in the pla-
quette. This guarantees that all loops remain closed.
Furthermore new loops may be generated when all links
of the plaquette are empty. When the trial configuration
violates the self-avoiding condition it is rejected immedi-
ately and the algorithm tries the next plaquette. Otherwise
the trial configuration is accepted with the Metropolis
probability p � �1=

���
2
p
��cf�n1

1 f�n2
2 , where �c is the

change in the number of corners and �n1;�n2 are the
changes in the occupation numbers. The initial configura-
tion can either be the empty lattice (for Cee) or has one or
two winding loops (Ceo and Coo).

The observables we discuss here are all first and second
derivatives of the free energy F � � lnZ and can be writ-
ten as moments of the occupation numbers. In particular,
for the chiral condensate and its susceptibility, which in the
standard language are given by

 � �
1

V

X
x2�

h � �x� �x�i � �
1

V
@ lnZ
@m

; C� �
@�
@m

; (6)

we quote the corresponding expressions in terms of occu-
pation numbers and their fluctuations,
 

� � �
1

Vf1
�f2hn1i � 2f2

1hn0i�;

C� � �
1

Vf2
1

��4f4
1 � 2f2

1f2�h�n0 � hn0i�
2i

� �f2
2 � 2f2

1f2�h�n1 � hn1i�
2i � 2f2

1f2h�n0 � n1

� hn0 � n1i�
2i � �4f4

1 � 2f2
1f2�hn0i � f2

2hn1i�: (7)
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Here we have introduced n0, the total number of empty
sites, i.e., sites visited by neither a red nor a blue loop.

Equivalent formulas can be derived for the internal
energy, the heat capacity as well as for derivatives of the
free energy with respect to the coupling g. n-point func-
tions may be treated as usual by introducing source fields
and differentiating with respect to them. This gives expres-
sions involving correlators of local occupation numbers.
Finally, the generalization of the above formulas to an
arbitrary number of flavors is straightforward.

IV. RESULTS

In this section we present some selected results which
serve to illustrate the advantages of the loop approach, but
also allow us to assess its limitations. In order to compare
with traditional methods, we performed a reference simu-
lation of the Gross-Neveu model using standard methods.
The fermions were integrated out giving rise to the fermion
determinant in a background configuration of the scalar
field ’. These background configurations were computed
according to the Gaussian distribution of SS, and the deter-
minant was used as a factor for reweighting. This is pos-
sible, since the eigenvalues of the Dirac matrix come in
complex conjugate pairs, and the scalar field does not have
topological modes which could give rise to zero eigenval-
ues. Thus the fermion determinant is always strictly
positive.

We stress that the reweighting in the standard formula-
tion works only in two dimensions due to the numerical
cost of evaluating the determinant. However, for our prob-
lem where the scalar fields are independent Gaussians at
each site, reweighting has the big advantage, that autocor-
relation is avoided. Alternative strategies such as Hybrid
Monte Carlo cannot make use of that advantage.

Another important conceptual point has to be addressed:
For the free case, g � 0, the standard representation allows
for an exact solution with the help of Fourier transforma-
tion (where we use antiperiodic boundary conditions in
time direction and periodic ones in the space direction). In
the loop formulation, however, the case g � 0 is not spe-
cial at all. Thus g � 0 is the optimal point for testing the
power of the loop approach to the limits because we have
exact results on almost arbitrary large volumes, which we
use to compare with the data of the loop simulation. Since
the weight factors f1 and f2 of Eq. (5) are smooth functions
of g and m it is reasonable to transfer the experience
obtained with the loop approach at g � 0 to nearby values
of g.

Thus we begin our assessment of the loop approach at
g � 0. In Figs. 1 and 2 we compare the loop results in the
Cee sector (symbols) with those from Fourier transforma-
tion (curves). We use two volumes for the comparison, a
relatively small lattice of size 32
 32 and a considerably
larger one, 512
 512. For the simulation in the loop
approach at each value of m we typically performed

10 000 sweeps of our local update for both colors for
equilibration and used 50 000 measurements of the observ-
ables separated by 10 pairs of sweeps. The observables
were calculated using the occupation number representa-
tion (7) and the statistical error was computed with the
jackknife method.

Figure 1 shows that already on the small lattice the data
points are very close to the exact result. The largest dis-
crepancy is seen near m � 0, the chiral point where the
fermions become massless. For the larger lattice the data
points fall exactly on top of the analytic result. The situ-
ation is similar for the susceptibility in Fig. 2. For the small
lattice we find a clear finite size effect, a shift of the
susceptibility curve. On the larger lattice the agreement
is almost perfect and only at the chiral pointm � 0 we still
see a slight discrepancy. We remark, that the decrease of
the minimum of C� with increasing volume V does not
signal a phase transition (at N � 1 there is no discrete
symmetry that could be broken spontaneously). The min-
ima decrease only logarithmically with V. For g � 0 it can
be shown exactly that C� diverges logarithmically when
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FIG. 1. The chiral condensate � for g � 0 as a function of m
for 2 different lattice sizes. We compare the simulation in the
loop representation (symbols with error bars) to the exact result
from Fourier transformation (curves).
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FIG. 2. Same as Fig. 1, now for the chiral susceptibility C�.
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removing the IR cutoff. For g > 0 we could fit the mini-
mum of C� as obtained from the simulation very reliably
with lnV. Also the comparison with the results from the
standard approach shows that the largest discrepancy is
found near the chiral point, which, however, vanishes
quickly with increasing volume.

An important part of comparing the standard and the
loop approach is to test how the different types of boundary
effects scale with the volume and at what rate the perfect
equivalence of the two representations is reached with
increasing V. We assess this question directly in the loop
approach: At a fixed point �m; g� in parameter space we
compute the chiral condensate � for the three different
equivalence classes Cee,Ceo,Coo introduced above. This is
repeated for several volumes V and in Fig. 3 we plot the
discrepancy of the results as a function of

����
V
p

. The data
shown in the plot are for g � 0:1 and m � 0:0. In the plot
���eo�ee� denotes the discrepancy between theCeo andCee

results and ���oo�ee� is the splitting between Coo and Cee.
Also a comparison of � to the results from the standard
approach with mixed boundary conditions shows a 1=

����
V
p

behavior. The observed 1=
����
V
p

behavior is what one expects
for free massless Wilson fermions and our data indicate
that this behavior persists at g � 0:1.

The splitting �� can be analyzed with the help of mean
field theory. One finds that it should behave as �� /
1=

����
V
p

. We performed a fit of our data to the form �� /
cV� and found values of � which are close to�1=2 for all
analyzed values of �m; g� (see also Fig. 3). Thus mean field
arguments as well as our numerical findings indicate that
the finite volume effects scale as 1=

����
V
p

.

V. DISCUSSION

In this paper we have explored an alternative formula-
tion for fermionic systems using the example of a 2-
dimensional quantum field theory. The representation in
terms of fermion loops allows one to simulate the system
without having to use fermion determinants. An important
aspect is that in the loop formulation used here we are not
restricted to the case of strong coupling but can work at
arbitrary g. In this exploratory study we simulate the model
using a simple local update and compare the outcome to
analytic results and the data from a simulation in the
standard approach. Many observables can be expressed in
terms of occupation numbers and their correlators. We
show that finite size effects decrease like 1=

����
V
p

and thus
the thermodynamic limit, where the loop representation
becomes exact, is approached rapidly.

An important issue is of course the assessment of the
gain in numerical efficiency when using the loop algo-
rithm. Already with the local algorithm used here a con-
siderable increase of the accessible volumes was found.
Using the same small computer cluster, the standard ap-
proach could be used on lattices with a maximum volume
of 32
 64, while in the loop formulation we were able to
simulate systems up to 700
 700, which is an increase of
the volume by more than 2 orders of magnitude. This
enormous improvement is a strong incentive to search for
loop representations also in higher dimensional fermion
systems and for four-fermi interactions no principal ob-
stacles seem to appear.
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