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We consider a possible interpretation of the new charm-strange meson D�s0�2317� as a hadronic
molecule—a bound state of D and K mesons. Using an effective Lagrangian approach, we calculate
the strong D�s0 ! Ds�

0 and radiative D�s0 ! D�s� decays. A new impact related to the DK molecular
structure of the D�s0�2317� meson is that the presence of u�d� quarks in the D and K mesons gives rise to a
direct strong isospin-violating transition D�s0 ! Ds�

0 in addition to the decay mechanism induced by
�� �0 mixing considered previously. We show that the direct transition dominates over the �� �0

mixing transition in the D�s0 ! Ds�
0 decay. Our results for the partial decay widths are consistent with

previous calculations.
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I. INTRODUCTION

The complexity of the hadronic mass spectra induces the
possibility that existing and newly observed hadrons can
possibly be interpreted as molecular states (or hadronic
molecules). Such an interpretation is possible, when the
mass of the hadronic molecule mH lies slightly below the
threshold of the corresponding hadronic pair H1H2: mH <
mH1
�mH2

(for review see e.g. Refs. [1–8]). In the light
meson sector, possible candidates for hadronic molecules
are the scalar mesons a0�980� and ��980� treated as K �K
bound states [5,6,9]. Including the heavy flavor meson
sector other possible molecular states can arise. For ex-
ample, the scalar and axial charm D�s0�2317�, Ds1�2460�,
and bottom B�s0�5725� andBs1�5778�mesons can be treated
as DK, D�K, BK, and B�K bound states [7,8,10–12],
respectively. Other candidates for a hadronic molecule
interpretation are the X�3872� as a D0 �D�0 �
charge conjugate (c.c.) bound state, Y�4260� as a D �D1 �
c:c: and  �4415� as a D�s �Ds0�2317� � c:c: bound state
[8,13]. In the baryonic sector, the most popular candidate
for a hadronic molecule is the negative-parity 1=2� reso-
nance ��1405� considered as a N �K bound state [8]. Also,
there are candidates in the heavy baryon sector, e.g. the
charmed baryon �c�2940�� recently discovered by the
BABAR] collaboration [14], which can be treated as a
D�0p bound state [15].

In the current manuscript, we focus on the scalar charm-
strange meson D�s0�2317�, which was discovered just a few
years ago by the BABAR collaboration at SLAC in the
inclusive D�s �0 invariant mass distribution of e�e� anni-
hilation data [16]. The nearby state Ds1�2460� with a mass
of 2.4589 GeV decaying into D�s�0 was observed by the
CLEO collaboration at CESR [17]. Both of these states
have been confirmed by the Belle collaboration at KEKB
[18]. From interpretation of these experiments, it was
suggested that the D�s0�2317� and Ds1�2460� mesons are

the P-wave charm-strange quark states with spin-parity
quantum numbers JP � 0� and JP � 1� states, respec-
tively. In the following, the Belle [19] and the BABAR [20]
collaborations observed the production of D�s0�2317� and
Ds1�2460� in nonleptonic two-body B decays together with
their subsequent strong and radiative transitions. Taking
into account existing experimental information on the
properties of D�s0�2317� and Ds1�2460� mesons [21], one
can conclude that the respective JP � 0� and JP � 1�

quantum numbers are now established with high
confidence.

The next important question concerns the possible struc-
ture of the D�s0�2317� and Ds1�2460� mesons. The simplest
interpretation of these states is that they are the missing
js � 1=2 (the angular momentum of the s-quark) members
of the c�s L � 1 multiplet. However, this standard quark
model scenario is in disagreement with experimental ob-
servation since the D�s0�2317� and Ds1�2460� states are
narrower and their masses are lower when compared to
theoretical (see e.g. discussion in Ref. [8]). Therefore, in
addition to the standard quark-antiquark picture alternative
interpretation of theD�s0�2317� andDs1�2460�mesons have
been suggested: four-quark states, mixing of two- and four-
quark states, two-diquark states, and two-meson molecular
states. Until now, different properties of the D�s0�2317� and
Ds1�2460� mesons (masses, strong, radiative, and weak
decay constants and widths) have been calculated using
different approaches [7,10–12,22–53]: quark models, ef-
fective Lagrangian approaches, QCD sum rules, lattice
QCD, etc.

In the present paper we will consider the strong D�s0 !
Ds � �

0 and radiative D�s0 ! D�s � � decays of the
D�s0�2317� meson using an effective Lagrangian approach.
The approach is based on the hypothesis that the D�s0 is a
strong bound state of D and K mesons. In other words, we
investigate the position that the D�s0 meson is a �DK�
hadronic molecule. The coupling of the D�s0 meson to the
constituents (D andK mesons) is described by the effective
Lagrangian. The corresponding coupling constant gD�s0DK
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is determined by the compositeness condition Z � 0 [54–
56], which implies that the renormalization constant of the
hadron wave function is set equal to zero. Note that this
condition was originally applied to the study of the deu-
teron as a bound state of proton and neutron [54]. Then it
was extensively used in the low-energy hadron phenome-
nology as the master equation for the treatment of mesons
and baryons as bound states of light and heavy constituent
quarks (see Refs. [55,57–60]). In addition, this condition
was used in Ref. [61] in the application to glueballs as
bound states of gluons. Recently, the compositeness con-
dition was used to study the light scalar mesons a0 and f0

as K �K molecules [9]. A new impact of the DK molecular
structure of the D�s0�2317� meson is that the presence of
u�d� quarks in the D and K meson gives rise to a direct
strong isospin-violating transition D�s0 ! Ds�0 in addition
to the decay induced by �� �0 mixing considered before
in the literature. We show that the direct transition domi-
nates over the �� �0 mixing transitions. The obtained
results for the partial decay widths are consistent with
previous calculations. By analogy, one can treat the second
charm narrow resonance Ds1�2460� as a (D�K) molecule
and the possible corresponding bottom counterparts—the
states B�s0�5725� and Bs1�5778�—as BK and B�K bound
states, respectively. The calculation of the properties of the
Ds1�2460�, B�s0�5725�, and Bs1�5778� mesons goes beyond
the scope of the present paper and we relegate this issue to
a forthcoming paper. Also in the near future, we plan to
consider two-body B-meson decays and semileptonic pro-
cesses involving D�s0�2317� and Ds1�2460� in the final
state.

In the present manuscript we proceed as follows. First, in
Sec. II we discuss the basic notions of our approach. We
derive the effective mesonic Lagrangian for the treatment
of charm and bottom mesons D�s0�2317�, Ds1�2460�,
B�s0�5725�, and Bs1�5778� as DK, D�K, BK, and B�K
bound states, respectively. We discuss how to determine
the corresponding coupling constant between the hadronic
molecule and its constituents using the compositeness
condition. In Sec. III we consider the matrix elements
(Feynman diagrams) describing the strong and radiative
decays of theD�s0�2317�. We indicate our numerical results
and discuss various limits, such as the local case and the
heavy quark limit. In Sec. IV we present a short summary
of our results.

II. APPROACH

A. Molecular structure of the D��s0 �2317� meson

In this section we derive the formalism for the study of
the D��s0 �2317� meson as a hadronic molecule—a bound
state of D and K mesons. First of all, we specify the
quantum numbers of the D��s0 �2317� mesons. We use the
current results for the quantum numbers of isospin, spin,
and parity: I�JP� � 0�0�� and mass mD�s0

� 2:3173 GeV

[21]. Our framework is based on an effective interaction
Lagrangian describing the coupling between theD�s0�2317�
meson and their constituents—D and K mesons:
 

LD�s0
�x� � gD�s0D

��
s0 �x�

Z
dy�D�s0

�y2�DT�x� wKy�

� K�x� wDy� � H:c: (1)

The doublets of D and K mesons are defined as

 D �
D0

D�

� �
; K �

K�

K0

� �
; (2)

the symbol T refers to the transpose of the doublet D. In
particular, the assumed molecular structure of D��s0 and
D��s0 states is

 jD��s0 i � jD
�K0i � jD0K�i;

jD��s0 i � jD
� �K0i � j �D0K�i:

(3)

The correlation function �D�s0
characterizes the finite size

of theD�s0�2317�meson as a (DK) bound state and depends
on the relative Jacobi coordinate y with x being the center
of mass (CM) coordinate. Note, the local limit corresponds
to the substitution of �D�s0

by the Dirac delta function:
�D�s0

�y2� ! �4�y�. The kinematical variables wD and wK
are defined by

 wD �
mD

mD �mK
; wK �

mK

mD �mK
; (4)

where mD and mK are the masses of D and K mesons. The
Fourier transform of the correlation function reads

 �D�s0
�y2� �

Z d4p

�2��4
e�ipy ~�D�s0

��p2�: (5)

Any choice for ~�D�s0
is appropriate as long as it falls off

sufficiently fast in the ultraviolet region of Euclidean space
to render the Feynman diagrams ultraviolet finite. We
employ the Gaussian form

 

~� D�s0
�p2

E� �
:

exp��p2
E=�2

D�s0
�; (6)

for the vertex function, where pE is the Euclidean Jacobi
momentum. Here �D�s0

is a size parameter, which parame-
trizes the distribution of D and K mesons inside the D�s0
molecule.

The D�s0DK coupling constant gD�s0 is determined by the
compositeness condition [54–56], which implies that the
renormalization constant of the hadron wave function is set
equal to zero:

 ZD�s0 � 1� �0D�s0
�m2

D�s0
� � 0; (7)

where �0D�s0
�m2

D�s0
� � g2

D�s0
�0
D�s0
�m2

D�s0
� is the derivative of

the D�s0 meson mass operator described by the diagram in
Fig. 1.
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As we already stressed in the Introduction, this condition
was originally applied to the study of the deuteron as a
bound state of proton and neutron [54]. Then it was ex-
tensively used in low-energy hadron phenomenology as the
master equation for the treatment of mesons and baryons as
bound states of light and heavy constituent quarks (see
Refs. [55,57–60]). In Ref. [61] this condition was used in
the consideration of glueballs as bound states of gluons.
Recently, the compositeness condition was applied to the
study of the light scalar mesons a0 and f0 asK �K molecules
[9]. To clarify the physical meaning of this condition, we
first want to remind the reader that the renormalization
constant Z1=2

D�s0
can also be interpreted as the matrix element

between the physical and the corresponding bare state. For
ZD�s0 � 0 it then follows that the physical state does not
contain the bare one and is solely described as a bound
state. The interaction Lagrangian Eq. (1) and the corre-
sponding free parts describe both the constituents (D andK
mesons) and the hadronic molecule (D�s0), which is taken to
be the bound state of the constituents. As a result of the
interaction, the physical particle is dressed, i.e. its mass and
its wave function have to be renormalized. The condition
ZD�s0 � 0 also guarantees that there is no double counting
for the physical observable under consideration: the D�s0
meson interacts with other hadrons and gauge bosons only
via its constituents. In particular, the compositeness con-
dition excludes the direct interaction of the dressed
charged particle (like D��s0 mesons) with the electromag-
netic field. Taking into account both the tree-level diagram
and the diagrams with the self-energy and counterterm
insertions into the external legs [that is the tree-level
diagram times (ZD�s0 � 1)], one obtains a common factor
ZD�s0 which is equal to zero [55,57,58].

B. Effective Lagrangian for strong and radiative decays
of D��s0 �2317�

Now we turn to the discussion of the lowest-order dia-
grams which contribute to the matrix elements of the
strong isospin-violating decay D�s0 ! Ds�

0 and the radia-
tive decay D�s0 ! D�s�. To the strong decay two types of
diagrams contribute: the so-called ‘‘direct’’ diagrams of
Fig. 2 with �0-meson emission from the D���K meson
loops and the ‘‘indirect’’ diagrams of Fig. 3, where a �0

meson is produced via �� �0 mixing. Note that the

second mechanism based on �� �0 mixing was mainly
considered before in the literature. Originally, it was ini-
tiated by the analysis based on the use of chiral
Lagrangians [27,28,62] where the leading-order, tree-level
D�s0Ds�0 coupling can be generated only by virtual
�-meson emission. During the past years, different ap-
proaches have been applied to the D�s0 ! Ds�0 decay
properties using the �� �0 mixing mechanism. In our
approach the D�s0 meson is considered as a DK bound state
and, therefore, we have an additional mechanism for gen-
erating theD�s0Ds�

0 transition due to the direct coupling of
D��� and K��� mesons to �0. In particular, in the isospin
limit (when the masses of the virtual D��� and K��� mesons
in the loops are degenerate, respectively) the pairs of
diagrams related to Figs. 2(a) and 2(b) and Figs. 2(c) and
2(d) compensate each other. Only the use of physical
masses for the D��� and K��� mesons gives a nontrivial
contribution to the D�s0 ! Ds�0 coupling of order O���,
where

 �	m2
D����
�m2

D���0
	m2

K����
�m2

K���0
(8)

is the parameter of isospin breaking. Therefore, the con-
tribution of the diagrams of Fig. 2 is of the same order as
the one related to Fig. 3 involving �� �0 mixing, where
the �� �0 transition coupling (filled black circle) is
counted as O���.

The diagrams contributing to the radiative decayD��s0 !
D��s � are shown in Fig. 4. The diagrams of Figs. 4(a) and
4(b) are generated by the direct coupling of the chargedD�

and K� mesons to the electromagnetic field after gauging
of the free Lagrangians related to these mesons. The dia-
grams of Figs. 4(c) and 4(d) (so-called contact diagrams)
are generated after gauging of nonlocal strong Lagrangian
(1) describing the coupling of D�s0 mesons to its constitu-
ents—D and K mesons. The diagrams of Figs. 4(e) and
4(f) arise after gauging the strong D�sDK interaction
Lagrangian containing derivatives acting on the pseudo-
scalar fields. Finally, the diagrams of Figs. 4(g) and 4(h)
describe the subprocess where the D�s0 converts into the D�s
via a DK loop followed by the interaction of the D�s with
the electromagnetic field. Note that an analogous diagram
where the D�s meson interacts with the electromagnetic
field and then converts into the D�s vanishes due to the
transversity condition for the on-shell vector mesonD�s , i.e.
p��

�
D�s
�p� � 0. Details of how to generate the effective

couplings of the involved mesons to the electromagnetic
field will be discussed later.

After the preliminary discussion of the relevant dia-
grams, now we are in the position to write down the full
effective Lagrangian Leff for the study of strong D�s0 !
Ds�

0 and radiative D�s0 ! D�s� decay properties. For con-
venience, we split Leff into an isospin-symmetric part Linv

and an isospin-symmetry breaking part Lbreak:

 L eff�x� � Linv�x� �Lbreak�x�; (9)

D *
s0 D *

s0

D

K

FIG. 1 (color online). Mass operator of the D�s0�2317� meson.
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π 0

η

D *+
s0 D +

s

D + D *+

K 0

(a)

π 0

η

D *+
s0 D +

s

D 0 D *0

K +

(b)

π 0

η

D *+
s0 D +

s

K + K *+

D 0

(c)

π 0

η

D *+
s0 D +

s

K 0 K *0

D +

(d)

FIG. 3 (color online). Diagrams contributing to the strong transition D��s0 ! D�s � �
0 via �� �0 mixing.

π 0

D *+
s0 D +

s

D + D *+

K 0

(a)

π 0

D *+
s0 D +

s

D 0 D *0

K +

(b)

π 0

D *+
s0 D +

s

K + K *+

D 0

(c)

π 0

D *+
s0 D +

s

K 0 K *0

D +

(d)

FIG. 2 (color online). Diagrams contributing to the direct strong transition D��s0 ! D�s � �
0.
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where Linv is given by a sum of free meson parts Lfree and
the interaction parts Lint:

 L inv�x� � Lfree�x� �Lint�x�: (10)

We use the standard free meson Lagrangian involving
states with quantum numbers JP � 0�, 0� and 1�:

 L free�x� �
X

i�S;P;V

Li
free�x�; (11)

where

 L S
free�x� � �D

��
s0 �x����m

2
D�s0
�D��s0 �x�; (12)

 

LP
free�x���

1
2 ~��x����m

2
�� ~��x��K

y�x����m2
K�K�x�

� 1
2��x����m

2
����x��Dy�x����m2

D�D�x�

�D�s �x����m2
Ds
�D�s �x�; (13)

γ

D *+
s0 D *+

s

D + D +

K 0

(a)

γ

D *+
s0 D *+

s

K + K +

D 0

(b)

γ

D *+
s0 D *+

s

D +

K 0

(c)

γ

D *+
s0 D *+

s

K +

D 0

(d)

γ

D *+
s0 D *+

s

D +

K 0

(e)

γ

D *+
s0 D *+

s

K +

D 0

(f )

γ

D *+
s0 D *+

s D *+
s

D +

K 0

(g)

γ

D *+
s0 D *+

s D *+
s

K +

D 0

(h)

FIG. 4 (color online). Diagrams contributing to the radiative transition D��s0 ! D��s � �.
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 L V
free�x� � K�y� �x��g��
��m2

K� � � @
�@��K���x�

�D�y� �x��g��
��m2
D� � � @

�@��D���x�

�D��s� �x��g
��
��m2

D�s
� � @�@��D��s� �x�:

(14)
Here � � @�@�, ~� is the triplet of pions, D�s and D��s are
the pseudoscalar and vector charm-strange mesons, respec-
tively. The doublets of vector mesons D� and K� are given
by

 D� �
D�0

D��

� �
; K� �

K��

K�0

� �
: (15)

In our convention the isospin-symmetric meson masses of
the isomultiplets are identified with the masses of the
charged partners [21]:
 

m� � m�� � 139:570 18 MeV;

mK � mK� � 493:677 MeV;

mK� � mK�� � 891:66 MeV;

mD � mD� � 1:8693 GeV;

mD� � mD�� � 2:010 GeV:

(16)

The masses of the isosinglet states are [21]

 m� � 547:51 MeV;

mDs
� mD�s � 1:9682 GeV;

mD�s � mD��s � 2:112 GeV;

mD�s0
� mD��s0

� 2:3173 GeV:

(17)

The interaction term Lint�x� will be discussed later. First,
we would like to write down the isospin-breaking term
Lbreak, which includes the mass corrections of the neutral
mesons containing u or d quarks and the �� �0 mass
mixing [62,63]:

 L break�x� � �LP�x� � �LV�x� �L���x�; (18)
where

 �LP�x� �
��
2

�0�x��2 � �K �K0�x�K0�x�

� �D �D0�x�D0�x�; (19)

 �LV�x� � ��K� �K�0� �x�K
�0��x� � �D� �D�0� �x�D

�0��x�;

(20)

 L ���x� � B
md �mu���

3
p �0�x���x�; (21)

wheremu andmd are the u and d current quark masses, B is
the condensate parameter. Here �M are the isospin-
breaking parameters which are fixed by the difference of
masses squared of the charged and neutral members of the
isomultiplets as

 �M � m2
M� �m

2
M0 ; mM0 � m �M0 : (22)

The set of mM0 is taken from data [21] with

 m�0 � 134:9766 MeV; mK0 � 497:648 MeV;

mK�0 � 896:0 MeV; mD0 � 1:8645 GeV;

mD�0 � 2:0067 GeV:

(23)

Equations (12)–(14), (19), and (20) define the free meson
propagators for scalar (pseudoscalar) fields

 iDM�x� y� � h0jTM�x�M
y�y�j0i

�
Z d4k

�2��4i
e�ik�x�y� ~DM�k�; (24)

where

 

~DM�k� �
1

m2
M � k

2 � i�
(25)

and vector fields

 iD��
M� �x� y� � h0jTM

���x�M��y�y�j0i

�
Z d4k

�2��4i
e�ik�x�y� ~D��

M� �k�; (26)

where

 

~D��
M� �k� � �

1

m2
M� � k

2 � i�

�
g�� �

k�k�

m2
M�

�
: (27)

In the following calculations it will be convenient to ex-
pand the propagators of the neutral mesons D0� �D0�,
K0� �K0�, D�0� �D�0�, and K�0� �K�0� in powers of the corre-
sponding isospin-breaking parameters as

 

~DM0�k� �
�

1� �M
@

@m2
M�

�
~DM��k� �O��

2
M�;

~D��
M�0
�k� �

�
1� �M�

@

@m2
M��

�
~D��
M���k� �O��

2
M� �:

(28)

The interaction Lagrangian includes the strong and elec-
tromagnetic parts

 L int�x� � Lstr
int�x� �Lem

int �x�; (29)

as already apparent from the previous discussion related to
Figs. 2–4. The relevant strong part of the effective
Lagrangian contains the following terms: the Lagrangian
LD�s0

(1) describing the coupling of the D�s0 meson to its
constituents and VPP-type Lagrangians, describing the
interaction of vector mesons with two pseudoscalars:
 

Lstr
int�x� � LD�s0

�x� �LD�D��x� �LD�D��x� �LK�K��x�

�LK�K��x� �LD�DsK�x�

�LK�DsD�x� �LD�sDK�x�: (30)

Let us specify the VPP interaction Lagrangians occurring
in Eqs. (30). In general they can be defined as

 L VP1P2
�x� � gVP1P2

V��x�P1�x�i@
$�
P2�x� � H:c: (31)

To be consistent with the definitions occurring in literature,
we use the following form of the particular Lagrangians:
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 L D�D��x� � �
gD�D�
2
���
2
p D�y� �x� ~� ~��x�i@

$�
D�x� � H:c:

(32)

 L D�D��x� � �
gD�D�
2
���
2
p D�y� �x���x�i@

$�
D�x� � H:c: (33)

 L K�K��x� �
gK�K����

2
p K�y� �x� ~� ~��x�i@

$�
K�x� � H:c: (34)

 L K�K��x� �
gK�K����

2
p K�y� �x���x�i@

$�
K�x� � H:c: (35)

 L D�DsK�x� � gD�DsKD
�T
� �x�K�x�i@

$�
D�s �x� � H:c: (36)

 L K�DsD�x� � gK�DsDK
�T
� �x�D�x�i@

$�
D�s �x� � H:c: (37)

 L D�sDK�x� � gD�sDKD
��
s� �x�D

T�x�i@
$�
K�x� � H:c:; (38)

where summation over isospin indices is understood and

A@
$

B � A@B� B@A.
The couplings gD�D� and gK�K� are fixed by data for the

strong decay widths D� ! D� and K� ! K�. In particu-
lar, the strong two-body decay widths ��D�� ! D0���
and ��K�� ! K0��� are related to gD�D� [64,65] and
gK�K� as

 ��D�� ! D0��� �
g2
D�D�

24�m2
D?�

P3
�D� ; (39)

 ��K�� ! K0��� �
g2
K�K�

6�m2
K?�

P3
�K� ; (40)

where P�V is the three-momentum of �� in the rest frame
of the decaying vector meson V. Using data for the corre-
sponding strong decay widths one deduces: gD�D� � 17:9
[65] and gK�K� � 4:61 [21].

The coupling constants gD�D���� are obtained in the
context of heavy hadron chiral perturbation theory
(HHChPT) [66]. The couplings gD�D� and gD�D� are ex-
pressed (and then related) in terms of a universal strong
coupling constant g involving heavy (vector and pseudo-
scalar) and Goldstone mesons and in terms of the leptonic
decay constants FP:

 gD�D� �
mD�

F�
g

���
2
p
; gD�D� �

mD�

F�
g

���
2

3

s
; (41)

where F� � 92:4 MeV and F� � 1:3F�. From Eq. (41)
and using gD�D� � 17:9, we deduce the value of gD�D�
with

 gD�D� �
F�
F�

���
3
p gD�D� � 7:95: (42)

The coupling constant gK�K� can be related to gK�K� using
the unitary symmetry relation:

 gK�K� �
F�

���
3
p

F�
gK�K� � 6:14: (43)

Again, as in the case of gD�D����, we include in couplings
the relation to the corresponding decay constants F� and
F�.

The coupling constants gD�DsK and gD�sDK have been
estimated using the QCD sum rule technique in
Refs. [67,68]. These couplings are important for the evalu-
ation of the dissociation cross section of J=� to kaons (see,
e.g. discussion in Refs. [69,70]). Here we use the results of
Ref. [67]: gD�DsK � 2:02 and gD�sDK � 1:84. The coupling
gK�DsD can also be related to gD�DsK, using SU�4� symme-
try arguments: gK�DsD � gD�DsK � 2:02.

The relevant electromagnetic part has three main terms:

 L em
int �x� � Lem�1�

int �x� �Lem�2�
int �x� �Lem�3�

int �x�: (44)

The first term describes the local coupling of charged D-,
K-, and D�s mesons to the electromagnetic field:
 

Lem�1�
int �x� � ieA��x�fD

��x�@
$�
D��x� � K��x�@

$�
K��x�

�D��	s �x�@
$�
D��s	 �x� �

1

2
D��	s �x�@

$

	D
���
s �x�

�
1

2
D���s �x�@

$	
D��s	 �x�g: (45)

The term Lem�1�
int is generated after gauging of the free

meson Lagrangians using minimal substitution:

 @�M� ! �@� 
 ieA��M�: (46)

The terms Lem�2�
int and Lem�3�

int are generated due to the
gauging of the strong Lagrangians (1) and (31) containing
derivatives acting on the charged fields. Note that the
correlation function �D�s0

, describing the nonlocal
D�s0DK coupling, is a function of @2 and, therefore, both
Lagrangians (1) and (31) are not gauge-invariant under
electromagnetic Uem�1� transformations and should be
modified accordingly.

To get the second term we replace all derivatives acting
on the charged fields by the covariant ones using minimal
substitution (as is the case for gauging the free
Lagrangians). The term in Lem�2� relevant for our calcu-
lation contains the coupling of the vectorD�s meson toD,K
and the photon field with

 L em�2�
int �x� � egD�sDKA

��x�D��s� �x�
D0�x�K��x�

�D��x�K0�x�� � H:c:� � � � : (47)

The gauging of the nonlocal Lagrangian of Eq. (1) pro-
ceeds in a way suggested in Ref. [71] and extensively used
in Refs. [57,58]. In particular, to guarantee local invariance
of the strong interaction Lagrangian, in Lstr

int each charged
constituent meson field (i.e. D� and K� meson fields) is
multiplied by the gauge field exponential resulting in
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Lstr�em�3�
int �x� � gD�s0D

��
s0 �x�

Z
dy�D�s0

�y2�

� fe�ieI�x�wKy;x;P�D��x� wKy�

� K0�x� wDy� �D0�x� wKy�

� e�ieI�x�wDy;x;P�K��x� wDy�g � H:c:;

(48)

where

 I�x; y; P� �
Z x

y
dz�A

��z�: (49)

For the derivative of the path integral (49), we use the path-
independent prescription suggested in Refs. [71]:

 lim
dx�!0

dx�
@
@x�

I�x; y; P� � lim
dx�!0


I�x� dx; y; P0�

� I�x; y; P��; (50)

where path P0 is obtained from P when shifting the end
point x by dx. Use of the definition (50) leads to the key
rule

 

@
@x�

I�x; y; P� � A��x�; (51)

which in turn states that the derivative of the path integral
I�x; y; P� does not depend on the path P originally used in
the definition. The nonminimal substitution (48) is there-
fore completely equivalent to the minimal prescription.

In the calculation of the amplitudes of the radiative
D�s0 ! D�s� decay, in Eq. (48) we only need to keep terms
linear in A�, that is the four-particle coupling D�s0DK�.
Hence, the third term contributing to the electromagnetic
interaction Lagrangian is given by
 

Lem�3�
int �x� � �iegD�s0D

��
s0 �x�

Z
dy�D�s0

�y2�

�

�Z x�wKy

x
dz�A

��z�D��x� wKy�

� K0�x� wDy� �
Z x�wDy

x
dz�A��z�

�D0�x� wKy�K��x� wDy�
�
� H:c:� � � � :

(52)

Concluding the discussion of the effective interaction
Lagrangian, we stress that all couplings occurring in the
diagrams contributing to the decays D�s0 ! Ds�0 and
D�s0 ! D�s� are explicitly fixed, except gD�s0 discussed in
the following.

C. Analysis of the D�s0DK coupling gD�
s0

Finally, we discuss the numerical value of the model-
dependent constant gD�s0 . In terms of a general functional

form of the correlation function ~�D�s0
, the coupling con-

stant gD�s0 is given by

 

1

g2
D�s0

�
2

�4��D�s0
�2

Z 1
0

Z 1
0

Rd	1d	2

�1� 	1 � 	2�
3

�
�d ~�2
D�s0
�z�=dz�; (53)

where

 z � �2
D	1 ��

2
K	2 �

R�2
D�s0

1� 	1 � 	2
;

R � 	1	2 � 	1w2
D � 	2w2

K; �M �
mM

�D�s0

:
(54)

One should stress that coupling constant gD�s0 remains finite
when we remove the cutoff �D�s0

! 1 (local limit). A
finite result is obtained, because the derivative of the D�s0
mass operator is convergent, i.e. the loop integral isR
d4k=k6 when the correlation function ~�D�s0

is removed
(or equal to one) at �D�s0

! 1. However, in the calculation
of transition diagrams (like in Figs. 2–4), we deal with
divergent integral and, therefore, we need the correlation
function to perform the regularization of the occurring loop
integrals. Now the question is how sensitive our results are
to a variation of �D�s0

. First, we look at the coupling
constant gD�s0 . In the limit �D�s0

!1 it is given by

 

1

g2
D�s0

�
2

�4�mD�s0
�2

�
m2
D�m

2
K

m2
D�s0

ln
mD

mK
� 1

�
m2
D�s0
�m2

D�m
2
K� � �m

2
D�m

2
K�

2

m2
D�s0

��������
�

p

X
�

arctan
z���������
�

p

�
;

(55)

where z� � m2
D�s0
� �m2

D �m
2
K� and

 
 �
:

�m2

D�s0
; m2

D;m
2
K�

� m4
D�s0
�m4

D �m
4
K � 2m2

D�s0
m2
D � 2m2

D�s0
m2
K

� 2m2
Dm

2
K (56)

is the Källen function.
For checking purposes we also analyze the coupling gD�s0

in the heavy quark limit (HQL), where the masses ofD and
D�s0 mesons together with the charm quark mass mc go to
infinity. In the HQL the D meson in the D�s0 molecule fixes
the center of mass, surrounded by a light K meson in
analogy to the heavy-light Q �q mesons. For the nonlocal
case, the result for gD�s0 in the HQL is

 

1

g2
D�s0

�
1

�4�mc�
2

Z 1
0

d	

1��2
K	

�2
D�s0
�	�: (57)

The HQL result for the local case is
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1

g2
D�s0

�
1

�4�mc�
2 ln

m2
c

m2
K

: (58)

Now we compare our numerical results for the coupling
constant gD�s0 in different regimes: (i) nonlocal case (NC);
(ii) local case (LC); (iii) nonlocal case� HQL (NCHQL),
and (iv) local case� HQL (LCHQL). When we deal with
the nonlocal case we proceed with the Gaussian correlation
function �D�s0

�z� � exp��z� and vary the scale parameter
�D�s0

from 1 to 2 GeV. For the charm quark mass we use the
averaged result of the PDG [21]: mc � 1:25 GeV. For
convenience, we attach a corresponding superscript to
gD�s0 to indicate the specific regime.

We get the following results: the coupling gNC
D�s0

varies

from 11.26 GeV at �D�s0
� 1 GeV to 9.90 GeV at �D�s0

�

2 GeV. The coupling gLC
D�s0

is expressed only in terms of

physical meson masses with the result gLC
D�s0
� 8:98 GeV.

The coupling gNCHQL
D�s0

varies from 16.22 GeV at �D�s0
�

1 GeV to 11.52 GeV at �D�s0
� 2 GeV. Finally, we have

gLCHQL
D�s0

� 11:52 GeV. All results for gD�s0 are quite close to

each other with a typical value for gD�s0 of about 10 GeV
which is consistent with preceding calculations done in
other theoretical approaches. In Table I we compare our
result for the D�s0DK coupling constant to predictions of
other theoretical approaches (we use a compilation of the
results done in Ref. [67]).

D. Extension to other possible hadronic molecules

We end this section with a comment concerning the
extension of the derived framework to the study of other
hadronic molecules. This can be done in a straightforward
fashion. The starting point is the construction of an effec-
tive Lagrangian describing hadronic molecules as bound

states of its constituents. In particular, for the case of the
charm-strange meson Ds1�2460� and for the possible part-
ners in the bottom sector B�s0�5725� and Bs1�5778�, the
simplest Lagrangians have the form
 

LDs1
�x� � gDs1

D��s1 �x�
Z
dy�Ds1

�y2�D�T� �x� wKD�y�

� K�x� wD�Ky� � H:c:; (59)

 

LB�s0
�x� � gB�s0

�B�0s0�x�
Z
dy�B�s0

�y2�By�x� wKBy�

� K�x� wBKy� � H:c:; (60)

 

LBs1�x� � gBs1
�B0�
s1 �x�

Z
dy�Bs1�y

2�B�y� �x� wKB�y�

� K�x� wB�Ky� � H:c:; (61)

where wij � mi=�mi �mj�, gM, and �M are the coupling
constants (fixed from the compositeness condition) and
correlation functions. The doublets of B��� and B���y me-
sons are defined as

 B��� � B����

B���0

 !
; B���y � B���� �B���0

� 	
: (62)

The molecular structure of D�s1, B�0s0 , �B�0s0 , B0
s1, and �B0

s1 is

 jD�s1i � jD
��K0i � jD�0K�i;

jD�s1i � jD
�� �K0i � j �D�0K�i;

jB�0s0i � jB
�K�i � jB0 �K0i;

j �B�0s0i � jB
�K�i � j �B0K0i

jB0
s1i � jB

��K�i � jB�0 �K0i;

j �B0
s1i � jB

��K�i � j �B�0K0i:

(63)

The calculation of decay properties of Ds1�2460�,
B�s0�5725�, and Bs1�5778� mesons goes beyond the scope
of the present paper and we relegate this issue to a forth-
coming paper.

III. STRONG D�s0 ! Ds�
0 AND RADIATIVE

D�s0 ! D�s� DECAYS

In this section we discuss the numerical results for the
D�s0 ! Ds�

0 and D�s0 ! D�s� decay properties. As we
already stressed in the preceding section, two types of
diagrams contribute to the amplitude of the strong decay
D�s0 ! Ds�

0: the direct diagrams of Fig. 2 and the
‘‘�� �0 mixing’’ diagrams of Fig. 3. The direct diagrams
occur due to the DK molecular structure of the D�s0 meson,
while in the two-quark picture they are forbidden accord-
ing to the Okubo-Zweig-Iizuka rule. In the framework of
our approach this is not the case, since D and K mesons
contain nonstrange quarks. The total contribution of the
direct diagrams starts at order O���, where � of Eq. (8) is

TABLE I. Coupling constant gD�s0DK. The range of values for
our results is due to the variation of �D�s0

from 1 to 2 GeV.

Approach gD�s0DK (GeV)

Ref. [51] 2.5–3.8
Ref. [72] 5.068
Ref. [73] 5:5� 1:8
Ref. [67] 5:9�1:7

�1:6
Ref. [38] 6.0–7.8
Ref. [49] 9:3�2:7

�2:1
Ref. [74] <9:86
Ref. [11] 10.203

Our results:
NC case 9.90–11.26
LC case 8.98
NCHQL case 11.52–16.22
LCHQL case 11.52
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the generic parameter of isospin breaking. Hence, the
‘‘direct diagrams’’ are of the same order in the isospin-
breaking counting scheme as the ‘‘�� �0 mixing’’ dia-
grams, and, therefore, both types of diagrams should
be included. To clarify this mechanism we present our
results for two cases: (i) ‘‘full calculation’’ (Full) and
(ii) ‘‘leading-order’’ (LO), i.e. restricting to first order in
isospin-breaking O���.

It is convenient to write the matrix element describing
the D�s0 ! Ds�

0 transition as a sum of the added contri-
butions of the diagrams in Figs. 2 and 3:
 

M�D�s0 ! Ds�0� � Mdir�D�s0 ! Ds�0�

�Mmix�D
�
s0 ! Ds�

0� (64)

with

 Mdir�D�s0 ! Ds�0� � gD�s0Ds�0 ; (65)

 Mmix�D�s0 ! Ds�0� � gD�s0Ds�
md �mu

ms � m̂

���
3
p

4
; (66)

where m̂ � �mu �md�=2 and �md �mu�=�ms � m̂� �
1=43:7 (see e.g. Ref. [62]). In the derivation of Eq. (66)
we use the masses of �0 and � meson in leading order of
the chiral expansion. The total effective D�s0Ds�

0 cou-
pling, denoted as GD�s0Ds� includes both contributions of
the set of diagrams of Figs. 2 and 3 with

 GD�s0Ds� � Gdir
D�s0Ds�

�Gmix
D�s0Ds�

; (67)

 Gdir
D�s0Ds�

� gD�s0Ds�; Gmix
D�s0Ds�

� gD�s0Ds�
md �mu

ms � m̂

���
3
p

4
:

(68)

In terms of GD�s0Ds� the D�s0 ! Ds�
0 decay width reads as

 ��D�s0 ! Ds�� �
G2
D�s0Ds�

8�m2
D�s0

P��0 ; (69)

where P��0 � 
1=2�m2
D�s0
; m2

Ds
;m2

�0�=�2mD�s0
� is the three-

momentum of the decay products.
The matrix element describing the D�s0 ! D�s� transi-

tion can be written in the manifestly gauge-invariant form,

 M���D�s0 ! D�s�� � eGD�s0D�s��g��p
0q� p0�q��; (70)

where p0 and q are the D�s and photon four-momenta and
p � p0 � q is the D�s0 momentum. Here GD�s0D

�
s� is the

effective D�s0D
�
s� coupling constant and the D�s0 ! D�s�

decay width is given by

 ��D�s0 ! D�s�� � 	G2
D�s0D

�
s�
P�3� ; (71)

where

 P�� �
mD�s0

2

�
1�

m2
D�s

m2
D�s0

�
(72)

is the three-momentum of the decay products.
Now we present the numerical results. First, we discuss

the contributions of the different diagrams of Figs. 2 and 3
to the effective coupling GD�s0Ds�. With a typical value for
the scale parameter of �D�s0

� 1 GeV, we get the
following.

In the Full calculation,

 

GD�s0Ds� � 146:6 MeV; Gdir
D�s0Ds�

� 104:5 MeV;

Gmix
D�s0Ds�

� 42:1 MeV; GDD�K
D�s0Ds�

� 40:9 MeV;

Gdir;KK�D
D�s0Ds�

� 63:6 MeV; Gmix;DD�K
D�s0Ds�

� 7:9 MeV;

Gmix;KK�D
D�s0Ds�

� 34:1 MeV: (73)

In the LO calculation,

 

GD�s0Ds� � 145:4 MeV; Gdir
D�s0Ds�

� 103:4 MeV;

Gmix
D�s0Ds�

� 42:0 MeV; Gdir;DD�K
D�s0Ds�

� 40:2 MeV;

Gdir;KK�D
D�s0Ds�

� 63:2 MeV; Gmix;DD�K
D�s0Ds�

� 7:9 MeV;

Gmix;KK�D
D�s0Ds�

� 34:1 MeV; (74)

where the superscripts DD�K and KK�D relate to the
diagrams of Figs. 2(a), 2(b), 3(a), and 3(b) and 2(c), 2(d),
3(c), and 3(d), respectively. The direct diagrams dominate
over the mixing diagrams by about a factor of 2. The results
for the decay width (total result and partial contributions of
the different diagrams) are as follows.

In the Full calculation,

 

��D�s0 ! Ds�� � 46:7 KeV;

��D�s0 ! Ds��dir � 23:7 KeV;

��D�s0 ! Ds��
mix � 3:8 KeV;

��D�s0 ! Ds��
dir;DD�K � 3:6 KeV;

��D�s0 ! Ds��
dir;KK�D � 8:8 KeV;

��D�s0 ! Ds��mix;DD�K � 0:1 KeV;

��D�s0 ! Ds��mix;KK�D � 2:5 KeV:

(75)
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In the LO calculation,

 

��D�s0 ! Ds�� � 46:6 KeV;

��D�s0 ! Ds��
dir � 23:6 KeV;

��D�s0 ! Ds��
mix � 3:9 KeV;

��D�s0 ! Ds��
dir;DD�K � 3:6 KeV;

��D�s0 ! Ds��dir;KK�D � 8:8 KeV;

��D�s0 ! Ds��mix;DD�K � 0:1 KeV;

��D�s0 ! Ds��mix;KK�D � 2:6 KeV:

(76)

From Eqs. (75) and (76) it is evident that the restriction to
the leading order in isospin breaking is a very good ap-
proximation to the full calculation (both sets of results
practically coincide with each other). We would like to
stress that the strong decay width ��D�s0 ! Ds�� is en-
hanced in a molecular picture for the D�s0 meson as com-
pared to the quarkonium interpretation due to the inclusion
of the direct �0 coupling to the DD� or KK� meson pairs.
This enhancement is particularly present, since the direct
mode dominates over the ‘‘mixing’’ mode.

On the other hand, when turning to the heavy quark limit
the contribution of the direct mode becomes much smaller,
about 0.4 KeV, while the one of the mixing decreases less
to about 1.4 KeV. The total result for the decay width is an
order of magnitude smaller as in the full dynamical case
with ��D�s0 ! Ds�� ’ 3:3 KeV. From the results obtained
in the HQL, we make the following conclusions: first, in
the HQL the mixing mode dominates over the direct mode.
This result is consistent with HHChPT by conception
(restriction to the mixing mode) and numerically (the result
for the width is of the order of a few KeV). Second, we
have a clear explanation why in the HQL the direct mode is
suppressed. The reason is that the isospin-breaking effects
due the difference of heavy D��� mesons occurring in the
loop are of next-to-leading order in the 1=mc expansion,
i.e. they are of the form �D���=�mc�D�s0

�. Numerically these
factors are not so small when compared to the isospin-
breaking factors �K���=�2

D�s0
arising from the mass differ-

ences of kaons K���. We conclude from our results that the
heavy quark limit is not a good approximation for the
isospin-violating strong decay D�s0 ! Ds�, since some of
the important isospin-breaking effects are missing. In ad-
dition, taking in general the HQL in the charm sector is not
necessarily a good approximation because of the relatively
small mass of the charm quark. In contrast, we show below
that for the radiative decay D�s0 ! D�s� the HQL works
well.

In Table II we present our results for the decay width
��D�s0 ! Ds�� including a variation of the scale parameter
�D�s0

from 1 to 2 GeV (increase of �D�s0
leads to an increase

of the width) and compare them to previous theoretical
predictions.

Now we turn to the discussion of the radiative decay
D�s0 ! D�s�. By construction, using a gauge-invariant and
Lorentz-covariant effective Lagrangian, the full amplitude
for this process is gauge invariant, while the separate
contributions of the different diagrams of Fig. 4 are not.
It is important to stress that the diagrams of Fig. 4 fall into
two separately gauge-invariant sets: one set includes the
diagrams of Figs. 4(a), 4(c), 4(e), and 4(g) (with loops
containing virtual D� and K0 mesons), generated by the
coupling ofD�s0 to theD� and K0 constituents. Another set
contains the diagrams of Figs. 4(b), 4(d), 4(f), and 4(h)
(with loops containing virtual D0 and K� mesons) with the
coupling of D�s0 to D0 and K�.

For convenience, we split each individual diagram into a
gauge-invariant piece and a reminder, which is noninvar-
iant. One can prove that the sum of the noninvariant terms
vanishes due to gauge invariance. In the following discus-
sion of the numerical results, we will deal only with the
gauge-invariant contribution of the separate diagrams of
Fig. 4. Another important feature of the D�s0 ! D�s� am-
plitude is that the effective coupling GD�s0D

�
s� is ultraviolet

(UV) finite. In the Appendix, we discuss the local limit that
is when we remove the cutoff with �D�s0

! 1 in the
correlation function �D�s0

. Again, the separate contribu-
tions of the diagrams of Fig. 4 to GD�s0D

�
s� contain diver-

gences which compensate each other. In the Appendix we
discuss this issue in detail.

First, we show the results for the effective coupling
constant GD�s0D

�
s�: the total result and partial contributions

of the different diagrams of Fig. 4 (marked by 4(a), 4(b),
etc.). In the analysis of the electromagnetic decay D�s0 !
D�s� we restrict to the isospin limit, i.e. we do not include
the isospin-breaking effects in the meson masses and pro-
ceed with the masses of the charged particles. In the isospin
limit the diagrams of Figs. 4(e) and 4(f) compensate each
other (and therefore do not contribute to the total ampli-

TABLE II. Decay width of D�s0 ! Ds�
0. The range of values

for our results is due to the variation of �D�s0
from 1 to 2 GeV.

Approach ��D�s0 ! Ds�
0� (KeV)

Ref. [43] 6� 2
Ref. [27] 7� 1
Ref. [22] 10
Ref. [31] 16
Ref. [28] 21.5
Ref. [45] 32
Ref. [42] 39� 5
Ref. [32] 15–70
Ref. [26] 10–100
Ref. [33] 129� 43 (109� 16)

Our results:
Full case 46.7–111.9
LO case 46.6–112.6
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tude), while the diagrams of Figs. 4(g) and 4(h) are equal to
each other. For a value of �D�s0

� 1 GeV, we get
 

GD�s0D
�
s� � 0:093 GeV�1;

G4a
D�s0D

�
s�
� �0:030 GeV�1;

G4b
D�s0D

�
s�
� 0:089 GeV�1;

G4c
D�s0D

�
s�
� 10�4 GeV�1;

G4d
D�s0D

�
s�
� 0:002 GeV�1;

G4g
D�s0D

�
s�
� G4h

D�s0D
�
s�
� 0:016 GeV�1:

(77)

The corresponding results for the decay width D�s0 ! D�s�
are

 ��D�s0 ! D�s�� � 0:47 KeV;

��D�s0 ! D�s��
4a � 0:05 KeV;

��D�s0 ! D�s��4b � 0:43 KeV;

��D�s0 ! D�s��4c � 6� 10�7 KeV;

��D�s0 ! D�s��
4d � 2� 10�4 KeV;

��D�s0 ! D�s��4g � ��D�s0 ! D�s��4h � 0:02 KeV:

(78)

From the results it is clear that the contact diagrams of
Figs. 4(c) and 4(d) are strongly suppressed, these diagrams
are kept to guarantee gauge invariance. The main contri-
bution comes from the diagram of Fig. 4(b) where the
photon couples to the K�. The diagram of Fig. 4(a) is
relatively suppressed as 	�mK=mD�

2.
The sum of all the diagrams is ultraviolet finite and,

therefore, the cutoff parameter can be removed with
�D�s0

! 1. In the local approximation (LC case) for the
radiative decay width, we get the following results for the
coupling constant GD�s0D

�
s� and the decay width ��D�s0 !

D�s�� [Here we deal only with the gauge-invariant parts of
the diagrams of Figs. 4(a), 4(b), 4(g), and 4(h).]:

 GD�s0D
�
s� � 0:110 GeV�1;

G4a
D�s0D

�
s�
� �0:038 GeV�1;

G4b
D�s0D

�
s�
� 0:093 GeV�1;

G4g
D�s0D

�
s�
� G4h

D�s0D
�
s�
� 0:055 GeV�1;

(79)

and

 ��D�s0 ! D�s�� � 0:66 KeV;

��D�s0 ! D�s��4a � 0:08 KeV;

��D�s0 ! D�s��
4b � 0:47 KeV;

��D�s0 ! D�s��4g � ��D�s0 ! D�s��4h � 0:04 KeV:

(80)

The LC results are larger than for the nonlocal case (NC
case) choosing �D�s0

� 1 GeV.

Finally, we consider the HQL to this process. In the
NCHQL case the diagrams of Fig. 4 relatively scale as

 G4a
D�s0D

�
s�

:G4b
D�s0D

�
s�

:G4c
D�s0D

�
s�

:G4d
D�s0D

�
s�

:G4g�h�
D�s0D

�
s�

�
1

mc
:1:

1

m2
c

:1:
1

mc
: (81)

Therefore, the leading-order contribution arises from the
diagrams of Figs. 4(b) and 4(d), resulting in
 

GD�s0D
�
s� � 0:114 GeV�1; G4b

D�s0D
�
s�
� 0:053 GeV�1;

G4d
D�s0D

�
s�
� 0:061 GeV�1; (82)

and the corresponding results for the decay width of

 ��D�s0 ! D�s�� � 0:71 KeV;

��D�s0 ! D�s��4b � 0:15 KeV;

��D�s0 ! D�s��
4d � 0:20 KeV:

(83)

Finally, in the LCHQL case the diagrams of Fig. 4 rela-
tively scale as

 G4a
D�s0D

�
s�

:G4b
D�s0D

�
s�

:G4g�h�
D�s0D

�
s�
� ln

mc

mK
:1:1: (84)

Therefore, the leading-order contribution comes from the
diagram of Fig. 4(b) with

 GD�s0D
�
s� �

gD�s0gD�sDK
�4�mc�

2 ln
m2
c

m2
K

� 0:160 GeV�1; (85)

and

 ��D�s0 ! D�s�� � 1:41 KeV; (86)

where the coupling gD�s0 is given by Eq. (58).
In Table III we summarize our results for ��D�s0 ! D�s��

for all four cases (NC, LC, NCHQL, and LCHQL) includ-

TABLE III. Decay width of D�s0 ! D�s�. The range of values
for our results is due to the variation of �D�s0

from 1 to 2 GeV.

Approach ��D�s0 ! D�s�� (KeV)

Ref. [31] 0.2
Ref. [27] 0:85� 0:05
Ref. [40] 1
Ref. [44] 1.1
Ref. [50] 1.3–9.9
Ref. [33] � 1:4
Ref. [28] 1.74
Ref. [22] 1.9
Ref. [39] 4–6
Ref. [32] 21

Our results:
NC case 0.47–0.63
LC case 0.66
NCHQL case 0.71–1.17
LCHQL case 1.41
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ing a variation of the scale parameter �D�s0
from 1 to 2 GeV

(an increase of �D�s0
leads to a larger value for the width).

We also compare to predictions of other theoretical ap-
proaches. Our results have a negligible dependence on the
parameter �D�s0

and are also in good agreement with pre-
vious calculations. Also, within a factor of 2 our results for
the different considered cases are in good agreement.
Hence, for the radiative decay D�s0 ! D�s� the local ap-
proximation (LC) and HQL are reasonable
approximations.

IV. SUMMARY

We studied the new charm-strange meson D�s0�2317� in
the hadronic molecule interpretation, considering a bound
state of D and K mesons. Using an effective Lagrangian
approach, we calculated the strong D�s0 ! Ds�

0 and ra-
diative D�s0 ! D�s� decays. A new impact of the DK
molecular structure of the D�s0�2317� meson is that the
presence of u�d� quarks in the D and K meson loops gives
rise to a direct strong isospin-violating transition D�s0 !
Ds�

0 in addition to the decay mechanism induced by ��
�0 mixing as was considered before in the literature. We
showed that the direct transition dominates over the ��
�0 mixing transition. Our results for the partial decay
widths are summarized as follows:
 

��D�s0!Ds�� � 79:3� 32:6 KeV 
“Full” calculation�;

��D�s0!Ds�� � 79:6� 33:0 KeV 
“LO” calculation�;

��D�s0!D�s�� � 0:55� 0:08 KeV 
“NC” case�;

��D�s0!D�s�� � 0:66 KeV 
“LC” case�;

��D�s0!D�s�� � 0:94� 0:23 KeV 
“NCHQL” case�;

��D�s0!D�s�� � 1:41 KeV 
“LCHQL” case�: (87)

The ratio R � ��D�s0 ! D�s�=��D�s0 ! Ds�� 	 10�2 sat-
isfies the current experimental upper limit of R< 0:059
[21].

For the case of the strong decay, the application of the
heavy quark limit (HQL) gives a significant suppression of
the direct mode. The contributions of the isospin-breaking
effects associated with the mass difference of D��� mesons
have an extra factor �D�s0

=mc and, therefore, are formally
of higher order in the 1=mc expansion in comparison to the
isospin-breaking effects associated with the mass differ-
ence of K��� mesons. However, numerically the factor
�D�s0

=mc is of order 1, leading to the result that the HQL
is not a suitable approximation for the isospin-violating
decay D�s0 ! Ds�

0.
In the case of the radiative decay D�s0 ! D�s� we have

another situation and the different limiting cases (local
limit, heavy quark limit) considered give more or less a
similar description of the physical quantities GD�s0D

�
s� and

��D�s0 ! D�s�� (see the results of Table III). Here our

conclusion is that in the context of a molecular interpreta-
tion the decay width ��D�s0 ! D�s�� is of order 1 KeV as
was previously predicted before by other theoretical
approaches.
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APPENDIX A: MATRIX ELEMENT OF THE
RADIATIVE DECAY D�s0 ! D�s�

Here we discuss the matrix element of the radiative
decay D�s0 ! D�s� in the local approximation (when the
cutoff in the D�s0 meson correlation function is removed
with �D�s0

! 1) and for the nonlocal case.
As we mentioned before, the on-shell matrix element

describing the D�s0 ! D�s� transition can be written in the
manifestly gauge-invariant form:

 M���D
�
s0 ! D�s�� � eGD�s0D�s��g��p

0q� p0�q��: (A1)

In the local approximation the following diagrams of Fig. 4
contribute to this matrix element: diagrams of Figs. 4(a),
4(b), and 4(e)–4(h). As we stressed in Sec. III, two sets of
all the diagrams are separately gauge invariant: the set of
Figs. 4(a), 4(e), and 4(g) and set of diagrams related to
Figs. 4(b), 4(f), and 4(h). For illustration we take one set
[Figs. 4(a), 4(e), and 4(g)] and prove gauge invariance by
using dimensional regularization (DR) for the separation of
the divergent pieces which finally cancel each other.

The structure integrals (we drop the occurring coupling
constants) corresponding to the diagrams of Figs. 4(a),
4(e), and 4(g) are given by the following.

In diagram Fig. 4(a),

 T4a
�� � �

Z dDk
�2��Di

�
�2k� p� p0���2k� p

0��


m2
D � �k� p�

2�
m2
D � �k� p

0�2�
m2
K � k

2�
:

(A2)

In diagram Fig. 4(e),

 T4e
�� � �g��

Z dDk
�2��Di

1


m2
D � �k� p�

2�
m2
K � k

2�
:

(A3)
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In diagram Fig. 4(g),

 T4g
�� � ���	

�g	� � p	p�=m2
D�s

m2
D�s
� p2

Z dDk
�2��Di

�
�2k� p0��


m2
D � �k� p�

2�
m2
D � �k� p

0�2�
m2
K � k

2�
;

(A4)

where
 

���	 � �g�	�p� p
0�� �

g�	
2
�p� p0��

�
g��

2
�p� p0�	: (A5)

Next using the Feynman 	-parametrization and the master
formula of DR
 Z dDk
�2��Di

��k2�M


�� k2�N
�

1

�4��D=2

�
��D=2�M���N �M�D=2�

��D=2���N�

��D=2�M�N; (A6)

we get
 

T4a
�� �

g��
16�2

�
2

4�D
� ln4���0�1�

�
�
g��
8�2

Z 1

0
d	�1�	�

� ln�DK�
1

4�2 �g��p
0q�p0�q��

�
Z 1

0
d3	�

�
1�

X3

i�1

	i

�
	1	3

�DDK
�O�D� 4�; (A7)

 T4e
�� � �

g��
16�2

�
2

4�D
� ln4�� �0�1�

�
�

g��
16�2

�
Z 1

0
d	 ln�DK �O�D� 4�; (A8)

 

T4g
�� �

g��
16�2

Z 1

0
d	�1� 2	� ln�DK

�
3

32�2m2
D�s

�g��p
0q� p0�q��

Z 1

0
d	�1� 2	�

� ln�DK �O�D� 4�; (A9)

where
 

�DDK � �3�mD;mK�

� m2
D�1� 	3� �m2

K	3 �m2
D�s0
	1	3 �m2

D�s
	2	3;

�DK � �2�mD;mK�

� m2
D�1� 	� �m

2
K	�m

2
D�s0
	�1� 	�: (A10)

From Eqs. (A7)–(A9), one can see that in the sum of the
diagrams of Figs. 4(a), 4(e), and 4(g) all divergences and

non-gauge-invariant pieces cancel each other. Taking D!
4 we write down the final result of
 

T4a�4e�4g
�� �

1

4�2 �g��p
0q�p0�q��

�
�
Z 1

0
d3	�

�
1�

X3

i�1

	i

�

�
	1	3

�DDK
�

3

8m2
D�s

Z 1

0
d	�1�2	� ln�DK

�
:

(A11)

By analogy we prove the gauge invariance for the sum of
the diagrams of Figs. 4(b), 4(f), and 4(h):
 

T4b�4f�4h
�� �

1

4�2 �g��p
0q� p0�q��

�Z 1

0
d3	�

�
1�

X3

i�1

	i

�

�
	1	3

�KKD
�

3

8m2
D�s

Z 1

0
d	�1� 2	� ln�KD

�
;

(A12)

where �KKD � �3�mK;mD� and �KD � �2�mK;mD�. It is
easy to show that the second terms in Eqs. (A11) and (A12)
are equal to each other by changing the variable 	 to 1�
	. Therefore, the total result for the effective coupling
constant GD�s0D

�
s� in the local case is

 GD�s0D
�
s� �

gD�s0gD�sDK
4�2

�Z 1

0
d3	�

�
1�

X3

i�1

	i

�
	1	3

�
1

�KKD

�
1

�DDK

�
�

3

4m2
D�s

Z 1

0
d	�1� 2	� ln�DK

�
:

(A13)

In the nonlocal case, the gauge invariance can be proved
based on a method developed e.g. in Ref. [58]. For this
purpose, in particular, we split the contribution of each
diagram into a part which is gauge invariant and one which
is not: we use the following representation for the four-
vectors with open Lorentz indices � and �:

 p� � p�?;q � q
� pq

q2 ; p� � p�
?;p0 � p

0� pp
0

p02
; (A14)

such that p�?;qq� � 0 and p�
?;p0p

0
� � 0. Expressions for

diagrams containing only ? -values are gauge invariant
separately. It is easy to show that the remaining terms,
which are not gauge invariant, cancel each other in total.
Note that this method works perfectly both for on-shell and
off-shell amplitudes.

The coupling constant GD�s0D
�
s� in the nonlocal case is

given by

 GD�s0D
�
s� �

gD�s0gD�sDK
16�2 ID�s0D�s�; (A15)

where ID�s0D�s� is the structure integral containing the con-
tributions of the diagrams in Figs. 4(a)–4(d), 4(g), and
4(h):
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 ID�s0D�s� �
X

i�a;b;c;d;g;h

I4i
D�s0D

�
s�
;

I4a
D�s0D

�
s�
� �

4

�2

Z 1
0

Z 1
0

Z 1
0

d	1d	2d	3

�1� 	123�
4 �	1 � wK��	3 � wD�
�d ~�0D�s0�zDDK��;

I4b
D�s0D

�
s�
�

4

�2

Z 1
0

Z 1
0

Z 1
0

d	1d	2d	3

�1� 	123�
4 �	1 � wD��	3 � wK�
�d ~�0D�s0�zKKD��;

I4c
D�s0D

�
s�
�

4

�2 w
2
K

Z 1

0
dtt

Z 1
0

Z 1
0

d	1d	2

�1� 	12�
4 �wD	1 � wK	2�
�d ~�0D�s0�zDK��;

I4d
D�s0D

�
s�
�

4

�2 w
2
D

Z 1

0
dtt

Z 1
0

Z 1
0

d	1d	2

�1� 	12�
4 �wD	2 � wK	1�
�d ~�0D�s0�zKD��;

I4g
D�s0D

�
s�
� I4h

D�s0D
�
s�
�

3

2m2
D�s0

Z 1
0

Z 1
0

d	1d	2

�1� 	12�
3 �	2 � 	1 � wD � wK� ~�D�s0

�zP�;

(A16)

where

 	123 � 	1 � 	2 � 	3; 	12 � 	1 � 	2; zDDK � z3��D;�K�; zKKD � z3��K;�D�;

zDK � z2��D;�K�; zKD � z2��K;�D�;

z3��1; �2� � �2
1	12 ��2

2	3 ��2
D�s0
w1w2 �

	3 � w1

1� 	123
��2

D�s0
�	1 � w2� ��2

D�s
	2�;

z2��1; �2� � �2
1	1 ��

2
2	2 � ��

2
D�s0
t��2

D�s
�1� t��w1w2 �

	2 � w1

1� 	12
��2

D�s0
w2t��

2
D�s
�w2�1� t� � 	1��;

zP � �2
D	1 ��2

K	2 ��2
D�s0

�
wDwK �

�	1 � wK��	2 � wD�
1� 	12

�
; �M �

mM

�D�s0

:

(A17)
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