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QCD corrections to triboson production
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We present a computation of the next-to-leading order QCD corrections to the production of three Z
bosons at the Large Hadron Collider. We calculate these corrections using a completely numerical method
that combines sector decomposition to extract infrared singularities with contour deformation of the
Feynman parameter integrals to avoid internal loop thresholds. The NLO QCD corrections to pp — ZZZ
are approximately 50% and are badly underestimated by the leading order scale dependence. However, the
kinematic dependence of the corrections is minimal in phase space regions accessible at leading order.
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L. INTRODUCTION

The search for and interpretation of new physics at the
Large Hadron Collider (LHC) will require a precise under-
standing of the standard model. Without accurate QCD
predictions and reliable error estimates for important ob-
servables, mistakes in interpreting experimental results
may occur. Notable recent examples where poor theoreti-
cal understanding has hindered the analysis of an experi-
mental result are the deviation of the Brookhaven muon
g — 2 measurement from the standard model prediction,
the excess of bottom quark production in run I of the
Tevatron, and the discrepancy in the weak mixing angle
obtained by NuTeV. At the LHC, all analyses require
perturbative calculations to at least next-to-leading order
(NLO) in «a;, the QCD coupling constant, in order to make
quantitative predictions that are free from debilitating
theoretical uncertainties. This need for higher order calcu-
lations at the LHC has been summarized in an experimen-
tal “NLO wish list” of processes for which QCD
corrections are desired [1].

A cross section at higher orders in perturbation theory
consists of two primary components: virtual corrections, in
which additional loops are added to the Born-level matrix
element, and real corrections, in which additional partons
are radiated. Each contribution is separately infrared di-
vergent. They must be combined and summed over degen-
erate final states to obtain a finite result. Initial-state
collinear singularities must be absorbed into the definitions
of the parton distribution functions.

Well-developed techniques exist for the calculation of
real emission corrections at NLO. However, the calculation
of virtual corrections to processes with many particles in
the final state remains a challenge. For this reason, our
primary focus in this paper will be to develop an approach
to computing virtual corrections to 2 — 3 scattering pro-
cesses. We begin by discussing methods currently used to
perform such calculations. Well-developed techniques ex-
ist for calculating one-loop virtual corrections to 2 — 2
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and simpler processes. The matrix elements are obtained
via a standard Feynman diagram calculation. The tensor
integrals are reduced to a basis of scalar integrals via a
reduction algorithm such as Passarino-Veltman [2]. The
basis integrals are then computed analytically using a
Feynman parameter representation, with care being taken
to extract all infrared singularities that occur in the para-
metric integration. These integrals are typically performed
with Euclidean kinematics; after the analytic expression is
derived, the resulting logarithms and polylogarithms are
analytically continued to the Minkowski region.

Several problems arise when this approach is extended
to 2 — 3 and more complicated scattering processes. The
increase in algebraic complexity alone makes the proce-
dure difficult. The singularity extraction and analytic con-
tinuation to the physical region are typically done on a
case-by-case basis for each scattering process; the large
number of processes for which NLO QCD computations
are desired implies that studying each separately will be an
enormously time-consuming task. Furthermore, the stan-
dard reduction algorithms introduce inverse Gram deter-
minants multiplying the basis integrals; these coefficients
vanish when the final-state momenta become linearly de-
pendent, and can become arbitrarily small nearby.
Although these spurious singularities cancel when all basis
integrals are combined, it is difficult to establish this
analytically, and they usually cause serious numerical
complications. Careful studies of the boundaries and ex-
trapolations of numerical results from safe phase space
regions are typically required to obtain stable answers [3].

Because of these complications, the computation of the
NLO QCD corrections to 2 — n, n = 3 scattering pro-
cesses is a difficult and intricate task that typically requires
1 yr or more of effort for every interaction considered.
These difficulties and the importance of these calculations
to the LHC physics program have stimulated a significant
effort to develop new approaches for perturbative QCD
computations. These include new analytic [4] and semi-
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numerical [5] methods for evaluating loop integrals.
Phenomenological results obtained with these methods
include the NLO QCD corrections to H + 2 jets [6] and
tf + jet [7] at the LHC, and also the matrix elements used
for W, Z + jets [8].

Ideally, an algorithm for NLO QCD calculations would
be highly automated and would handle a large number of
processes without the need to consider special cases. This
would allow a large swath of desired corrections to be
computed by a single program running in parallel on
many machines. Any such approach must confront three
main issues: spurious phase space singularities that appear
during the reduction of tensor integrals, the extraction of
soft and collinear singularities, and the presence of internal
thresholds where analytic continuation is required. An
approach that addresses the first two issues exists, called
sector decomposition [9-11]. It permits a completely au-
tomated, numerical extraction of infrared singularities
from loop integrals. The application of this approach to
an integral results in a Laurent series in €, the parameter of
dimensional regularization, with coefficients that can be
numerically integrated over Feynman parameters. Since
the infrared singularity structure of a loop diagram in
parametric space is completely determined by its denomi-
nator, no Passarino-Veltman reduction of tensor integrals is
needed. Consequently, inverse Gram determinants never
appear. The basic scalar integral which characterizes a
diagram is identified and sector decomposed. The tensors
become polynomials in the Feynman parameters after in-
tegration over the loop momenta; they can be treated
numerically.

The remaining issue is the internal threshold structure
present in loop diagrams. Thresholds occur when the in-
ternal propagators go on shell, and a unitarity cut of the
diagram leads to a physical scattering process. In Feynman
parameter space, the denominator vanishes at these points
and is regulated only by the —i0 prescription for loop
integrals. For N-point functions, this leads to denominators
with the behavior 1/(—i0)V 2 at threshold locations. This
is completely unsuitable for numerical implementation. An
approach for handling thresholds in loop diagrams numeri-
cally was developed in [12,13]. It entails a contour defor-
mation of the Feynman parametric integrals off the real
axis and into the complex plane to avoid internal thresh-
olds. The integrals are then computed numerically. The
choice of the deformation for a given diagram is easily
automated.

It appears to us that the combination of sector decom-
position and contour deformation provides a framework in
which numerical calculations of NLO virtual corrections
can be fully automated. A similar attitude was espoused in
[14]. Our goal in this paper is to test this idea on a realistic
2 — 3 scattering process at the LHC. We study the NLO
QCD corrections to pp — ZZZ + X, which acts as a back-
ground to supersymmetric trilepton production and ap-
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pears on the NLO wish list in [1]. We find that the
combination of these procedures does indeed appear to
be a convenient approach to NLO QCD computations.

This paper is organized as follows. In Sec. II we define
our notation and present pp — ZZZ at leading order in
QCD. In Sec. III we discuss our computation of the NLO
QCD corrections. In particular, we present the algorithm
we use for the computation of the virtual corrections. In
Sec. IV we provide numerical results for pp — ZZZ + X
at the LHC. We conclude in Sec. V.

II. SETUP AND LEADING ORDER PROCESS

We consider the production of three Z bosons in proton-
proton collisions,

p(Py) + p(Py) = Z(p3) + Z(py) + Z(ps) + X. (1)

Within the framework of QCD factorization, the cross
section for this process is

1
do = Zﬁ) dxldxsz"(xl)fj’z(xz)da,»j_,ﬂu(xl,xz),
ij

@)

where the f!’ are parton distribution functions that de-
scribe the probability to find a parton i with momentum
xP; in the proton p;. The partonic cross sections do;; are
computed perturbatively as an expansion in the strong
coupling constant «:

do;; = da'l(-?) + <&>da'8.) + 0(a?). 3)
T

At leading order in this expansion, only the partonic
channel ¢(p,) + q(p,) — Z(p3) + Z(ps) + Z(ps) con-
tributes. A representative diagram for this process is shown
in Fig. 1. There are six such diagrams, which can be
obtained via permutation of the final-state bosons. We
neglect diagrams containing the exchange of a Higgs bo-
son. For Higgs boson masses below 2M,, the contributions
from these diagrams are small. At next-to-leading order,
both virtual corrections and additional radiative processes
occur; we discuss the calculation of these components in
later sections. After combining the virtual and real correc-
tions, the partonic cross sections in Eq. (3) contain col-
linear singularities arising from initial-state radiation.
These are absorbed into the definitions of the parton dis-
tribution functions, as discussed in a later section.

1 —— 5
4
p—— 3

FIG. 1 (color online).
9§ — ZZZ.

Representative Born-level diagram for
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The expression for the leading order cross section is

do0 1111

W =753 MOPAQy, )

where the factors i 9 , and are from spin-averaging, color-
averaging, and identical partlcles § = x1x,s is the partonic
center-of-momentum energy squared; s = 2P - P, is the
total energy squared of the proton-proton collision; and
)3, denotes the final-state phase space. The matrix ele-
ments | M2 have the expansion

IMO2 = | MO+ | MO, (5)

where d =4 — 2¢e is the space-time dimensionality in
dimensional regularization. The matrix elements are sim-
ple to calculate using standard Feynman diagram tech-
niques. We use a combination of the programs QGRAF
[15], FORM [16], and MAPLE to obtain them. The required
electroweak vertex is

8M2,G
24q: iy|—=——(8y + 8a¥5),
q49 \/ZCW 8 8a75
T T
8v =_3 Qq w ga=_73' (6)
Here, s2, = 1 — M3,/ M% is the sine squared of the elec-

troweak mixing angle, 79 is the weak isospin of the quark
4, Qg 1s the electric charge of the quark ¢ in units of the
proton charge, and G is the Fermi constant. Decomposing
the matrix elements using the expansion in Eq. (5), the
leading order cross section takes the form

do® = dcrg)) + eda'(lo). 7

The O(e) term in Eq. (7) is needed in the computation of
the collinear counterterms.

III. NEXT-TO-LEADING ORDER CORRECTIONS

The O(a,) NLO QCD corrections consist of the follow-
ing components:
(1) the radiative processes q@ — ZZZg, qg — ZZZq,
and gg — ZZZ7g;
|

d*py d*py d*ps dip,
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(2) the collinear counterterms which absorb the initial-
state collinear singularities of these radiative pro-
cesses into the parton distribution functions;

(3) the one-loop virtual contributions to the leading
order partonic process g — ZZZ.

We discuss the calculation of each component in the fol-
lowing sections, and describe in detail the method used to
compute the virtual corrections.

A. Real radiation

We begin with a discussion of the real radiation pro-
cesses. We present in detail the process gg — ZZZg and
then note the modifications required when gg — ZZZq
and gg — ZZZg are considered.

Twenty-four Feynman diagrams contribute to g(p;) +
G(p2) = Z(p3) + Z(py) + Z(ps) + g(pg). A few repre-
sentative samples are shown in Fig. 2. Collinear and soft
singularities occur when the gluon is emitted from an
initial fermion line, indicating that the Laurent series for
this process begins at 1/€>. The expression for the cross
section is

111
LI L pagy., ®

d(l)
4962'\

qq—>3Z+ g

The matrix elements are again simple to obtain using
standard techniques.

To discuss the extraction of the infrared singularities, it
is convenient to introduce an explicit parameterization of
the final-state phase space. In terms of the partonic mo-
menta, the phase space takes the form

d*ps d*p, d*ps dp
dQsz., = £-8(p3 — M2
[40ss = [ G5 G5 G G 23— M)

X 8(p3 — M2)8(p2 — M2)5(p)(2m)?
X 8D (py + py = p3 — ps— ps — ). (9)

Since there are no singularities associated with the 3Z
phase space, we evaluate it directly in four dimensions.
We now partition the phase space using

) ) 2n) m) ] 8(p3 — M%)5(p3 — M2)8(p2 — M2)8(p2)(2m)*8 D (p, + py — p3 = pa — Ps — Py)
ds d‘p dip,
f 343 (277_)3{51 (277_);’_1 8(p3ys — 5345)8(p2)2m) 8D (py + py — pass — Pg)fd93z(l7345) (10)

where ();3,(ps45) denotes the 3Z phase space with the sum of the three boson momenta giving p34s rather than p, + p,. We
evaluate the gluon phase space in the partonic center-of-momentum frame by introducing the explicit four-momenta

pl=§(1,0;0, 1)7 \/E

p2=7(15050’_1): pg

E (1,0, 5, c,). (11)
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FIG. 2 (color online).
9§ — Z77g.

Representative diagrams contributing to

We use the 6 functions to remove as many integrations as
possible and change variables in those remaining so that
the boundaries are at 0 and 1. We arrive at the following
expression for the phase space:

1

€ 1
dQ = dAidAs[A (1 —Ay)]7¢€

X241 =027 [drlpug) (12)

Here, 72 = M%/ §, and the expressions for the invariant
masses in terms of the hypercube variables A; and A5 are

5345 = (p3 + pg + ps)? = (1 = 922)(1 — A5) + 922,
sig = (p1 = pg)® = —As(1 — A)(1 — 922, (13)
s2g = (pZ - pg)2 = _/\5)‘1(1 - 9Z2)-

In writing these expressions we have set the overall energy
scale § = 1; it can be restored at the end using dimensional
analysis.

The singular terms in the matrix elements come from the

following three sources:

(1) Interferences between diagrams where the gluon is
emitted from the quark line with momentum p;.
When the denominator of the off shell quark propa-
gator s, in Eq. (13) is combined with the phase
space in Eq. (12), the singular structure A5 ' 72¢(1 —
A;) 7€ is obtained.

(2) Interferences between diagrams where the gluon is
emitted from the antiquark line with momentum p,:
these lead to the singular structure A5 2€A; 17

(3) Interferences containing the denominator
1/514/52,: if care is taken to sum over only physical
gluon polarizations in the final state, these contain
only the soft singularity A5 172€.

To extract the singularities as a Laurent series in €, we use
the following standard plus distribution expansion:

1 €"TIn"A
—5(/\)+Z—[ L, (14)

€ n!'| A

)\—1+E —

n=0

where the plus distributions are defined via
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AT
J a5 ] s = [ arE R e - g0 as)

After using these expansions, the cross section for gg —
ZZ7Z7g takes the form

A, A
A0y 570y = 2+ + Ao (16)

The A; are integrable, e-independent quantities that con-
tain the complete kinematic information of the final state.
The 1/€” singularities, where As — 0 and A, — 0 or 1,
cancel against the virtual contributions to gg — ZZZ. The
1/€ terms where A; — 0 or 1 are removed by the collinear
counterterms discussed in the next section. The 1/€ singu-
larities where A5 — 0 cancel against a combination of the
virtual corrections and collinear counterterms.

The matrix elements for the remaining real radiation
processes qg — ZZZq and gg — ZZZ§ are identical.
They each consist of 24 diagrams. The cross section is

M — (1 2
dO'qg_.3z+q = m ﬁ 8 27_6 |~7Vl3z+q| dQSZ+q: (17)

where we have used the fact that the gluon has 2(1 — €)
physical polarizations in d = 4 — 2€ dimensions. We ex-
tract singularities using the same phase space parameteri-
zation and expansion in plus distributions discussed above.
For this process, only collinear singularities where A; — 0
or 1 occur. These are removed by the collinear counter-
terms described in the next section.

B. Collinear counterterms

The radiative processes discussed in the previous section
contain collinear singularities that must be absorbed into
the parton distribution functions. To do so, we begin by
expressing the bare distribution functions and cross sec-
tions in Eq. (2) in terms of the renormalized ones,

dr =3 [ dndndf 7 (e e,
ij

The renormalized parton distribution functions f ; are re-
lated to the bare ones f; via

fizrij ® f;. (19)
We have introduced the convolution integral
1
(fegl) = ﬁ dydzf(y)g(2)8(x — yz),  (20)

and we have implicitly summed over repeated parton in-
dices. The functions I';; are given by
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@m

The Dokshitzer-Gribov-Lipatov-Altarelli-Parisi kernels
PE?) in the MS scheme can be found in [17]; those required
here are

P =300 -0+ ~(1+ ),

2
[1—x],

] (22)
POG) = Z{xz (1 - x)z},,

To proceed, we substitute Eq. (21) into Eq. (18), equate this

to Eq. (2), and solve for the renormalized cross sections

dd;j. We expand the renormalized cross sections in the

strong coupling constant

déy; = do0 + ( )dAf}), (23)
and employ Eq. (3) to obtain the following relations be-
tween the bare and renormalized cross sections at each
order in a:

dO'( )(xlr x2) = do-qq(xlr x2)

d@'( )(xl, Xz) = do'(l) + - f d PEIOq)(y) (24)

X [dU' -(xl,xzy) + daqq(xly; )]

m [@%@w%Mm

1
dotl(x), x,) = doll) + =

The collinear counterterms that must be added to the
perturbatively computed cross sections are the integrals
in Eq. (24). These are straightforward to compute as
Laurent series in €, as we do for the real radiation cross
sections in Eq. (16). We note that the convolution variable
y maps onto the invariant mass s345 in Eq. (13). This makes
it simple to check analytically that the singularities in the
real radiation cross section that occur as A; — 0, 1 cancel.
We also note that the O(e) term in the leading order cross
section in Eq. (7) contributes to the collinear counterterms
at the finite level.

C. Virtual corrections

Finally, the virtual corrections to the partonic process
qg — VVV must be computed. Forty-eight one-loop dia-
grams contribute to this process; these must be interfered
with the six tree-level diagrams. A representative sample of
virtual diagrams is given in Fig. 3. The expressions for the
interferences are simple to obtain with standard tech-
niques. We regulate all singularities using dimensional
regularization, in which scaleless integrals are set to zero.
Consequently, there are no contributions from self-energy
insertions on the external legs. All singularities that remain
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1 5 1 5 1 5 1 5
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FIG. 3 (color online).

tributing to gqg — ZZZ.

Representative one-loop diagrams con-

when the one-loop diagrams are combined are infrared in
origin.

The treatment of the virtual corrections to 2 — 3 pro-
cesses is the main point of this paper, so we discuss this
here in detail. We will use the pentagon appearing as the
rightmost diagram in Fig. 3 to demonstrate our technique.
We begin by neglecting all numerator algebra that appears
from the Feynman rules and Dirac traces when this dia-
gram is interfered with the tree-level diagrams and focus
on the scalar topology. The basic scalar integral for this
topology is

S [d% 1 |
Qmd k* (k+ p))? (k+ p3 + py — py)?
1 1
. (25)
(k + p3 — p2)? (k — py)?

The +i0 prescription associated with each denominator
has been suppressed for notational ease. After introducing
a standard Feynman parameter representation, this integral
becomes

1F3+e)

‘nN]-3—¢€
“m?r o

5
l—[ dx; 5< Z xi>[A -
n=1
(26)
where

A =2x(x5 + Xg)p1 - p3 + 2X2X3P1 * Pa

+ 2(x; + x)(x3 + x4)py - p3 + 2x30x + X2)p2 - Py
— 2x5(x3 + x4 + x5)p1 - P2 — 2x3(x; + x5 + X5)p3
“ps — x3(x) + xp + x4 + x5)M2

— (o3 + x4)(x; + x5 + x5)M2. 27

We must discuss two features of this integral: the extrac-
tion of infrared singular terms and the treatment of internal
thresholds.

We begin by considering the singular structure. This
integral exhibits infrared singularities as various combina-
tions of x; approach O or 1. A convenient, easily automated
prescription for extracting such singularities from loop
integrals was presented in [11]. We summarize here the
salient features of this technique.

(1) To remove singularities that occur as x; — 1, we

first split the integral into primary sectors. There is a

014001-5



LAZOPOULOS, MELNIKOV, AND PETRIELLO

primary sector for each Feynman parameter; for
example, the primary sector associated with x; is
obtained by making the following variable changes
in Eq. (26):

— /
X; = xlxj,

! j=2345. (28)

The 6 function is then used to remove the integra-
tion over x;. All singularities are mapped to x; = 0
by this split.

(2) After forming the primary sectors, all singular terms
arise when one or multiple x; vanish. We use sector
decomposition to handle the cases where several x;
go to zero. We illustrate this technique on the fol-
lowing simple example:

1 1
I'= | dxdy ———5r. 2
Jo bty @

We split this integral into two regions, I’ = I| +
I/, The first region has x >y, while the second has
y>x. In the first region we make the variable
change y = y'x, while in the second we use x =
x'y. The integrals become

—1—€

1 X
I = / dxdy —————,
o Jo (14 y)>*e (30)

7= [Taeay 2
2_]0 X y(1+x/)2+e’

all singularities now occur only when a single x;
vanishes.

(3) The singularities arising from x; '~ ¢ can be ex-

tracted using the plus distribution expansion in
Eq. (14). This yields a Laurent series in € whose
coefficients can be integrated either analytically or
numerically. In some cases it is convenient to mod-
ify the Feynman parameterization in Eq. (27) to
reduce the number of sector decompositions
required.

The Feynman denominator A in Eq. (27) can vanish in
the interior of the x; integration region, as it is clear from
the presence of terms with both plus and minus signs. This
occurs when the internal loop particles go on shell and
signal the onset of an imaginary part in the integral. The
—i0 prescription regulates these internal thresholds.
However, this prescription is not suitable for a numerical
treatment of the integral. A method that allows internal
thresholds to be handled completely numerically was de-
veloped in [12,13]. The idea is to deform the contour for
the Feynman parameter integrations away from the real
axis in the direction indicated by the —i0 term. If the
contour is sufficiently far from where A vanishes, then
the integration can be performed numerically in the com-
plex plane.

We discuss the application of this technique to the
pentagon integral in Eq. (26). After splitting the integral
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into primary sectors and sector decomposing the integrand,
the integrand denominator in each sector is given by a
product of Feynman parameters factored out during the
sector decomposition procedure and a function A that
depends upon kinematic variables. This function may van-
ish in the interior of the integration region and, for this
reason, its properties determine the desired contour defor-
mation. The function A takes on the generic form

~ 1 1
A=7+ ZY[X[ + ZEXUX[]C/' + ZgWijkxinxk + ...
i i,j i,j.k

3D

The tensors X, Y, and W consist of kinematic invariants
and are independent of the Feynman parameters. The
ellipsis denotes terms of quartic and higher order in the
Feynman parameters x;. Terms beyond quadratic order
appear only for 5- or higher-point integrals, and only after
the sector decomposition is performed. We find that it is
necessary to perform the sector decomposition before de-
forming the integration contour; reversing the order can
lead to thresholds regulated only by —i0. The idea is to
now set x; =y, — it;, and choose 7; such that internal
thresholds are avoided and the integration over y; can be
done numerically. A convenient choice for 7;, similar to
that presented in [13], is

7= Ay (1 — yi)[yi + ZXijyj + ZWiij’ij + }
J Jk

(32)

The end points of the contour remain fixed with this choice.
The parameter A controls the overall size of the deforma-
tion. Because A contains cubic and higher polynomials in
x;, the deformation in Eq. (32) does not ensure a sign-
definite imaginary part. However, as A — 0 the deforma-
tion is in the direction required by the —i0 prescription;
this allows us to begin with a small choice of A, and check
that no pole in the complex plane is crossed as we increase
A. For numerical purposes, it is convenient to choose A
large as compared to the kinematic invariants in X, Y, and
W. It is simple to obtain the kinematic matrices using
computer algebra techniques, indicating that the contour
deformation procedure can be completely automated.
Computing the virtual corrections is simple once the
singularity and threshold structures of the base scalar in-
tegrals are regulated. The numerator algebra which arises
from computing a complete diagram has the generic form
N (k% k - p;) in terms of the loop momentum. After ana-
lytically integrating over k using standard techniques, the
numerator becomes a polynomial in the Feynman parame-
ters; it can be treated numerically. No reduction of tensor
structures is needed. We found it convenient to put each
diagram over a common Feynman denominator; large
cancellations between tensor and scalar integrals occur if
the tensor integrals are sector decomposed separately. Each
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interference between one-loop and tree diagrams becomes
a Laurent series in €, with coefficients that can be inte-
grated numerically. Judicious grouping of terms allows the
expression size for each diagram to be kept relatively
compact.

In summary, our procedure for computing the virtual

corrections is as follows.

(1) Compute the interference between a one-loop dia-
gram and the tree diagrams using standard
techniques.

(2) Identify the base scalar integral for each diagram.
Introduce a Feynman parameterization for this in-
tegral, and combine all tensor structures into a nu-
merator over the denominator of the scalar integral.
Perform the integration over loop momentum ana-
lytically; the tensor terms become polynomials in
Feynman parameters.

(3) Split the base integral into primary sectors and
sector decompose each primary sector until all sin-
gularities are extracted. The resulting expression
will be a Laurent series in € with integrable
coefficients.

(4) Deform the contour in each sector by making the
variable change in Eq. (32). This regulates all inter-
nal thresholds and allows for a numerical evaluation
of the integral.

IV. RESULTS

In this section we describe the results of our computation
of the NLO QCD corrections to the triboson production
process pp — ZZZ at the LHC. We employ the following
numerical values for the Fermi constant and the weak
boson masses:

Gr = 1.166 X 107> GeV 2,
My, = 80.451 GeV, (33)
M, =91.1875 GeV.

We use the MRST [18] parton distribution functions at
either LO or NLO, as appropriate. The values of the strong
coupling constant a (M) appropriate to use with the

TABLE 1.
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MRST parton distribution functions are also obtained
from Ref. [18].

We compute the real emission corrections using the
procedure described in Sec. III. To compute the virtual
corrections, we generate a set of 10000 random kinematic
events distributed according to the Born-level matrix ele-
ment and the leading order parton distribution functions.
Each event is described by seven variables that provide a
complete description of the qG — ZZZ kinematics. We
compute the NLO virtual correction for each event and
then reweight the event using the computed correction and
the ratio of NLO to LO parton distribution functions.

For the numerical computation of the NLO corrections,
we employ the adaptive Monte Carlo integration program
VEGAS as implemented in the CUBA library [19]. The
numerical stability of the computation is exceptional; all
diagrams including the pentagons exhibit a very fast rate of
convergence. The computation of the NLO QCD correc-
tions for 10000 kinematic points required a few days of
running on a cluster of several dozen processors.

As an example of our code output we present below in
Table I a listing of the finite contributions coming from the
one-loop corrections for several sample events. The kine-
matics are defined by x|, x,, the values of Bjorken-x for
each proton, and the kinematic invariants s;; = (p; — p j)z.
The initial partonic momenta are denoted by p;, p,, while
P3, P4 indicate the final-state Z momenta. The invariant
masses have been scaled by 1/(x;x,s) so that their magni-
tude is between zero and one. All other invariant masses
can be obtained via momentum conservation. The quantity
7 = Mz/,/x1%,s is included for completeness. Each event
has unit weight at leading order. The shift in the weight
coming from the NLO virtual corrections is obtained via

_ PDF(NLO) (1 LG V), (34)

YNLO T "B R(LO)

V is the result from numerically evaluating the loop cor-
rections and is given in the table for each event. The
quantities PDF(NLO) and PDF(LO) denote the relevant
combinations of MRST parton distribution functions for
the gg channel at the indicated order in «;. These must be
combined with the real corrections and collinear counter-
terms to produce the final result. We generate these re-

Finite contributions coming from the one-loop corrections for several sample

events. The first column indicates the kinematics of the events, while the second column gives
the NLO virtual correction with its associated Monte Carlo integration error. The notation is as

defined in the text.

{x1, X2, 2,813, 523, S14, S24) 14
{0.182, 0.030, 0.088, —0.640, —0.143, —0.132, —0.802} 7.59(2)
{0.138, 0.006, 0.226, —0.293, —0.240, —0.487, —0.095} 9.76(2)
{0.024, 0.193, 0.096, —0.035, —0.569, —0.692, —0.065} 9.57(7)
{0.032, 0.052, 0.160, —0.423, —0.281, —0.226, —0.152} 7.93(2)
{0.014, 0.074, 0.202, —0.387, —0.060, —0.040, —0.750} 11.77(4)
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maining contributions in our program as separate events.
Both the parton distribution functions and «, can be eval-
uated at the desired scales. We note that the events have
been generated using the factorization scale choice up =
3M at leading order. Numerically evaluating the quantity
a,V /7 using the results in Table I, we see that the virtual
corrections lead to a 30%—35% increase in the cross
section. As we discuss later, the real radiation and collinear
counterterms shift the LO result by less than 1%; contri-
butions from V and the shift in parton distribution func-
tions when going from LO to NLO account for the entire
NLO correction.

We have applied a number of checks to our calculation.

(1) We have compared the leading order cross section
obtained with our code with the result of a similar
computation using the program MadEvent [20] and
have found complete agreement.

(2) As we mentioned earlier, the NLO virtual correc-
tions are divergent, and physical results are only
obtained once real emission contributions are added.
The divergent part of the NLO virtual correction to
q(py) + §(py) — ZZZ is related to the leading or-
der cross section by the following equation [21]:

a, I'(1 + ¢

O.NLO,virtldiV — _CF; (4’”—)75

1 3
x (? + 2?>0—L0, (35)

(s12)7¢

where s, = 2p,* p, and Cr = 4/3 is the QCD
color factor. We have checked that our numerical
computation of N0Vt gives the divergent part in
full agreement with Eq. (35).

(3) We have checked that all divergences cancel at the
differential level once the real emission processes,
the collinear counterterms, and the virtual correc-
tions are combined.

(4) An important check of the result is provided by its
independence of A, the size of the contour deforma-
tion. However, we stress that the efficiency of the
numerical integration depends strongly on A. For
small values of A one does not move sufficiently far
from the pole on the real axis, while for large values
of A one deforms too much and there are large
cancellations between different segments of the in-
tegration path in the complex plane.

(5) Finally, we have implemented all parts of the com-
putation in at least two independent computer codes
that agree for all observables studied. We have
computed the real emission processes using both
the approach described in the text and the traditional
phase space slicing method and have found com-
plete agreement.

We now describe the results of our computation of the

NLO QCD corrections to pp — ZZZ. In Fig. 4 we show
the dependence of the total cross section computed through
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FIG. 4 (color online). The scale dependence of the leading
order and next-to-leading order cross sections o(pp — ZZZ).
We have set the factorization and the renormalization scales
equal to a common value .

leading and next-to-leading order on the renormalization
and factorization scales. We have equated these to a com-
mon scale @ = pur = wp. There are two important fea-
tures of this result to note. The first is that the corrections
are large, approximately 50% over a wide range of w. This
results from a large increase in the gg luminosity function
when going from LO to NLO, and large virtual corrections.
For example, for u = 3M, the LO cross section evaluated
with LO parton distribution functions is 10.3 fb, while the
LO cross section evaluated with NLO distribution func-
tions is 11.4 fb. The full NLO result is 15.2 fb, with the
additional increase coming entirely from the virtual cor-
rections. The effect of real parton emission in the gg and
gg channels is 1% or less for all i considered. We note that
similarly large corrections for the process pp — ZZ at the
LHC were observed in [22].

The second important feature is the tiny scale depen-
dence of the LO result, which drastically underestimates
the NLO correction. The LO result varies by only a few
percent over the entire range of w considered. While such

LOXK, NLO
No L4 T
16— L0 x K —

omsf- 10 L -

o [fb]
o [fb]

| 1 | o 1 | |
o £ 100 150 200 o 1 2 s

Pr Yy

FIG. 5 (color online). The transverse momentum and rapidity
distributions of the Z bosons at LO and NLO in «,, normalized
by a factor 1/3. The results obtained by rescaling the LO
distribution by a constant K factor are also shown. The value
of the factorization and the renormalization scales are set equal
to 3M .
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behavior is uncommon, it is by no means unique to this
process; a very similar situation occurs for Z production at
the Tevatron [23].

In Fig. 5 we present the transverse momentum and
rapidity distributions of the Z bosons. We include all three
bosons and divide by a factor of 3 to normalize the result.
We compare these distributions to the approximation of
reweighting the LO results by a constant K factor, where K
is the ratio of NLO to LO inclusive cross sections. For the
distributions studied, the NLO QCD corrections do not
depend significantly on the kinematics of the produced
particles. Rescaling the leading order kinematic distribu-
tions by a constant K factor gives a description of the NLO
result accurate to a few percent. We expect that this is true
in all kinematic regions for which phase space is available
at leading order.

V. CONCLUSIONS

In this paper we present a novel numerical method for
perturbative computations in QCD to next-to-leading order
accuracy. We combine sector decomposition [11], which
allows an automatic extraction of soft and collinear singu-
larities from virtual diagrams, with contour deformation of
the Feynman parametric integrals [12,13], which permits
numerical evaluation of loop corrections with internal
thresholds. Doing so, we obtain a tool that enables an
efficient and flexible numerical evaluation of Feynman
diagrams with an arbitrary singularity structure. It appears
to us that this combination of sector decomposition and

PHYSICAL REVIEW D 76, 014001 (2007)

contour deformation provides a framework in which nu-
merical calculations of NLO virtual corrections can be
fully automated.

To test this idea, we compute the next-to-leading order
QCD corrections to the production of three Z bosons in
proton-proton collisions; this is one of the processes that
appears on the so-called “NLO wish list” [1]. We observe
that the method possesses excellent efficiency and numeri-
cal stability; for all phase space points considered, we were
able to compute the NLO virtual corrections with subper-
cent precision.

The NLO QCD corrections to pp — ZZZ are large,
approximately 50% for all scale choices considered. The
leading order scale dependence drastically underestimates
the size of these corrections. For phase space regions
accessible at leading order, the NLO corrections are inde-
pendent of the kinematics of the final-state particles.
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