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Using heavy meson chiral perturbation theory, we consider the light quark mass and spatial volume
dependence of the matrix elements of �B � 2 and �C � 2 four-quark operators relevant for B0

�s� �
�B0
�s�

and D0 � �D0 mixing, and the Bs meson width difference. Our results for these matrix elements are
obtained in the Nf � 2� 1 partially quenched theory, which becomes full QCD in the limit where sea and
valence quark masses become equal. They can be used in extrapolation of lattice calculations of these
matrix elements to the physical light quark masses and to infinite volume. An important conclusion of this
paper is that the chiral extrapolations for matrix elements of heavy-light meson mixing beyond the
standard model, and those relevant for the Bs width difference are more complicated than that for the
standard model mixing matrix elements.
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I. INTRODUCTION

Neutral heavy-light meson mixing systems play a cru-
cial role in precision tests of the standard model and the
search for new physics. With the recently measured �ms
[1], we can hope to obtain stringent constraints on the
unitarity triangle of the Cabibbo-Kobayashi-Maskawa
(CKM) matrix, provided that the hadronic matrix elements
of the B0 � �B0 and B0

s � �B0
s mixing processes are reliably

calculated. On the other hand, the D0 � �D0 mixing system
is a good channel to search for new physics [2], because the
standard model contribution is strongly suppressed.

In the standard model, the short-distance contribution to
the mass differences of the heavy neutral meson mixing
systems (B0 � �B0, B0

s � �B0
s and D0 � �D0) is predomi-

nantly determined by the matrix elements of a single set
of four-quark operators:

 O 1;aa � �h����1� �5�q�a �h����1� �5�q
�
a ; (1)

where h is a heavy quark field (either a b or a c quark), qa is
a light quark field with flavor a (a is not summed over), and
� and � are color indices. Models containing flavor-
changing currents other than the V � A form (arising in
supersymmetric extensions of the standard model and
other scenarios) usually result in mass differences that
additionally depend on matrix elements of the four-quark
operators [3]

 O 2;aa � �h��1� �5�q�a �h��1� �5�q
�
a ;

O3;aa � �h��1� �5�q
�
a �h��1� �5�q�a ;

O4;aa � �h��1� �5�q�a �h��1� �5�q
�
a ;

O5;aa � �h��1� �5�q
�
a �h��1� �5�q�a ;

(2)

(the right-handed analogues of Oi;aa for i � 1, 2, 3 can also
contribute but their matrix elements are the same as those

above as the strong interaction conserves parity).
Generically we can represent these operators as

 O i;aa � �h�1q �h�2q; (3)

for the appropriate choice of spin and color matrices, �1;2.
In lattice calculations, it is convenient to perform a Fierz
transformation which renders linear combinations of the
operators in Eq. (2) into products of color-singlet currents.
We choose to work in the basis of Eq. (2).

A subset of the operators in Eqs. (1) and (2) are also
relevant for calculation of the width difference in the Bs
system, ��Bs=�Bs . This difference is the largest amongst
the beauty hadrons (��Bs=�Bs � 0:31�0:11

�0:13 [4]) and, fol-
lowing an operator product expansion, is given by [5],

 

��Bs
�Bs

�
G2
Fm

2
b

12�MBs

jVcbVcsj2�Bs�G�z�h
�B0
s jO1;ssjB0

si

�GS�z�h �B0
s jO2;ssjB0

si� �O�1=Mb�; (4)

where the functions G�z� and GS�z� are known at next-to-
leading order (NLO) in perturbative QCD [6]. At
O�1=Mb�, matrix elements of O3;ss also enter [7].

Lattice QCD is the only method for calculating the B0 �
�B0 and D0 � �D0 matrix elements of the operators in
Eqs. (1) and (2) from first principles, and much effort has
gone into such calculations (see Ref. [8] for a recent
review). However the existing lattice calculations have
been performed at light quark masses significantly larger
than the physical values and necessarily in finite volumes.
The effects of these approximations need to be understood.
In this paper we consider the light quark mass extrapola-
tion to the physical values for the lattice calculations of
these matrix elements. Our framework is heavy meson
chiral perturbation theory (HM�PT) [9–11] at finite vol-
ume [12]. The standard model �B � 2 operator O1;aa has
been considered in this context in Ref. [12] and here we
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extend that analysis to the full set of operators discussed
above. As appropriate for current and foreseeable lattice
calculations, we work in the isospin limit of SU(3) heavy
meson chiral perturbation theory and give results in the
SU�6j3� partially quenched extension. Primarily, we treat
the heavy quark as static throughout but consider the
leading effects of the splitting between the heavy-light
vector and pseudoscalar mesons.

An important conclusion of this work is that the chiral
extrapolation for matrix elements of O1;aa is considerably
less complicated than that for matrix elements of the
operators in Eq. (2). Generically, the chiral expansion for
h �B0
�s�jO1;aajB

0
�s�i takes the form

 h �B0
�s�jO1;aajB

0
�s�i ���!chiral

�1�1� L� � analytic terms; (5)

where �1 is the leading-order low-energy constant (LEC),
L denotes the nonanalytic one-loop contributions (chiral
logarithms), and the analytic terms are from the next-to-
leading-order counterterms in the chiral expansion.
However, for the operators in Eq. (2), the chiral expansion
has the generic feature:

 h �B0
�s�jOi;aajB0

�s�i ���!chiral
�i�1� L� � �0iL

0 � analytic terms;

(6)

where i � 2, 3, 4, 5, �i and �0i are unknown leading-order
LECs, and L and L0 are different one-loop chiral loga-
rithms. Again, the analytic terms are from the next-to-
leading-order counterterms in the chiral expansion. The
appearance of the second nonanalytic term complicates the
chiral extrapolation in Eq. (6) because an additional un-
known parameter must be determined. The origin of this
complication is discussed in detail in Sec. III.

This paper is structured as follows: in Sec. II we briefly
discuss heavy meson chiral perturbation theory before
turning to the inclusion of the four-quark operators in
HM�PT in Sec. III. We present the results of the next-to-
leading-order light quark mass and lattice volume depen-
dence of the relevant matrix elements in Sec. IV before
concluding (Sec. V). Various technical details are relegated
to the appendices.

While this work was being completed, a preprint de-
scribing similar work appeared [13]. The conclusions of
the revised version of that work agree with those presented
herein, specifically the forms of the chiral extrapolations in
Eqs. (5) and (6).

II. HEAVY MESON CHIRAL PERTURBATION
THEORY

The inclusion of the heavy-light mesons in chiral per-
turbation theory (HM�PT) was first proposed in Refs. [9–
11], with the generalization to quenched1 and partially

quenched theories given in Refs. [15,16]. The 1=MP (MP
is the mass of the heavy-light pseudoscalar meson) and
chiral corrections were studied by Boyd and Grinstein [17]
in full QCD and by Booth [18] in quenched QCD. The field
appearing in this effective theory is

 H�Q�a �
1� v6

2
�P��Q�a;� �� � P

�Q�
a �5�; (7)

where P�Q�a and P��Q�a;� annihilate pseudoscalar and vector
mesons containing a heavy quarkQ and a light antiquark of
flavor a. In the heavy particle formalism, such mesons have
momentum p� � MPv� � k� with jk�j 	 MP and v� is
the velocity of the particle. Under a heavy quark spin SU�2�
transformation S and a generic light flavor transformation
U [i.e., U 2 SU�3� for full QCD and U 2 SU�6j3� for
partially quenched QCD (PQQCD)],

 H�Q�a ! SH�Q�b Uyba: (8)

The conjugate field, which creates heavy-light mesons
containing a heavy quark Q and a light antiquark of flavor
a, is defined as

 

�H �Q�a � �0H�Q�y�0 � �P
��Q�y
a;� �� � P�Q�ya �5�

1� v6
2

; (9)

which transforms under S and U as

 

�H �Q�a ! Uab
�H�Q�b Sy: (10)

The chiral Lagrangian for the Goldstone particles is

 L GP �
f2

8
�s� tr��@��y��@��� ��y�� �y��; (11)

where � � exp�2i�=f� is the nonlinear Goldstone field,
with � being the matrix containing the standard Goldstone
fields. We use f � 132 MeV. In this work, we follow the
supersymmetric formulation of partially quenched chiral
perturbation theory [PQ�PT] [19,20]. Therefore � trans-
forms linearly under SU�3�L 
 SU�3�R and SU�6j3�L 

SU�6j3�R in full QCD and PQQCD, respectively. The
symbol ‘‘�s� tr’’ in the above equation means ‘‘trace’’ in
chiral perturbation theory (�PT) and ‘‘supertrace’’ in
PQ�PT where the flavor group is graded. The variable �
is defined as

 � � 2B0Mq �
�2h0j �uu� �ddj0i

f2 Mq; (12)

where the quark mass matrix Mq is

 M �QCD�
q � diag�mu;mu;ms�; (13)

in full QCD, and

 M �PQQCD�
q � diag�mu;mu;ms|������{z������}

valence

; mj;mj; mr|������{z������}
sea

; mu;mu;ms|������{z������}
ghost

�;

(14)
1We do not consider the quenched theory here as quenched

quantities are unrelated to those in QCD [14].
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in PQQCD. We keep the strange quark mass different from
that of the (degenerate) up and down quarks in the valence,
sea and ghost sectors. Notice that the flavor singlet state
�0 � �s� tr���=

���
6
p

is rendered heavy by the U�1�A anom-
aly in QCD and PQQCD [14,21] and has been integrated
out.

Furthermore, the Goldstone mesons appear in the
HM�PT Lagrangian via the field

 � � ei�=f; (15)

which transforms as

 �! UL�Uy � U�UyR; (16)

whereUL�R� is an element of the left-handed (right-handed)
SU(3) and SU�6j3� groups for QCD and PQQCD, respec-
tively. The HM�PT Lagrangian, to lowest order in the
chiral and 1=MP expansion, for mesons containing a heavy
quark Q and a light antiquark of flavor a is then
 

LHM�PT � �i trD� �H�Q�a v�@�H
�Q�
a �

� i
2 trD� �H�Q�a v���y@��� �@��y�abH

�Q�
b �

� i
2g trD� �H�Q�a ���5��

y@��� �@��y�abH
�Q�
b �

� B	0
i
2� trD� �H�Q�a H�Q�a ���5��s�

� tr��y@��� �@��y�; (17)

where B	0 � 0 for full QCD, and B	0 � 1 for PQQCD.2

The flavor (super-)trace �s� tr is taken in the appropriate
flavor space and trD is the trace over Dirac space. The low-
energy constant g occurring in this Lagrangian is common
to both HM�PT and partially quenched HM�PT. Note that
factors of

p
MQ and

p
M�Q have been absorbed into the

heavy meson fields so the H�Q�b are of mass dimension 3=2.
The HM�PT Lagrangian for mesons containing a heavy

antiquark �Q and a light quark of flavor a is obtained by
applying the charge conjugation operation to the above
Lagrangian [22]. The field that annihilates such mesons is

 H�
�Q�

a � �P��
�Q�

a;� �� � P
� �Q�
a �5�

1� v6
2

; (18)

which transforms under S and U as

 H�
�Q�

a ! UabH
� �Q�
b Sy: (19)

The effects of chiral and heavy quark symmetry break-
ings have been systematically studied at next-to-leading
order in full [17] and quenched HM�PT [18]. Amongst
them, the only relevant feature necessary for our calcula-
tions are the shifts to the masses of the heavy-light mesons.
These shifts are from the heavy quark spin breaking term

 


2

MP
trD� �H�Q�a ���H

�Q�
a ����; (20)

and the chiral symmetry breaking terms

 
1B0 trD� �H�Q�a ��Mq�� �
yMq�

y�abH
�Q�
b �

� 
01B0 trD� �H�Q�a H�Q�a ���Mq�� �
yMq�

y�bb: (21)

We choose to use a field redefinition that allows us to work
with the effective theory in which the heavy-light pseudo-
scalar mesons that contain a heavy quark and a u or d
valence antiquark are massless. Notice that the term pro-
portional to 
01 in Eq. (21) causes a universal shift to all the
heavy-light meson masses. This means that the propagators
of the heavy mesons are as follows

 

i
2�v  k� i�

;
�i�g�� � v�v��

2�v  k� �� � i�
;

i
2�v  k� �us � i�

; and
�i�g�� � v�v��

2�v  k� �� � �us � i�
;

(22)

for P, P�, Ps, and P�s , respectively. The mass shifts can be
written in terms of the couplings in Eqs. (20) and (21):

 �� � �8

2

MP
; (23)

and

 �us � 2
1B0�ms �mu�: (24)

In the partially quenched extension, there are two addi-
tional mass shifts because the sea quarks masses differ
from those of the valence and ghost quarks:

 �jr � M ~Ps
�M ~P � 2
1B0�mr �mj�; (25)

and

 �uj � M ~P �MP � 2
1B0�mj �mu�: (26)

where ~P� ~Ps� is the heavy-light pseudoscalar meson with a
j�r� sea antiquark. The propagators of the heavy mesons
containing sea antiquarks are:
 

i
2�v  k� �uj � i�

;
�i�g�� � v�v��

2�v  k� �� � �uj � i�
;

i
2�v  k� �uj � �jr � i�

;

and
�i�g�� � v�v��

2�v  k� �� � �uj � �jr � i�
;

(27)

for ~P, ~P� (vector meson with a j sea antiquark), ~Ps, and ~P�s
(vector meson with an r sea antiquark), respectively.

2However, since we integrate out the 	0 in PQQCD [14], the
coupling � does not appear in the results presented in this paper.

MATRIX ELEMENTS OF THE COMPLETE SET OF � . . . PHYSICAL REVIEW D 76, 014501 (2007)

014501-3



III. FOUR-FERMION OPERATORS IN HEAVY
MESON CHIRAL PERTURBATION THEORY

A. Construction of the �B � 2 and �C � 2 operators

Under a chiral transformation, the four-quark operators
in Eqs. (1) and (2) fall into two categories:

 O LL � �h�LLqL �h�LLqL; OLR � �h��1�LRqL �h��2�LRqR;

(28)

where

 qL;R �
1� �5

2
q: (29)

Operators O1;aa, O2;aa and O3;aa are of the first type and
transform in the symmetric �6L; 1R� representation built
from the direct product �3L; 1R� 
 �3L; 1R� � �6L; 1R� �
��3L; 1R� under chiral rotations while O4;aa and O5;aa are of
the second type and transform in the �3L; 3R� representa-
tion. Here we refer to the SU(3) flavor transformation
properties, leaving the partially quenched extension to

the following subsection. Note that the color indices in
Eq. (2) are relevant to short-distance physics, and hence
play no role in the chiral properties of these operators [23].
Treating �LL, ��1�LR and ��2�LR as spurions transforming as

 �LL ! S�LLU
y
L; ��1�LR ! S��1�LRU

y
L;

��2�LR ! S��2�LRU
y
R;

(30)

the operators in Eq. (28) remain invariant under heavy
quark spin and chiral rotations. We then find that the
bosonization of the operators in Eqs. (1) and (2) is given by
 

OHM�PT
i;aa �

X
x

f��1�i;x trD��� �H�h��a��x� trD���H�
�h��a��0x�

� ��3�i;x trD��� �H�h��a��x��H�
�h��a��0x�g; (31)

for i � 1, 2, 3 where � � �1 � �2 in Eq. (3) and �x and
�0x are all possible pairs of Dirac structures.3 For i � 4, 5
the HM�PT operators are

 O HM�PT
i;aa �

X
x

f��1�i;x trD��� �H�h��a�1�x� trD���
yH� �h��a�2�0x� � �

�2�
i;x trD��� �H�h��a�2�x� trD���

yH� �h��a�1�0x�

� ��3�i;x trD��� �H�h��a�1�x��yH�
�h��a�2�0x� � �

�4�
i;x trD��� �H�h��a�2�x��yH�

�h��a�1�0x�

� ��5�i;x trD���y �H�h��a�1�x� trD���H�
�h��a�2�0x� � �

�6�
i;x trD���y �H�h��a�2�x� trD���H�

�h��a�1�0x�

� ��7�i;x trD���
y �H�h��a�1�x��H

� �h��a�2�0x� � �
�8�
i;x trD���

y �H�h��a�2�x��H
� �h��a�1�0x�g: (32)

The positions in the above operators in which the arbitrary Dirac structures, �x and �0x, are inserted is constrained by the
heavy quark spin symmetry [24,25]. Notice that in general both single and double Dirac trace operators must be
considered.

Performing the Dirac traces for the particular �, �1;2 in Eqs. (1) and (2), and keeping only the terms that will contribute
to the matrix elements we consider, leads to the following set of operators involving the individual heavy meson fields:

 

OHM�PT
1;aa � �1���P

�h�y�a��P
� �h��a� ��P

��h�y
� �a��P

�� �h�;��a�;

OHM�PT
2�3�;aa � �2�3���P

�h�y�a��P
� �h��a��

0
2�3���P

��h�y
� �a��P

�� �h�;��a;

OHM�PT
4�5�;aa � �4�5���P

�h�y�a��
yP� �h��a� �̂4�5���

yP�h�y�a��P
� �h��a��

0
4�5���P

��h�y
� �a��

yP�� �h�;��a� �̂
0
4�5���

yP��h�y� �a��P
�� �h�;��a;

(33)

where the �i, �0i, �̂i and �̂0i are linear combinations of the
various ��j�i;x appearing in Eqs. (31) and (32).

It is important to note that in the above equation, the
operator OHM�PT

1;aa behaves somewhat differently from the
other operators as only a single LEC, �1, occurs. This
greatly simplifies any chiral extrapolation of corresponding
lattice data for neutral heavy-light meson mixing in the
standard model, as confirmed by the one-loop results pre-
sented in the next section. We stress that this simplification
is not obvious from the operator structure in Eq. (31) and is
particular to the V � A structure of the standard model
currents. In general, one would expect from Eqs. (31) and
(32) that operators for pseudoscalar and vector meson

mixing processes are accompanied by different LECs.
This is the case for all the nonstandard model operators,
as shown in Eq. (33).

To understand the origin of the above simplification in
the standard model operator OHM�PT

1;aa , we turn to heavy
quark effective theory (HQET) [26–28]. In this effective
theory, the operators that produce the same matrix ele-

3An overcomplete list of the possible pairs of structures is:
f�x;�

0
xg � ff1;1g; f1;v6 g; fv6 ;v6 g; f��;�

�g; f��v6 ;�
�g; f��v6 ;�

�v6 g;
f���;���g; f���v6 ;���g; f���v6 ;���v6 gg, their permutations, and
possible combinations with �5. There is some redundancy here
as the equations of motion of the heavy meson fields, v6 H�Q�a �
H�Q�a etc., relate various terms in Eqs. (31) and (32).
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ments as those in Eq. (3) are [29]

 O HQET
i;aa � ~Q�1qaQy�2qa �Qy�1qa ~Q�2qa; (34)

where �1;2 are the appropriate Dirac and color structures
from Eq. (2). Here, Q and ~Q denote fields annihilating a
heavy quark and heavy antiquark, respectively, (these
fields do not create the corresponding antiparticles).
Additional terms in HQET which create two heavy quarks
or annihilate two heavy antiquarks will not contribute to
neutral heavy meson mixing and are ignored.

The standard model operator in HQET, OHQET
1;aa , satisfies

the relation

 fS3
Q;O

HQET
1;aa gjPi � fS

3
Q;O

HQET
1;aa gj

�Pi � 0; (35)

where jPi is pseudoscalar heavy-light meson state, and j �Pi
is the state of its antiparticle. The operator

 S3
Q � ij3�Qy�ijQ� ~Q�ij ~Qy� (36)

is the heavy quark spin operator [30] that changes the spin
of the heavy-light meson state by one. Therefore, Eq. (35)
implies that the mixing matrix elements for vector and
pseudoscalar heavy-light mesons are equal and opposite
[22] in the heavy quark limit. This symmetry is reflected in
HM�PT, leading to the result for OHM�PT

1;aa in Eq. (33).
For the nonstandard model operators, it is straightfor-

ward to show that

 fS3
Q;O

HQET
i;aa gjPi � 0; fS3

Q;O
HQET
i;aa gj

�Pi � 0; (37)

and

 �S3
Q;O

HQET
i;aa �jPi � 0; �S3

Q;O
HQET
i;aa �j �Pi � 0; (38)

where i � 2, 3, 4, 5. This means that the pseudoscalar and
vector meson mixing processes via these operators are not
proportional to each other, hence the appearance of the
terms accompanied by �02;3;4;5 and �̂04;5 in Eq. (33).

We end this subsection by noting that equations of
motion for the heavy quark [31] result in O3;aa �
�O1;aa=2�O2;aa, and can be used to relate some of the
LECs in Eq. (33).

B. Partially quenched extensions

In the partially quenched theory, the operator matching
is analogous because the QCD operators considered on the
lattice involve only valence quarks. Since HM�PT is con-
tained within partially quenched HM�PT, the LECs occur-
ring in the four-quark operators of both theories are the
same for the quantities we consider.

In the partially quenched case, the �B � 2 and �C � 2
operators transform in the symmetric tensor product of two
fundamental representations of SU�6j3�, a 42-dimensional
representation. The operators arising from QCD can be
simply embedded in this larger representation with no
mixing into different representations. In most cases (and

herein) it is sensible to choose the quark ‘‘charges’’ such
that the operators are purely valence, but any other element
of this representation suffices.

IV. NEUTRAL MESON MIXING MATRIX
ELEMENTS

Calculations at NLO in the chiral expansion require the
evaluation of the one-loop diagrams shown in Fig. 1. We
perform these calculations both at infinite volume and in a
cubic spatial box of dimensions L3 (the time extent is
assumed to be infinite). In this section we summarize the
results, relegating details of the calculations to
Appendix A.

For the standard model operator we find the following
matrix elements
 

h �B0jO1;ddjB0i � �1

�
1�T �1�

d �
W �B0 �W B0

2
�Q�1�

d

�
� analytic terms;

h �B0
s jO1;ssjB

0
si � �1

�
1�T �1�

s �
W �B0

s
�W B0

s

2
�Q�1�

s

�
� analytic terms: (39)

The wave function contributions, WM, and tadpole- and
sunset-type operator renormalizations, T �i�

a and Q�i�
a

(diagrams (b) and (c) in Fig. 1, respectively), are non-
analytic functions of the light quark mass and lattice
volume and are defined in Appendix B. The ‘‘analytic
terms’’ here include Goldstone meson mass squared terms,
a term ��s�Mb�=4� (arising from mixing) and a term
��QCD=Mb. The ��QCD=Mb term arises from 1=Mb

terms in the Lagrangian (those from Eq. (20) are included)
and from additional 1=Mb-suppressed HM�PT operators
that match onto the QCD operators. We note that at higher
orders, the simple relation between the B and B� matrix
elements of the standard model operator will break down.
Although we present results specifically in the B-meson
systems, note that they are also applicable to D-meson
systems, under the assumption that the charm-quark mass
is large enough compared to �QCD.

Parametrizing the �B � 2 matrix elements in the stan-
dard form [3] (fBq is the weak decay constant defined
through h0j �b���5qjBq� ~p�i � ip�fBq),

)c()b()a(

FIG. 1. Diagrams contributing to the matrix elements of four-
quark operators at NLO in the chiral expansion. Solid, double
and dashed lines correspond to propagators of pseudoscalar and
vector heavy-light mesons, and Goldstone mesons, respectively.
The crossed circle denotes the four-quark operator and
diagram (a) is the wave function renormalization.
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 h �B0
qjO1;qqjB

0
qi �

8
3M

2
Bq
f2
Bq
B�1�Bq ���; (40)

 h �B0
qjOi;qqjB0

qi � 	iR2M2
Bq
f2
Bq
B�i�Bq��� for i � 2; . . . ; 5;

(41)

(R �
MBq

mb����mq���
and 	2 � �

5
3 , 	3 �

1
3 , 	4 � 2, 	5 �

2
3 )

the bag parameters, B�1�Bq ���, agree with those derived in

Refs. [12,22] where the relevant expressions for fBq are
also provided.

For the additional operators that contribute to the
B-meson mixing processes beyond the standard model,
we obtain:

 h �B0jO2�3�;ddjB
0i � �2�3�

�
1�T �2�3��

d �
W �B0 �W B0

2

�
� �02�3�Q

�2�3��
d � analytic terms;

h �B0
s jO2�3�;ssjB

0
si � �2�3�

�
1�T �2�3��

s �
W �B0

s
�W B0

s

2

�
� �02�3�Q

�2�3��
s � analytic terms;

h �B0jO4�5�;ddjB0i � ��4�5� � �̂4�5��

�
1�T �4�5��

d �
W �B0 �W B0

2

�
� ��04�5� � �̂

0
4�5��Q

�4�5��
d � analytic terms;

h �B0
s jO4�5�;ssjB0

si � ��4�5� � �̂4�5��

�
1�T �4�5��

s �
W �B0

s
�W B0

s

2

�
� ��04�5� � �̂

0
4�5��Q

�4�5��
s � analytic terms:

(42)

The terms �Q�i�
q arising from the sunset diagrams

[Fig. 1(c)] involve the neutral heavy-light vector meson
mixing amplitudes. As discussed in the preceding section,
it is only in the case of O1;qq that these amplitudes are
related to those of the pseudoscalar heavy-light mesons.
For i � 2, 3, 4, 5 these terms are consequently accompa-
nied by different LECs. The analytic terms in the above
expressions depend on the renormalization scale in such a
way as to cancel the scale dependence of the nonanalytic
loop contributions.

The matrix elements in Eqs. (39) and (42) also deter-
mine the Bs decay width differences [Eq. (4)]. The ex-
trapolation in light quark mass and lattice volume is more
involved here than for the matrix elements determining
standard model oscillations and have not been accounted
for in the existing unquenched lattice calculations [32,33].
Direct calculations of the ratio of the matrix element of
O1;ss to that of O2;ss do not help in this regard as the
nonanalytic behavior does not simplify.

At present, we can only study the finite volume and light
quark mass effects described in these formulas cursorily as
there is very little lattice data to use for such a task in any
reliable manner. This will hopefully change in the near

future; the recent calculations of [34] are encouraging (we
note, however, that our results imply that more than three
light quark masses are needed for the NLO chiral extrapo-
lation of matrix elements of Oi;aa for i�2, 3, 4, 5). As a
guide to the importance of such effects, we present repre-
sentative results for the O2;4 matrix elements. Results for
the standard model operators have been discussed in
Ref. [12]. Taking the QCD limit for definiteness, Figs. 2
and 3 explore the dependence of the finite volume shifts in
the matrix elements of O2;dd, O2;ss O4;dd and O4;ss, nor-
malized by their tree-level values, on the pion mass for two
different volumes, L�2:5;3:5 fm. In each figure we plot
the ratio
 

hB0
�s�jOi;ffjB

0
�s�iFV

�
hB0
�s�jOi;ffjB

0
�s�i�L� � hB

0
�s�jOi;ffjB

0
�s�i�1�

hB0
�s�jOi;ffjB

0
�s�itree

: (43)

We fix f�0:132 GeV and �� �50 MeV (variation with ��
is small and similar to that found for the standard model
operator [12], with the finite volume (FV) effect decreasing
with increasing ��). Using recent CLEO measurements
[35,36], the coupling g is taken to be 0:3<g2<0:5 with a
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FIG. 2 (color online). Finite volume effects in mixing matrix elements of the operators Oi;dd for i � 2, 4 for two lattice volumes,
L � 2:5; 3:5 fm. The central curve corresponds to g � 0:4 and �0i=�i � 1 while the inner (darker) and outer (lighter) shaded regions
correspond to variation of 0:3< g< 0:5 and j�0i=�ij< 2. The curves terminate at m�L � 2:5 where p-regime chiral perturbation
theory becomes unreliable.
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central value of g2�0:4; variation in g is indicated in the
figures by the inner (darker) shaded regions. For each
quantity, we vary the ratio of B� to B LECs over a reasona-
ble range, taking j�02=�2j<2 and j��04� �̂

0
4�=��4� �̂4�j<

2 (naturalness would suggest these ratios should be of
order unity, but for simplicity we also allow smaller val-
ues). In each figure, the central curve corresponds to a ratio
of unity and the outer (lighter) shaded region to this
variation. As can be seen, effects of the finite volume on
Oi;dd are similar in size to those found for the standard
model operator in Ref. [12]. Effects for the strange opera-
tors are considerably suppressed as pion loops do not
contribute to these matrix elements in the QCD limit.

Before concluding, it is useful to consider how lattice
spacing artifacts will enter the above expressions. Since
calculations here involve both light and heavy quarks, there
are two types of discretization effects. The effects of light
quark discretization are very simple to incorporate; at a
particular lattice spacing, a, the masses of the various
Goldstone mesons in chiral loops are shifted from their
continuum values (and these shifted masses should be used
in fits to lattice data using the above partially quenched
expressions) and the various counterterms become poly-
nomials in the lattice spacing. In general this polynomial
will contain all powers of a, but if both the light quark ac-
tion and the four-quark operator are improved (or a dis-
cretization satisfying the Ginsparg-Wilson relation [37] is
used for the valence quarks [38]), the leading corrections in
a can be eliminated. For most foreseeable calculations, this
is the extent of discretization effects at the order to which
we have worked (we assume that a�QCD &mq=�QCD).
However, if a heavy quark action is used that breaks heavy
quark spin symmetry at O�a�, additional complications
will arise as this symmetry can no longer be used to
constrain the form of the effective field theory operator,
OHM�PT

1;aa ; B�s�� �B�s� and B�
�s��

�B�
�s� matrix elements are no

longer related. The resulting mass and volume dependence
of matrix elements of this operator will become more
complicated, resembling instead that of the matrix ele-
ments of the other operators in Eqs. (31) and (32).4

V. CONCLUSION

We have considered the matrix elements of four-quark
operators relevant for heavy-light neutral meson mixing
and decay width differences in partially quenched, finite
volume heavy meson chiral perturbation theory relevant
for lattice computations. For heavy-light neutral meson
mixing, inclusion of operators beyond those in the standard
model complicates the chiral extrapolation as two LECs
appear at leading order rather than one for the standard
model operator. The matrix elements relevant for lifetime
ratios and decay width differences have similarly compli-
cated light quark mass and spatial volume dependencies.
This arises due to the fact that the operators for these
processes do not guarantee that B� �B and B� � �B� mixing
amplitudes are proportional to each other in the heavy
quark limit. Our results are useful for current and future
lattice calculations of these matrix elements, which are
needed in high-precision tests of the standard model and
the search for new physics.
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APPENDIX A: INTEGRALS AND SUMS

We have regularized ultraviolet divergences that appear
in the various loop integrals using dimensional regulariza-
tion, and subtracted the term

 

�
 �
2

4� d
� �E � log�4�� � 1: (A1)

The integrals appearing in the full QCD calculation are
defined by

 I �
�m� � �4�d
Z ddk

�2��d
1

k2 �m2 � i

�
im2

16�2

�
�
� log

�
m2

�2

��
; (A2)
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FIG. 3 (color online). Finite volume effects in mixing matrix elements of the operators Oi;ss for i � 2, 4 for two lattice volumes,
L � 2:5; 3:5 fm. Details are as in Fig. 2.

4Additional complications beyond the scope of this work may
arise if the Kogut-Susskind fermion action is used for the light
quarks.
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 H �
�m;�� � �g
�� � v�v���4�d @

@�

Z ddk

�2��d

�
k�k�

�k2 �m2 � i��v  k� �� i�

� 3
@
@�

F �
�m;��; (A3)

where

 F �
�m;�� �
i

16�2

��
�
� log

�
m2

�2

���
2�2

3
�m2

�
�

�

�
10�2

9
�

4m2

3

�
��

2��2 �m2�

3
mR

�
�

m

�	
;

(A4)

with

 R�x� �
��������������
x2 � 1

p
log

�
x�

�������������������������
x2 � 1� i
p

x�
�������������������������
x2 � 1� i
p

�
; (A5)

and � is the renormalization scale. For the partially
quenched calculations, we also need the integrals

 I�	
0�

�

� �4�d

Z ddk

�2��d
1

�k2 �m2 � i�2
�
@I �
�m�

@m2 ; (A6)

and

 H	0

�

�m;�� � �g�� � v�v���4�d @

@�

Z ddk

�2��d

�
k�k�

�k2 �m2 � i�2�v  k��� i�

�
@

@m2 H �
�m;��: (A7)

In a cubic spatial box of side length L with periodic
boundary condition, the three-momenta are quantized as

 

~k �
�
2�
L

�
~i; (A8)

and one instead obtains the sums (after subtracting the
ultraviolet divergences)

 I �m� �
1

L3

X
~k

Z dk0

2�
1

k2 �m2 � i
� I�m� � IFV�m�

(A9)

and

 H �m;�� � �g�� � v�v��
�

1

L3

�X
~k

@
@�

Z dk0

2�

�
k�k�

�k2 �m2 � i��v  k� �� i�

� H�m;�� �HFV�m;�� (A10)

for the full QCD calculation, where

 I�m� � I �
�m�j �
�0 (A11)

and

 H�m� � H �
�m;��j �
�0 (A12)

are the infinite volume limits of I and H , and (n � j ~nj)
 

IFV�m� �
�i

4�2 m
X
~n�~0

1

nL
K1�nmL� ���!mL�1 �i

4�2

X
~n�~0

���������
m�
2nL

r �
1

nL

�

� e�nmL
�
1�

3

8nmL
�

15

128�nmL�2

�O

��
1

nmL

�
3
�	

(A13)

is the finite volume correction to I�m�. The function HFV is
the finite volume correction to H�m;�� and can be ob-
tained via
 

HFV�m;�� � i��m2 ��2�KFV�m;�� � 2�JFV�m;��

� iIFV�m��; (A14)

where JFV�m;�� and KFV�m;�� are given by (w~k ���������������������
j ~kj2 �m2

q
)

 JFV�m;�� �
�

1

2�

�
2X
~n�~0

Z 1
0
dj ~kj

�
j ~kj

w~k�w~k ���

�

�

�
sin�j ~kjj ~njL�
j ~njL

�
(A15)

and

 KFV�m;�� �
@JFV�m;��

@�
: (A16)

In the asymptotic limit where mL� 1 it can be shown
that (with n � j ~nj)

 JFV�m;�� �
X
~n�~0

�
1

8�nL

�
e�nmLA; (A17)

where
 

A � e�z
2��1� Erf�z��

�

�
1

nmL

��
1����
�
p

�
z
4
�
z3

2

�
�
z4

2
e�z

2��1� Erf�z��
�

�

�
1

nmL

�
2
�

1����
�
p

�
9z
64
�

5z3

32
�

7z5

16
�
z7

8

�

�

�
z6

2
�
z8

8

�
e�z

2��1� Erf�z��
�
�O

��
1

nmL

�
3
�
;

(A18)

with
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 z �
�

�

m

� ����������
nmL

2

s
: (A19)

The quantity A is the alteration of finite volume effects
due to the presence of a nonzero �. See Ref. [12] for
further discussion.

For the PQ�PT calculations, one also needs

 I 	0 �m� �
1

L3

X
~k

Z dk0

2�
1

�k2 �m2 � i�2

�
@I�m�

@m2 �
@IFV�m�

@m2 (A20)

and
 

H 	0 �m;�� �
@
@�

�
�g�� � v�v��

�
1

L3

�X
~k

Z dk0

2�

�
k�k�

�k2 �m2 � i�2�v  k� �� i�

�

�
@H�m;��

@m2 �
@HFV�m;��

@m2 : (A21)

APPENDIX B: LOOP CONTRIBUTIONS AND BAG
PARAMETERS

In this appendix, we present results for the various
contributions in Eqs. (39) and (42), W B0

�s�
, W �B0

�s�
, T �i�

d�s�

and Q�i�
d�s� (i � 1, 2, 3, 4, 5). These results are given in the

sea and valence isospin limit of SU�6j3� partially quenched
HM�PT, with the quark masses given in Eq. (14). The
QCD limit, where sea and valence quark masses are equal,
is easily taken by setting mj � mu and mr � ms. We also
present the bag parameters defined in Eqs. (40) and (41).

1. Loop contributions in SU�6j3� partially quenched
heavy meson chiral perturbation theory

To compactly express the partially quenched expres-
sions, it is useful to define the following quantities:

 Au;u �
2��2

VS �M
2
� �M

2
X��

2
VS

�M2
� �M

2
X�

2 �
3

2
; (B1)

 Bu;u � 1� Au;u; (B2)

 Cu;u � 3�2
VS �

2�4
VS

M2
� �M2

X

; (B3)

 As;s �
3�8�4

VSs � �2�
2
VS �M

2
� �M2

s;s�
2�

�2�2
VS � 4�2

VSs �M
2
� �M

2
s;s�

2 ; (B4)

 Bs;s � 1� As;s; (B5)

 Cs;s �
6�2

VSs�2�
2
VS �M

2
� �M2

s;s�

�2�2
VS � 4�2

VSs �M
2
� �M2

s;s�
2 ; (B6)

with M2
a;b � B0�ma �mb�, �2

VS � M2
� �M

2
u;j, �2

VSs �

M2
s;s �M2

s;r, M� � Mu;u, and M2
X �

1
3 �M

2
� � 2M2

s;s �

2�2
VS � 4�2

VSs�. For ease of use, we note that in the QCD
limit (setting valence and sea masses to be identical),

 AQCD
u;u �

3
2; BQCD

u;u � �
1
2; CQCD

u;u � 0;

AQCD
s;s � 3; BQCD

s;s � �2; CQCD
s;s � 0:

The various loop contributions can then be written as

 W B0 �W �B0

� �
ig2

3f2 �Bu;uH �MX;��� � 6H �Mu;j;�� � �uj�

� 3H �Mu;r;�� � �sr � �us�

� Au;uH �Mu;u;��� � Cu;uH
	0 �Mu;u;����;

(B7)

 

W B0
s
�W �B0

s

� �
ig2

3f2 �Bs;sH �MX;���

� 6H �Ms;j;�� � �uj � �us�

� 3H �Ms;r;�� � �sr� � As;sH �Ms;s;���

� Cs;sH
	0 �Ms;s;���� (B8)

for the wave-function renormalizations;

 T �1;2;3�
d �

i

3f2 �2Bu;uI�MX� � 6I�Mu;j� � 3I�Mu;r�

� �2Au;u � 3�I�Mu;u� � 2Cu;uI
	0 �Mu;u��;

(B9)

 T �1;2;3�
s �

i

3f2 �2Bs;sI�MX� � 6I�Ms;j� � 3I�Ms;r�

� �2As;s � 3�I�Ms;s� � 2Cs;sI	
0
�Ms;s��;

(B10)

 T �4;5�
d � �

i

f2 �2I�Mu;j� � I�Mu;r� � I�Mu;u��; (B11)

 T �4;5�
s � �

i

f2 �2I�Ms;j� � I�Ms;r� � I�Ms;s�� (B12)

for tadpole integrals [Fig. 1(b)] and;
 

Q�i�
d �

ig2

3f2 �Bu;uH �MX;�� � �Au;u � 3�H �Mu;u;��

� Cu;uH
	0 �Mu;u;���; (B13)
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Q�i�
s �

ig2

3f2 �Bs;sH �MX;�� � �As;s � 3�H �Ms;s;��

� Cs;sH
	0 �Ms;s;��� (B14)

for ‘‘sunset’’ integrals [Fig. 1(c)].

2. Bag parameters

For completeness, the bag parameters defined in
Eqs. (40) and (41) are given by:

 B�1�Bd ��� �
3�1

8�2

�
1�

XI;u
f2 �

g2XH;u
f2

�
; (B15)

 B�1�Bs ��� �
3�1

8�2

�
1�

XI;s
f2 �

g2XH;s
f2

�
; (B16)

 B�2=3�
Bd
��� �

�2=3

�2	2=3R
2

�
1�

XI;u
f2 �

g2�02=3XH;u
f2�2=3

�
; (B17)

 B�2=3�
Bs
��� �

�2=3

�2	2=3R
2

�
1�

XI;s
f2 �

g2�02=3XH;s
f2�2=3

�
; (B18)

 

B�4=5�
Bd
��� �

�4=5� �̂4=5

�2	4=5R2

�
1�

XI;u
f2 �

g2��04=5� �̂
0
4=5�XH;u

f2��4=5� �̂4=5�

�
;

(B19)

 

B�4=5�
Bs
��� �

�4=5� �̂4=5

�2	4=5R
2

�
1�

XI;s
f2 �

g2��04=5� �̂
0
4=5�XH;s

f2��4=5� �̂4=5�

�
;

(B20)

where � is the LEC governing the heavy-light axial current
[12], and for convenience we have defined

 

XH;u �
i
3�Bu;uH �MX;�� � �Au;u � 3�H �Mu;u;��

� Cu;uH
	0 �Mu;u;���; (B21)

 XH;s �
i
3�Bs;sH �MX;�� � �As;s � 3�H �Ms;s;��

� Cs;sH
	0 �Ms;s;���; (B22)

 XI;u �
i
3�Bu;uI�MX� � �Au;u � 3�I�Mu;u�

� Cu;uI	
0
�Mu;u��; (B23)

 XI;s �
i
3�Bs;sI�MX� � �As;s � 3�I�Ms;s� � Cs;sI	

0
�Ms;s��:

(B24)
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