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A fully differential calculation in perturbative quantum chromodynamics is presented for the produc-
tion of massive photon pairs at hadron colliders. All next-to-leading order perturbative contributions from
quark-antiquark, gluon-(anti)quark, and gluon-gluon subprocesses are included, as well as all-orders
resummation of initial-state gluon radiation valid at next-to-next-to-leading logarithmic accuracy. The
region of phase space is specified in which the calculation is most reliable. Good agreement is
demonstrated with data from the Fermilab Tevatron, and predictions are made for more detailed tests
with CDF and D0 data. Predictions are shown for distributions of diphoton pairs produced at the energy of
the Large Hadron Collider (LHC). Distributions of the diphoton pairs from the decay of a Higgs boson are
contrasted with those produced from QCD processes at the LHC, showing that enhanced sensitivity to the
signal can be obtained with judicious selection of events.

DOI: 10.1103/PhysRevD.76.013009 PACS numbers: 12.15.Ji, 12.38.Cy, 13.85.Qk

I. INTRODUCTION

The long-sought Higgs boson(s) h of electroweak sym-
metry breaking in particle physics may soon be observed at
the CERN Large Hadron Collider (LHC) through the
diphoton decay mode (h! ��). Purely hadronic standard
model processes are a copious source of diphotons, and a
narrow Higgs boson signal at relatively low masses will
appear as a small peak above this considerable back-
ground. A precise theoretical understanding of the kine-
matic distributions for diphoton production in the standard
model could provide valuable guidance in the search for
the Higgs boson signal and assist in the important mea-
surement of Higgs boson coupling strengths.

In this paper we address the theoretical calculation of the
invariant mass, transverse momentum, rapidity, and angu-
lar distributions of continuum diphoton production in
proton-antiproton and proton-proton interactions at hadron
collider energies. We compute all contributions to diphoton
production from parton-parton subprocesses through next-
to-leading order (NLO) in perturbative quantum chromo-
dynamics (QCD). These higher-order contributions are
large at the LHC, and their inclusion is mandatory for
quantitatively trustworthy predictions. We resum initial-
state soft and collinear logarithmic terms associated with
gluon radiation to all orders in the strong coupling strength
�s. This resummation is essential for physically mean-
ingful predictions of the transverse momentum (QT) dis-
tribution of the diphotons at small and intermediate values
of QT , where the cross section is large. In addition, we

analyze the final-state collinearly enhanced contributions,
also known as ‘‘fragmentation’’ contributions, in which
one or both photons are radiated from final-state partonic
constituents. We compare the results of our calculations
with data on isolated diphoton production from the
Fermilab Tevatron [1]. The good agreement we obtain
with the Tevatron data adds confidence to our predictions
at the energy of the LHC. The present work expands on our
recent abbreviated report [2], and it may be read in con-
junction with our detailed treatment of the contributions
from the gluon-gluon subprocess [3].

Our attention is focused on the production of isolated
photons, i.e., high-energy photons observed at some dis-
tance from appreciable hadronic remnants in the particle
detector. The rare isolated photons tend to originate di-
rectly in hard QCD scattering, in contrast to copiously
produced nonisolated photons that arise from nonperturba-
tive processes such as � and � decays, or from via quasi-
collinear radiation off final-state quarks and gluons.

We evaluate contributions to continuum diphoton pro-
duction from the basic short-distance channels for ��
production initiated by quark-antiquark and (anti)quark-
gluon scattering, as well as by gluon-gluon and gluon-
(anti)quark scattering proceeding through a fermion-loop
diagram. At lowest order in QCD, a photon pair is pro-
duced from q �q annihilation [Fig. 1(a)]. Representative
NLO contributions to q �q� qg scattering are shown in
Fig. 1(b)–1(e). They are of O��s� in the strong coupling
strength [4,5]. Production of �� pairs via a box diagram in
gg scattering [Fig. 1(h)] is suppressed by two powers of �s
compared to the lowest-order q �q contribution, but it is
enhanced by a product of two large gluon parton distribu-
tion functions (PDFs) if typical momentum fractions x are
small [6]. The O��3

s� or NLO corrections to gg scattering
include one-loop gg! ��g diagrams (i) and (j) derived in
Refs. [7,8], as well as 4-leg two-loop diagrams (l) com-
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puted in Refs. [9,10]. In this study we also include sub-
leading contributions from the process (k), gqS ! ��qS
via the quark loop, where qS �

P
i�u;d;s;...�qi � �qi� denotes

the flavor-singlet combination of quark scattering
channels.

Factorization is a central principle of hadronic calcula-
tions in perturbative QCD, in which a high-energy scatter-
ing cross section is expressed as a convolution of a
perturbative partonic cross section with nonperturbative
PDFs, thus separating short-distance from long-distance
physics. The common factorization is a longitudinal no-
tion, in the sense that the convolution is an integral over
longitudinal momentum fractions, even if some partons in
the hard-scattering process have transverse momenta that
border the nonperturbative regime. Unphysical features
may then arise in the transverse momentum (QT) distribu-
tion of a color-neutral object with high invariant mass (Q),
such as a pair of photons produced in hadron-hadron
collisions. When calculated in the common factorization
approach at any finite order in perturbation theory, this
distribution diverges as QT ! 0, signaling that infrared
singularities associated with QT ! 0 have not been prop-
erly isolated and regulated. These singularities are associ-
ated with soft and collinear radiation from initial-state
partons shown by the diagrams in Figs. 1(b), 1(d), and 1(i).

A generalized factorization approach that correctly de-
scribes the small-QT region was developed by Collins,
Soper, and Sterman (CSS) [11] and applied to photon

pair production [7,12,13]. In this approach the hadronic
cross section is expressed as an integral over the transverse
coordinate (impact parameter). The integrable singular
functions present in the finite-order differential distribution
as QT ! 0 are resummed, to all orders in the strong
coupling �s, into a Sudakov exponent, and a well-behaved
cross section is obtained for all QT values. As explained in
Sec. II, our resummed calculation is accurate to next-to-
next-to-leading-logarithmic (NNLL) order. It is applicable
for values of diphoton transverse momentum that are less
than the diphoton mass, i.e., for QT <Q. When QT �Q,
terms of the form lnn�QT=Q� become small. A perturbative
expansion with a single hard scale is then applicable, and
the cross section can be obtained from finite-order pertur-
bation theory.

In addition to the initial-state logarithmic singularities,
there is a set of important final-state singularities which
arise in the matrix elements when at least one photon’s
momentum is collinear to the momentum of a final-state
parton. They are sometimes referred to as ‘‘fragmentation’’
singularities. At lowest order in �s, the final-state singu-
larity appears only in the qg! ��q diagrams, as in
Fig. 1(e). There are various methods used in the literature
to deal with the final-state singularity, including the intro-
duction of explicit fragmentation functions D��z� for hard
photon production, where z is the light-cone fraction of the
intermediate parton’s momentum carried by the photon.
These single-photon ‘‘one-fragmentation’’ and ‘‘two-
fragmentation’’ contributions, corresponding to one or
both photons produced in independent fragmentation pro-
cesses, are illustrated by the diagrams in Figs. 1(f) and
1(g). In addition, a fragmentation contribution of entirely
different nature arises when the �� pair is relatively light
and produced from fragmentation of one parton, as dis-
cussed in Secs. II C 2 and III A 3. A full and consistent
treatment of the final-state logarithms beyond lowest order
would require a joint resummation of the initial- and final-
state logarithmic singularities.

In the work reported here, we are guided by our interest
in describing the cross section for isolated photons, in
which the fragmentation contributions are largely sup-
pressed. A typical isolation condition requires the hadronic
activity to be minimal (e.g., comparable to the underlying
event) in the immediate neighborhood of each candidate
photon. Candidate photons can be rejected by energy de-
posit nearby in the hadronic calorimeter or the presence of
hadronic tracks near the photons. A theory calculation may
approximate the experimental isolation by requiring the
full energy of the hadronic remnants to be less than a
threshold ‘‘isolation energy’’ Eiso

T in a cone of size �R
around each photon. The two photons must be also sepa-
rated in the plane of rapidity � and azimuthal angle’ by an
amount exceeding the resolution �R�� of the detector. The
values of Eiso

T , �R, and �R�� serve as crude characteristics
of the actual measurement. The magnitude of the final-

Direct γγ production

Single−photon
fragmentation

+...
(a) (b) (c) (d)

(e) (f) (g)

(h) (i) (j)

(k) (l)

FIG. 1 (color online). Representative partonic subprocesses
that contribute to continuum diphoton production. All leading-
order and next-to-leading order direct production subprocesses,
i.e., contributions (a)–(e) and (h)–(l), are included in this study.
Diagrams (f) and (g) are examples of single-photon one-
fragmentation and two-fragmentation.
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state fragmentation contribution depends on the assumed
values of Eiso

T , �R, and �R��.
An additional complication arises when the fragmenta-

tion radiation is assumed to be exactly collinear to the
photon’s momentum, as implied by the photon fragmenta-
tion functions D��z�. The collinear approximation con-
strains from below the values of z accessible to D��z�:
z > zmin. The size of the fragmentation contribution may
depend strongly on the values of Eiso

T and zmin as a con-
sequence of rapid variation of D��z� with z.

In our work we treat the final-state singularity using a
prescription that reproduces desirable features of the iso-
lated cross sections while bypassing some of the technical
difficulties alluded to above. For QT > Eiso

T , we avoid the
final-state collinear singularity in the qg scattering channel
by applying quasiexperimental isolation. When QT < Eiso

T ,
we apply an auxiliary regulator which approximates on
average the full NLO rate from direct qg and fragmenta-
tion cross sections in this QT range. Two prescriptions for
the auxiliary regulator (subtraction and smooth-cone iso-
lation inside the photon’s isolation cone) are considered
and lead to similar predictions at the Tevatron and the
LHC.

We begin with our notation in Sec. II A, followed by an
overview of the procedure for resummation of initial-state
multiple parton radiation in Sec. II B. The issue of the final-
state fragmentation singularity is discussed in Sec. II C.
Our approach is compared with that of the DIPHOX cal-
culation [14], in which explicit fragmentation function
contributions are included at NLO, but all-orders resum-
mation is not performed. Our theoretical framework is
summarized in Sec. II D.

In Sec. III we compare the predictions of our resumma-
tion calculation with Tevatron data. Resummation is shown
to be important for the successful description of physical
QT distributions, as well as for stable estimates of the
effects of experimental acceptance on distributions in the
diphoton invariant mass. We compare our results with the
DIPHOX calculation [14] and demonstrate that the require-
ment QT <Q further suppresses the effects of the final-
state fragmentation contribution, beyond the reduction
associated with isolation. Next, we present our predictions
for distributions of diphoton pairs produced at the energy
of the LHC. Various distributions of the diphoton pairs
produced from the decay of a Higgs boson are contrasted
with those produced from QCD continuum processes at the
LHC, showing that enhanced sensitivity to the signal can
be obtained with judicious event selection. Our conclu-
sions are presented in Sec. IV.

II. THEORY OVERVIEW

A. Notation

We consider the scattering process h1�P1� � h2�P2� !
��P3� � ��P4� � X, where h1 and h2 are the initial-state

hadrons. In terms of the center-of-mass collision energy���
S
p

, the invariant mass Q, transverse momentum QT , and
rapidity y of the �� pair, the laboratory frame momenta P�1
and P�2 of the initial hadrons, and q� � P�3 � P

�
4 of the

�� pair are

 P�1 �

���
S
p

2
f1; 0; 0; 1g; (1)

 P�2 �

���
S
p

2
f1; 0; 0;�1g; (2)

 q� � f
�������������������
Q2 �Q2

T

q
coshy;QT; 0;

�������������������
Q2 �Q2

T

q
sinhyg: (3)

The light-cone momentum fractions for the boosted 2! 2
scattering system are

 x1;2 �
2�P2;1 � q�

S
�

�������������������
Q2 �Q2

T

q
e	y���

S
p : (4)

Decay of the �� pairs is described in the hadronic Collins-
Soper frame [15]. The Collins-Soper frame is a rest frame
of the �� pair (with q� � fQ; 0; 0; 0g in this frame), chosen
so that (a) the momenta ~P1 and ~P2 of the initial hadrons lie
in the Oxz plane (with zero azimuthal angle), and (b) the z
axis bisects the angle between ~P1 and � ~P2. The photon
momenta are antiparallel in the Collins-Soper frame:

 P�3 �
Q
2
f0; sin�
 cos’
; sin�
 sin’
; cos�
g; (5)

 P�4 �
Q
2
f0;� sin�
 cos’
;� sin�
 sin’
;� cos�
g; (6)

where �
 and ’
 are the photon’s polar and azimuthal
angles. In this section, we derive resummed predictions
for the fully differential �� cross section
d�=�dQ2dydQ2

Td�
�, where d�
 � d cos�
d’
 is a solid
angle element around the direction of ~P3 in the Collins-
Soper frame defined in Eq. (5). The angles in the Collins-
Soper frame are denoted by a ‘‘
’’ subscript, in contrast to
angles in the lab frame, which do not have such a subscript.
The parton momenta and helicities are denoted by lower-
case pi and �i, respectively.

B. Resummation of the initial-state QCD radiation

For completeness, we present an overview of the finite-
order and resummed contributions associated with the
direct production of diphotons. At the lowest order in the
strong coupling strength �s, photon pairs are produced
with zero transverse momentum QT . The Born q �q! ��
cross section corresponding to Fig. 1(a) is
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d�q �q

dQ2dydQ2
Td�


��������Born

� 	� ~QT�
X

i�u; �u;d; �d;...

�i��
�
S

fqi=h1
�x1; �F�f �qi=h2

�x2; �F�;

(7)

where fqi=h�x;�F� denotes the PDF for a quark of a flavor
i, evaluated at a factorization scale �F of order Q. The
prefactor

 �i��
� � ��0�i
1� cos2�

1� cos2�


; (8)

with

 ��0�i �
�2�Q�e4

i �

2NcQ2 ; (9)

is composed of the running electromagnetic coupling
strength � � e2=4� evaluated at the scale Q, fractional
quark charge ei � 2=3 or �1=3, and number of QCD
colors Nc � 3.

The lowest-order gg! �� scattering proceeds through
an amplitude with a virtual quark loop (a box diagram)
shown in Fig. 1(h). Its cross section takes the form
 

d�gg
dQ2dydQ2

Td�


��������Born

� 	� ~QT�
�g��
�

S
fg=h1

�x1; �F�fg=h2
�x2; �F�; (10)

where the prefactor

 �g��
� � ��0�g Lg��
� (11)

depends on the polar angle �
 through a function Lg��
�
presented explicitly in Ref. [3]. The overall normalization
coefficient

 ��0�g �
�2�Q��2

s�Q�

32�Q2�N2
c � 1�

�X
i

e2
i

�
2

(12)

involves the sum of the squared charges e2
i of the quarks

circulating in the loop.
The NLO direct contributions, represented by

Figs. 1(b)–1(e) and 1(i)–1(l) and denoted as
P�Q;QT; y;�
�, are computed in Refs. [3–5,7–10]. The
NLO 2! 3 differential cross section grows logarithmi-
cally if the final-state parton is soft or collinear to the
initial-state quark or gluon, i.e., when QT of the �� pair
is much smaller than Q. These ‘‘initial-state’’ logarithmic
contributions are summed to all orders later in this sub-
section. The NLO qg cross section also contains a large
logarithm when one of the photons is produced from a

collinear q
���
! q
���
� splitting in the final state. This ‘‘final-

state’’ collinear limit is discussed in Sec. II C.

With contributions from the initial-state soft or collinear
radiation included, the NLO cross section is approximated
in the small-QT asymptotic limit by
 

Aq �q�Q;QT; y;�
� �
X

i�u; �u;d; �d;...

�i��
�
S
f	� ~QT�Fi;	�Q; y; �
�

� Fi;��Q; y;QT�g (13)

in the q �q� qg scattering channel, and by

 Agg�Q;QT; y;�
� �
1

S
f�g��
��	� ~QT�Fg;	�Q; y; �
�

� Fg;��Q; y;QT��

� �0g��
; ’
�F
0
g�Q; y;QT�g (14)

in the gg� gqS scattering channel. The functions
Fa;	�Q; y; �
� and F�0�a;��Q; y;QT� for relevant parton fla-
vors a are listed in Appendix B. They include ‘‘plus
function’’ contributions of the type �Q�2

T lnp�Q2=Q2
T���

with p 
 0, universal functions describing soft and col-
linear scattering, and process-dependent corrections from
NLO virtual diagrams.

The q �q� qg asymptotic cross section
Aq �q�Q;QT; y;�
� is proportional to the angular function
�i��
�, the same as in the Born q �q! �� cross section,
cf. Eq. (7). Similarly, the gg� gqS asymptotic cross
section Agg�Q;QT; y;�
� includes a term proportional
to the Born angular function �g��
�. In addition,
Agg�Q;QT; y;�
� contains another term proportional to
�0g��
; ’
� � L0g��
� cos2’
, where L0g��
� is derived in
Ref. [3]. This term arises due to the interference of Born
amplitudes with incoming gluons of opposite polarizations
and affects the azimuthal angle (’
) distribution of the
photons in the Collins-Soper frame [3].

The small-QT representations in Eqs. (13) and (14) can
be used to compute fixed-order particle distributions in the
phase-space slicing method. In this method, we choose a
small QT value Qsep

T in the range of validity of Eqs. (13)
and (14). If the actual QT in the computation exceeds Qsep

T ,
we calculate the differential cross section using the full
2! 3 matrix element. When QT is smaller than Qsep

T , we
calculate the event rate using the small-QT asymptotic
approximation A�Q;QT; y;�
� and 2! 2 phase space.
Hence, the lowest bin of the QT distribution is approxi-
mated in the NLO prediction by its average value in the
interval 0 � QT � Qsep

T , computed by integration of the
asymptotic approximations.

The phase-space slicing procedure is sufficient for pre-
dictions of observables inclusive in QT , but not of the
shape of d�=dQT distributions. The latter goal is met by
all-orders summation of singular asymptotic contributions
with the help of the Collins-Soper-Sterman (CSS) method
[11,16,17]. The small-QT resummed cross section is de-
noted as W�Q;QT; y;�
� and given by a two-dimensional
Fourier transform of a function ~W�Q; b; y;�
� that de-
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pends on the impact parameter ~b:
 

W�Q;QT; y;�
� �
Z d ~b

�2��2
ei ~QT � ~b ~W�Q; b; y;�
�

�
Z d ~b

�2��2
ei ~QT � ~b ~Wpert�Q; b
; y;�
�

� e�F NP�Q;b�: (15)

In this equation, ~W�Q; b; y;�
� is written as a product of
the perturbative part ~Wpert�Q; b
; y;�
� and the nonpertur-
bative exponent exp��F NP�Q; b��, which describe the
dynamics at small (b & 1 GeV�1) and large (b *

1 GeV�1) impact parameters, respectively. The purpose
of the variable b
 is reviewed below.

If Q is large, the perturbative form factor ~Wpert domi-
nates the integral in Eq. (15). It is computed at small b as
 

~Wpert�Q; b; y; �
� �
X
a

�a��
�
S

h2
a�Q; �
�e

�Sa�Q;b�

� �Ca=a1
� fa1=h1

��x1; b;��

� �C �a=a2
� fa2=h2

��x2; b;��: (16)

The ‘‘hard-vertex’’ function �a��
�h2
a�Q; �
� is the nor-

malized cross section for the Born scattering a �a! ��,
with a � u; �u; d; �d; . . . in q �q! ��, and a � �a � g in
gg! ��. The Sudakov exponent

 S a�Q; b� �
Z C2

2Q
2

C2
1=b

2

d ��2

��2

�
Aa�C1; ��� ln

�
C2

2Q
2

��2

�

�Ba�C1; C2; ���
�

(17)

is an integral of two functions Aa�C1; ��� and
Ba�C1; C2; ��� between momentum scales C1=b and C2Q,
and C1 and C2 are constants of order c0 � 2e��E �
1:123 . . . and 1, respectively. The symbol �Ca=a1

� fa1=h��

�x; b;�� stands for a convolution of the kT-integrated
PDF fa1=h�x;�� and Wilson coefficient function
Ca=a1

�x; b;C1=C2; ��, evaluated at a factorization scale �
and summed over intermediate parton flavors a1:
 

�Ca=a1
� fa1=h��x; b;��

�
X
a1

�Z 1

x

d




Ca=a1

�
x


; b;

C1

C2
; �
�
fa1=h�
;��

�
: (18)

We compute the functions ha, Aa, Ba, and Ca=a1
up to

orders �s, �3
s , �2

s , and �s, respectively, corresponding to
the NNLL accuracy of resummation. The perturbative
coefficients at these orders in �s are listed in Appendix A.

The subleading contribution from the nonperturbative
region b * 1 GeV�1 is included in our calculation using a
revised ‘‘b
’’ model [18], which provides excellent agree-
ment with pT-dependent data on Drell-Yan pair and Z
boson production. In this model, the perturbative form

factor ~Wpert�Q; b
; y;�
� in Eq. (15) is evaluated as a
function of b
 � b=�1� b2=b2

max�
1=2, with bmax �

1:5 GeV�1. The factorization scale � in �C � f� is set

equal to c0

�����������������������
b�2 �Q2

ini

q
, where Qini is the initial scale of

order 1 GeV in the parametrization employed for
fa=h�x;��, for instance, 1.3 GeV for the CTEQ6 PDFs
[19]. We have ~Wpert�b
� � ~Wpert�b� at b2 � b2

max, and
~Wpert�b
� � ~Wpert�bmax� at b2 � b2

max. Hence, this ansatz
preserves the exact form of the perturbative form factor
~Wpert�Q; b; y;�
� in the perturbative region of small b,

while also incorporating the leading nonperturbative con-
tributions (described by a phenomenological function
F NP�Q; b�) at large b.

The form of F NP�Q; b� found in the global pT fit in
Ref. [18] suggests approximate independence of
F NP�Q; b� from the type of q �q scattering process. It is
used here to describe the nonperturbative terms in the
leading q �q! �� channel. We neglect possible corrections
to the nonperturbative contributions arising from the final-
state soft radiation in the qg channel and additional

���
S
p

dependence affecting Drell-Yan-like processes at x &

10�2 [20], as these exceed the accuracy of the present
measurements at the Tevatron. The experimentally un-
known F NP�Q; b� in the gg channel is approximated by
F NP�Q; b� for the q �q channel, multiplied by the ratio
CA=CF � 9=4. This choice is motivated by the fact that
the leading Sudakov color factors A�k�

a in the gg and q �q
channels are proportional to CA � 3 and CF � 4=3, re-
spectively. The uncertainties in the �� cross sections as-
sociated with F NP�Q; b� are investigated numerically in
Ref. [3].

In the region QT �Q, collinear QCD factorization at a
finite fixed order in �s is applicable. In order to include
nonsingular contributions important in this region, we add
to W�Q;QT; y;�
� the regular piece Y�Q;QT; y;�
�, de-
fined as the difference between the NLO cross section
P�Q;QT; y;�
� and its small-QT asymptotic approxima-
tion A�Q;QT; y;�
�:

 

d��h1h2 ! ���

dQdQ2
Tdyd�


� W�Q;QT; y;�
� � P�Q;QT; y;�
�

� A�Q;QT; y;�
�

� W�Q;QT; y;�
� � Y�Q;QT; y;�
�:

(19)

At small QT , subtraction of A�Q;QT; y;�
� in Eq. (19)
cancels large initial-state radiative corrections in
P�Q;QT; y;�
�, which are incorporated in their
resummed form within W�Q;QT; y;�
�. At QT compa-
rable to Q, A�Q;QT; y;�
� cancels the leading terms in
W�Q;QT; y;�
�, but higher-order contributions remain
from the infinite tower of logarithmic terms that are re-
summed in W. In this situation the W � Y cross section
drops below the finite-order result P�Q;QT; y;�
� at some
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value of QT (referred to as the crossing point) in both the
q �q� qg and gg� gqS channels, for eachQ and y. We use
the W � Y cross section as our final prediction at QT
values below the crossing point, and the NLO cross section
P at QT values above the crossing point.

A few comments are in order about our resummation
calculation. The hard-vertex contribution �a��
�h

2
a�Q; �
�

and the functions Ba�C1; C2; ��� and Ca=a1
�x; b;C=C2; ��

can be varied in a mutually compensating way while
preserving the same value of the form factor W up to
higher-order corrections in �s. This ambiguity, or depen-
dence on the chosen ‘‘resummation scheme’’ [21] within
the CSS formalism, can be employed to explore the sensi-
tivity of theoretical predictions to further next-to-next-to-
next-to-leading logarithmic (NNNLL) effects that are not
accounted for explicitly.

The perturbative coefficients in Appendix A are pre-
sented in the CSS resummation scheme [11], our default
choice in numerical calculations, and in an alternative
scheme by Catani, de Florian, and Grazzini (CFG) [21].
In the original CSS resummation scheme, the B and C
functions contain the finite virtual NLO corrections to the
2! 2 scattering process, whereas in the CFG scheme the
universal B and C depend only on the type of incident
partons, and the process-dependent virtual correction is
included in the function ha. The difference between the
CSS and CFG schemes is numerically small in �� pro-
duction at both the Tevatron and the LHC [3].

In the gg� gqS scattering channel, the unpolarized
resummed cross section includes an additional contribu-
tion from elements of kT-dependent PDF spin matrices
with opposite helicities of outgoing gluons [3]. The NLO
expansion of this spin-flip resummed cross section gener-
ates the term proportional to �0g��
; ’
� / cos2’
 in the
small-QT asymptotic cross section, cf. Eq. (14). Although
the logarithmic spin-flip contribution must be resummed in
principle to all orders to predict the ’
 dependence in the
gg� gqS channel, it is neglected in the present work in
view of its small effect on the full �� cross section.

When integrated overQT from 0 to scales of orderQ, the
resummed cross section becomes approximately equal to
the finite-order (NLO) cross section, augmented typically
by a few-percent correction from integrated higher-order
terms logarithmic in QT . Inclusive observables that allow
such integration (e.g., the large-Q region of the �� invari-
ant mass distribution) are approximated well both by the
resummed and NLO calculations. However, the experi-
mental acceptance constrains the range of the integration
over QT in parts of phase space and may break delicate
cancellations between integrable singularities present in
the finite-order differential distribution. In this situation
(e.g., in the vicinity of the kinematic cutoff in d�=dQ
discussed in Sec. III) the NLO cross section becomes
unstable, while the resummed cross section (free of dis-
continuities) continues to depend smoothly on kinematic

constraints. We see that the resummation is essential not
only for the prediction of physical QT distributions in ��
production, but also for credible estimates of the effects of
experimental acceptance on distributions in the diphoton
invariant mass and other variables.

C. Final-state photon fragmentation

1. Single-photon fragmentation

In addition to the QCD singularities associated with
initial-state radiation [described by the asymptotic terms
in Eqs. (13) and (14)], other singularities arise in the
O��s� process q�p1� � g�p2� ! ��p3� � ��p4� � q�p5�
[Fig. 1(e)] when a photon is collinear to the final-state
quark. In this limit, the qg! q�� squared matrix element
grows as 1=s�5, when s�5 ! 0, where s�5 is the squared
invariant mass of the collinear �q pair. In this limit, the
squared matrix element factors as

 jM�qg! q���j2 �
2e2e2

i

s�5
P� q�z�jM�qg! q��j2

(20)

into the product of the squared matrix element jM�qg!
q��j2 for the production of a photon and an intermediate
quark, and a splitting function P� q�z� � �1� �1� z�2�=z
for fragmentation of the intermediate quark into a
collinear �q pair. In Eq. (20) z is the light-cone fraction
of the intermediate quark’s momentum carried by the
fragmentation photon, and eei is the charge of the inter-
mediate quark. When the photon-quark separation �r �������������������������������������������������������
��5 � ���2 � �’5 � ’��2

q
in the plane of pseudorapidity

� � � log�tan��=2�� and azimuthal angle ’ in the lab
frame is small, as in the collinear limit, s�5 �

ET�ET5�r2, where ET� and ET5 are the transverse energies
of the photon and quark, with ET � E sin�. Note that
ET5 � QT at the order in �s at which we are working.
Therefore, contributions from the final-state collinear, or
fragmentation, region are most pronounced at small �r and
relatively small QT .1

A fully consistent treatment of the initial- and final-state
singularities would require a joint initial- and final-state
resummation. In the approaches taken to date, the frag-
mentation singularity may be subtracted from the direct
cross section and replaced by a single-photon ‘‘one-

fragmentation’’ contribution q� g! �q!
frag
�� � �, where

‘‘(q!
frag
�)’’ denotes collinear production of one hard photon

from a quark, described by a function D��z; �� at a light-
cone momentum fraction z and factorization scale �.
Single-photon ‘‘two-fragmentation’’ contributions arise

1In the soft, or E5 ! 0, limit, the final-state collinear contri-
bution is suppressed, reflecting the absence of the soft singularity
in the qg! q�� cross section.
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in processes like g� g! �q!
frag
�� � � �q!

frag
�� and involve

convolutions with two functions D��z; �� (one per pho-
ton). The lowest-order Feynman diagrams for the one- and
two-fragmentation contributions are shown in Figs. 1(f)
and 1(g), respectively. Parametrizations must be adopted
for the nonperturbative functions D��z; �� at an initial
scale � � �0. This is the approach followed in the
DIPHOX calculation [14], in which the sum of real and
virtual NLO corrections to direct and single-� fragmenta-
tion cross sections is included. When explicit fragmenta-
tion function contributions are included, the inclusive rate
is increased by higher-order contributions from photon
production within hadronic jets. However, much of the
enhancement is suppressed by isolation constraints im-
posed on the inclusive photon cross sections before the
comparison with data. Nevertheless, fragmentation contri-
butions surviving isolation may be moderately important in
parts of phase space.

An infrared-safe procedure can be formulated to apply
isolation cuts at each order of �s [22–24]. This procedure
encounters difficulties in reproducing the effects of isola-
tion on fragmentation contributions, because theoretical
models reflect only basic features of the experimental
isolation and may introduce new logarithmic singularities
near the edges of the isolation cones.

As mentioned in the introduction, the magnitude of the
fragmentation contribution depends on the values of iso-
lation parameters Eiso

T , �R, and �R��, modeled only ap-
proximately in a theoretical calculation. The collinear
approximation constrains from below the values of z ac-
cessible to D��z; ��: z > zmin � �1� E

iso
T5=ET��

�1. If
D��z;�� varies rapidly with z, the fragmentation cross
section is particularly sensitive to the assumed values of
Eiso
T and zmin. For instance, ifD��z; �� � 1=z, the fragmen-

tation cross section is roughly proportional to Eiso
T under a

typical condition Eiso
T =ET� � 1. Such nearly linear depen-

dence on Eiso
T of the fragmentation cross section d�=dQT

is indeed observed in the DIPHOX calculation, as reviewed
in Sec. III. In reality, some spread of the parton radiation in
the direction transverse to the photon’s motion is expected.
The treatment of kinematics in parton showering programs
like PYTHIA results in somewhat different dependence on
z [12] compared to the collinear approximation, hence in a
different magnitude of the fragmentation cross section.

In this work we adopt a procedure that reproduces
desirable features of the isolated cross sections, while
bypassing some of the difficulties summarized above. To
simulate experimental isolation, we reject an event if
(a) the separation �r between the final-state parton and
one of the photons is less than �R, and (b) ET5 of the
parton is larger than Eiso

T . This condition is applied to
the NLO cross section P�Q;QT; y;�
�, but not to
W�Q;QT; y;�
� and A�Q;QT; y; �
�, as these correspond
to initial-state QCD radiation and are free of the final-state
collinear singularity.

This quasiexperimental isolation excludes the singular
final-state direct contributions at ET5 >Eiso

T and �r <�R
(or s�5 <ET�ET5�R2). It is effective for QT > Eiso

T , but
the collinear direct contributions survive when QT < Eiso

T .
The integrated (but not the differential) fragmentation rate
in the region QT < Eiso

T may be estimated from a calcula-
tion with explicit fragmentation functions. In our approach,
we do not introduce fragmentation functions, but we apply
an auxiliary regulator to the direct qg cross section atQT <
Eiso
T and �r < �R. In our numerical study we find that this

prescription preserves a continuous differential distribution
except for a small finite discontinuity at QT � Eiso

T . It
approximately reproduces the integrated qg rate obtained
in the DIPHOX calculation at small QT , for the nominal
Eiso
T .
Two forms of the auxiliary regulator are considered

below, based on subtraction of the leading collinear con-
tribution and smooth-cone isolation [25]. In the first case,
we subtract the leading part Eq. (20) of the direct qgmatrix
element when ET5 <Eiso

T and �r < �R. We take z � 1�
ps � p5=�ps � pf � ps � p5 � pf � p5�, where p�f , p�5 , and
p�s are the four-momenta of the fragmentation photon,
fragmentation quark, and spectator photon, respectively
[26]. This prescription is used in most of the numerical
results in this paper.

In the second case, we suppress fragmentation contribu-
tions at �r <�R and ET5 <Eiso

T by rejecting events in the
�R cone that satisfy ET5 <���r�, where ���r� is a
smooth function satisfying ��0� � 0, ���R� � Eiso

T . This
‘‘smooth-cone isolation’’ [25] transforms the fragmenta-
tion singularity associated with D��z;�� into an integrable
singularity, which depends on the assumed functional form
of ���r�. The cross section for direct contributions is
rendered finite by this prescription without explicit
introduction of fragmentation functions D��z; ��. For
our smooth function, we choose ���r� � Eiso

T �1�
cos�r�2=�1� cos�R�2, which differs from the specific
form considered in Ref. [25], but still satisfies the condition
��0� � 0. Our earlier results in Ref. [2] are computed with
this prescription. Here we employ it only in a few instances
for comparison with the subtraction method and obtain
similar results.

Differences between the two prescriptions can be used to
quantify sensitivity of the predictions to the treatment of
the QT < Eiso

T and �r <�R region. The two prescriptions
yield identical predictions outside of this restricted region,
notably at QT > Eiso

T , where our NLO perturbative expres-
sion P�Q;QT; y;�
� in the q �q� qg channel is controlled
only by quasiexperimental isolation and coincides with the
corresponding direct cross section in DIPHOX. The default
subtraction prescription predicts a vanishing d�=dQT in
the extremeQT ! 0 limit, while the smooth-cone prescrip-
tion has an integrable singularity in this limit, avoided by
an explicit small-QT cutoff in the calculation of our Y
piece. Both prescriptions are free of the logarithmic singu-

CALCULATION OF PROMPT DIPHOTON PRODUCTION . . . PHYSICAL REVIEW D 76, 013009 (2007)

013009-7



larity at QT � Eiso
T arising in the fixed-order (DIPHOX)

calculation.

2. Low-Q diphoton fragmentation

Another class of large radiative corrections arises when
the �� invariant mass Q is smaller than the �� transverse
momentum QT . In this case, one final-state quark or gluon

fragments into a low-mass �� pair, e.g. as q� g!

�q!
frag
��� � g. The lowest-order contributions of this kind

are shown in Fig. 2. The process is described by a
��-fragmentation function D���z1; z2; ��, different from
the single-photon fragmentation function D��z;��. This
new ‘‘two photons from one fragmentation’’ contribution
is not included yet in existing calculations, even though
similar fragmentation mechanisms have been studied in
large-QT Drell-Yan pair production [27,28]. The impor-
tance of low-Q �� fragmentation may be elevated in some
kinematic regions for typical experimental cuts. They can
be removed by adjustments in the experimental cuts, as
discussed in Sec. III.

D. Summary of the calculation

We conclude this section by summarizing the main
features of our calculation. Full direct NLO cross sections,
represented by the graphs (a)–(e), (h)–(l) in Fig. 1, are
computed, and their initial-state soft/collinear logarithmic
singularities are resummed at small QT in both the q �q�
qg and gg� gqS channels. The perturbative Sudakov
functions A and B and Wilson coefficient functions C in
the resummed cross section W are computed up to orders
�3
s , �2

s , and �s, respectively, corresponding to resumma-
tion at NNLL accuracy.

Our resummation calculation requires an integration
over all values of impact parameter b, including the non-
perturbative region of large b. In our default calculation of
the resummed cross section, we adopt the nonperturbative
functions introduced in Ref. [18]. We consider two resum-
mation schemes, the traditional scheme introduced in the
CSS paper as well as an alternative scheme [21]. The
comparison allows us to estimate the magnitude of yet
higher-order corrections that are not included. The size
of these effects is different in the q �q� qg and gg� gqS
channels but not particularly significant in either [3].

The final-state collinear singularity in the qg scattering
channel is avoided by applying quasiexperimental isolation
whenQT > Eiso

T and an auxiliary regulator whenQT < Eiso
T

to approximate on average the full NLO rate from direct qg
and fragmentation cross sections in this QT range. Two
prescriptions for the auxiliary regulator (subtraction and
smooth isolation inside the photon’s isolation cone) are
considered and lead to similar predictions at the Tevatron
and LHC.

The singular logarithmic contributions associated with
initial-state radiation are subtracted from the NLO cross
section P to form a regular piece Y, which is added to the
small-QT resummed cross section W to predict the pro-
duction rate for small and intermediate values ofQT . In the
gg� gqS channel, we also subtract from P a new singular
spin-flip contribution that affects azimuthal angle (’
)
dependence in the Collins-Soper reference frame. We
switch our prediction to the fixed-order perturbative result
P at the point in QT where the cross section W � Y drops
below P. This crossing point is located at QT of order Q in
both q �q� qg and gg� gqS channels.

III. COMPARISONS WITH DATA AND
PREDICTIONS

Our calculation of the differential cross section
d�=�dQdQTdyd�
� is especially pertinent for the trans-
verse momentum QT distribution in the region QT & Q,
for fixed values of diphoton mass Q (cf. Sec. III A 1). It
would be best to compare our multiple differential distri-
bution with the experiment, but published collider data
tend to be presented in the form of singly differential
distributions in Q, QT , and �’ � ’3 � ’4 in the lab
frame, after integration over the other independent kine-
matic variables. We follow suit in order to make compari-
sons with Tevatron collider data, but we recommend that
more differential studies be made, and we comment on the
features that can be explored. We show results at the energy
of the Tevatron collider and then make predictions for the
Large Hadron Collider.

The analytical results of Sec. II are implemented in our
computer code. As a first step, resummed and NLO ��
cross sections are computed on a grid of discrete values of
Q, QT , and y by using the resummation program LEGACY

described in Refs. [29,30]. At the second stage, matching

FIG. 2 (color online). Lowest-order Feynman diagrams describing fragmentation of the final-state partons into photon pairs with
relatively small mass Q.

BALÁZS, BERGER, NADOLSKY, AND YUAN PHYSICAL REVIEW D 76, 013009 (2007)

013009-8



of the resummed and NLO cross sections is performed, and
fully differential cross sections are evaluated by
Monte Carlo integration of the matched grids in the latest
version of the program RESBOS [31,32]. The calculation is
done for Nf � 5 active quark flavors and the following
values of the electroweak and strong interaction parame-
ters [33]:

 GF � 1:166 39� 10�5 GeV�2; mZ � 91:1882 GeV;

(21)

 ��mZ� � 1=128:937; �s�mZ� � 0:1187: (22)

The following choices of the factorization constants are
used: C1 � C3 � 2e��E � 1:123 . . . , and C2 � C4 � 1.
The choice C4 � 1 implies that we equate the renormal-
ization and factorization scales to the invariant mass of the
photon pair, �R � �F � Q, in the fixed-order and asymp-
totic contributions P�Q;QT; y;�
� and A�Q;QT; y;�
�.
We use two-loop expressions for the running electromag-
netic and strong couplings ���� and �S���, as well as the
NLO parton distribution function set CTEQ6M [19] with
Qini � 1:3 GeV. For calculations with explicit final-state
fragmentation functions included, we use set 1 of the NLO
photon fragmentation functions from Ref. [34].

A. Results for Run 2 at the Tevatron

1. Kinematic constraints

In this section, we present our results for the Tevatron
p �p collider operating at

���
S
p
� 1:96 TeV. In order to com-

pare with the data from the Collider Detector at Fermilab
(CDF) collaboration [1], we make the same restrictions on
the final-state photons as those used in the experimental
measurement (unless stated otherwise):
 

transverse momentum p�T > p�Tmin � 14�13� GeV

for the harder �softer� photon;

 and rapidity jy�j< 0:9 for each photon: (24)

We impose isolation conditions described in Sec. II C,
assuming the nominal isolation energy Eiso

T � 1 GeV
specified in the CDF publication, along with �R � 0:4,
and �R�� � 0:3.

We also show predictions for the constraints that ap-
proximate event selection conditions used by the Fermilab
D0 collaboration [35]: p�T > p�Tmin � 21�20� GeV for the
harder (softer) photon, jy�j< 1:1, and Eiso

T =E
�
T � 0:07 for

each photon, for the same �R and �R�� values as in the
CDF case.

A scatter plot of event distributions from our theoretical
simulation for CDF kinematic cuts and arbitrary luminos-
ity is shown in Fig. 3. The events are plotted versus the
invariant massQ, transverse momentum QT , rapidity sepa-
ration j�yj � jyhard � ysoftj, and azimuthal separation
�’ � j’hard � ’softj (with 0 � �’ � �) between the

harder and softer photon in the lab frame, as well as the
cosine of the polar angle �
 in the Collins-Soper frame. It
can be seen from the figure that �’ is correlated with the
difference QT �Q. Events withQT < Q (QT >Q) tend to
populate regions with �’>�=2 (�’< �=2). The ex-
treme case QT � 0 relevant to the Born approximation
corresponds to �’ � �.

The p�T cuts suppress the mass region Q &

2
������������������������
p�3
Tminp

�4
Tmin

q
� 27 GeV at �’ � � and QT & 25 GeV

at �’ � 0, leading to the appearance of a kinematic cutoff
in the invariant mass distribution and a ‘‘shoulder’’ in the
transverse momentum distribution, as shown in later sec-
tions. Our theoretical framework is applicable in the region
QT & Q (large �’), where the dominant fraction of events
occurs. The appearance of singularities in the NLO calcu-
lation at QT ! 0 and the fact that there are two different
hard scales, QT and Q, relevant for the event distributions
in the low-QT region require that we address and resum
large logarithmic terms of the form log�Q=QT�. Different
and interesting physics becomes important in the comple-
mentary region QT >Q (small �’), a topic we address in
Sec. III A 3.

2. Tevatron cross sections

We compare our resummed and finite-order predictions
for the invariant mass (Q) distribution of photon pairs,
shown in Fig. 4 as solid and dashed lines, respectively.
The finite-order cross section is evaluated at O��s� accu-

FIG. 3 (color online). The diphoton event distribution from the
theoretical simulation for

���
S
p
� 1:96 GeV, with the selection

criteria imposed in the CDF measurement, as a function of the
various kinematic variables described in the text, shown for
QT <Q and QT >Q separately.
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racy in the q �q� qg channel and at O��3
s� accuracy in the

gg� gqS channel. These finite-order calculations are per-
formed with the phase-space slicing method described in
Sec. II B. When integrated over all QT , as in the d�=dQ
distribution at large Q, the resummed logarithmic terms
from higher orders in �s produce a relatively small NNLO
correction, such that the resummed and finite-order mass
distributions in Fig. 4 are close to one another in normal-
ization and shape. Both distributions also agree with
the CDF data in this Q range within experimental
uncertainties.

The shape of d�=dQ at smallQ is affected by the cuts in
Eq. (23) on the transverse momenta p�T of the two photons.
In addition to being responsible for the characteristic cutoff
at Q � 27 GeV explained in the previous subsection, the
cuts on the individual transverse momenta p�T also intro-
duce a dependence of the invariant mass distribution on the
shape of the QT spectrum of the �� pairs. Because of this
correlation between the Q and QT distributions, the dis-
continuities in d�=dQT as QT ! 0, when computed at
finite order, make finite-order predictions for d�=dQ
somewhat unstable.

The finite-order expectation for the transverse momen-
tum distribution d�=dQT (i.e., the integral of
P�Q;QT; y;�
� over Q, y, and �
, or P for brevity) is
shown as a dashed curve in Fig. 5(a). It exhibits an inte-
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FIG. 4 (color online). Invariant mass distributions of photon
pairs in p �p! ��X at

���
S
p
� 1:96 TeV with QCD contributions

calculated in the soft-gluon resummation formalism (red solid
line) and at NLO (blue dashed line). The calculations include the
cuts used by the CDF collaboration whose data are shown [1].
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FIG. 5 (color online). Transverse momentum distributions in p �p! ��X at
���
S
p
� 1:96 TeV along with the CDF data: (a) the fixed-

order prediction P (dashes) and its asymptotic approximation A (dots); (b) the full resummed cross section (solid line), obtained by
matching the resummed W � Y to the fixed-order prediction P (dashed line, same as in (a)) at large QT .
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grable singularity in the small-QT limit. Terms with inverse
power and logarithmic dependence on QT , associated with
initial-state radiation as QT ! 0, are extracted from P and
form the asymptotic contribution, denoted as A (dotted
curve). In the figure, both P and A are truncated at a small
value of QT , that is, not drawn all the way to QT � 0. The
curves for P and A are close at small values of QT , signal-
ing that the initial-state logarithmic singularities dominate
the NLO distribution. The difference Y between the P and
A distributions includes the finite regular terms not in-
cluded in A and logarithmic terms from the final-state
fragmentation singularities, with the latter subtracted
when QT < Eiso

T , as described in Sec. II C. The data clearly
disfavor the fixed-order prediction in the region of lowQT .

Figure 5(b) features the resummed W � Y contribution
(solid curve). Resummation of the initial-state logarithmic
terms renders W finite in the region of small QT . The sum
of W and Y includes the resummed initial-state singular
contributions plus the remaining relevant terms in P. Since
P provides a reliable fixed-order estimate at large QT , we
present our final resummed prediction by switching from
W � Y to P at the point at which the two differential cross
sections (as functions of Q, QT , and y) cross each other. In
contrast to the fixed-order (dashed) curve P in Fig. 5(b), the
agreement with data is improved at the lowest values of
QT , where resummation brings the rate down, and for
QT � 12–32 GeV, where the resummed logarithmic terms
increase the rate.

The resummed predictions for the Tevatron experiments
are practically insensitive to the choice of the resummation

scheme and the nonperturbative model [3]. About 75%
(25%) of the total rate at the Tevatron with CDF cuts
imposed comes from the q �q� qg� �qg (gg� gqS) initial
state. The fractions for the cuts used by D0 are 84% and
16%. The gg� gqS contribution falls steeply after QT >
22 GeV, because the gluon PDF decreases rapidly with
parton fractional momentum x [3].

The distribution in the difference �’ of the azimuthal
angles of the photons is shown in Fig. 6. As is true for the
transverse momentum distribution in the limit QT ! 0, the
distribution computed at fixed order is ill defined at �’ �
�. The resummed distribution shows a larger cross section
near �’ � 2:5 rad, in better agreement with the data. In
the region of small �’ & �=2, the fixed-order and the
resummed predictions are the same, a result of our match-
ing of the resummed and fixed-order distributions at mid to
high values of QT . Although the cross section is not large
in the region �’<�=2, there is an indication of a differ-
ence between our predictions and data in this region, a
topic we address below.

3. The region QT >Q

It is evident from Fig. 3 that the �’<�=2 region is
populated mostly by events with QT > Q. New types of
radiative contributions may be present in this region, in-
cluding various fragmentation contributions described in
Sec. II C and enhancements at large j cos�
j in the direct
production rate.

While experimental isolation generally suppresses long-
distance fragmentation, a greater fraction of fragmentation
photons are expected to survive isolation when �’< �=2.
Besides single-photon ‘‘one-fragmentation’’ and ‘‘two-
fragmentation’’ contributions (with one photon per frag-
menting parton), one encounters additional logarithmic
singularities of the form log�Q=QT�. We noted in
Sec. II C that these logarithms are associated with the
fragmentation of a parton carrying large transverse mo-
mentum QT into a system of small invariant mass Q
[27,28], a light �� pair in our case. Small-Q �� fragmen-
tation of this kind is not implemented yet in theoretical
models. Therefore, we are prepared for the possibility that
both the fixed-order calculation and our resummed calcu-
lation may be deficient in the region QT � Q. A detailed
experimental study of the region QT >Q may offer the
opportunity to measure the parton to two-photon fragmen-
tation functionD���z1; z2�, provided that the single-photon
one-fragmentation function D��z� is determined by single-
photon data, and the low-Q logarithmic terms are properly
resummed theoretically.

In addition to the low-Q fragmentation, the small-�’
region may be sensitive to large higher-order contributions
associated with t̂- or û-channel exchanges in the q �q! ��
and gg! �� subprocesses. In the Born processes in
Figs. 1(a) and 1(h), the t̂- and û-channel singularities arise
at cos�
 � 	1 and �’ � �. These singularities are ex-
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FIG. 6 (color online). The difference �’ in the azimuthal
angles of the two photons in the laboratory frame predicted by
the resummed (solid line) and fixed-order (dashed line) calcu-
lations, compared to the CDF data.
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cluded by the p�T cuts in Eq. (23), but related residual
enhancements in the NLO contributions may still persist
at j cos�
j � 1 and �’! 0, not excluded by the cuts
(cf. Fig. 3). Because j cos�
j is large in such events, they
tend to have substantial j�yj, so they are retained by the
�R�� > 0:3 cut. In contrast, the low-Q fragmentation
contributions tend to be abundant at small j�yj. It may
be therefore possible to distinguish between the
large-j cos�
j and fragmentation events at small �’ based
on the distribution in j�yj.

We expect much better agreement of our predictions
with data if the selection QT <Q is made. This selection
preserves the bulk of the cross section and assures that a
fair comparison is made in the region of phase space where
the predictions are most valid.

4. Fragmentation and comparison with the DIPHOX code

One way to obtain an estimate of theoretical uncertainty
is to compare theoretical approaches in various parts of
phase space, including small �’. We handle the collinear
final-state photon singularities in the manner described in
Sec. II, without including photon fragmentation functions
explicitly. An alternative calculation implemented in the
DIPHOX code [14] includes NLO cross sections for single-
photon fragmentation processes. Neither code includes a
term in which both photons are fragmentation products of

the same final-state parton, i.e., the diphoton fragmentation
function D���z1; z2�.

In Ref. [2] we show comparisons of our predictions with
those of DIPHOX along with the CDF data. Here in Fig. 7,
we show analogous plots of the invariant mass and trans-
verse momentum distributions for D0 cuts. We note that
our fixed-order q �q� qg contribution agrees well with the
direct contribution in DIPHOX. This agreement is particu-
larly impressive in the region of large QT , where both
codes use the same fixed-order formalism to handle direct
contributions. A contribution from the gg channel is also
present in both codes, computed at LO in DIPHOX but at
NLO� NNLL in our case. Since the gg� gqS contribu-
tion is not dominant (especially in the high-QT region), this
difference does not have a significant impact on the
comparison.

The explicit single-photon fragmentation contributions
in DIPHOX (mostly one-fragmentation contribution) are
quite small for the nominal hadronic energy Eiso

T � 1 GeV
in the cone around each photon. Exceptions occur in the
region QT � Eiso

T , where the fragmentation contributions
to d�=dQT have logarithmic singularities, and in the
�’! 0 region, where fragmentation is comparable to
the direct contributions. Our isolation prescription repro-
duces the integrated DIPHOX rate well for 0 � QT � Eiso

T ,
leading to close agreement between the resummed and
DIPHOX inclusive rates for most Q values.
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FIG. 7 (color online). Comparison of our resummed and DIPHOX predictions for (a) the invariant mass and (b) transverse
momentum distributions of �� pairs for D0 kinematic cuts. The solid curves show our resummed distributions with all channels
included. The dashed and dotted curves illustrate the resummed and DIPHOX distributions in the q �q� qg channel.
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Returning to the CDF measurement, we remark that the
resummed and DIPHOX cross sections for the same Eiso

T �
1 GeV underestimate the data within 2 standard deviations
for Q & 27 GeV, QT > 25 GeV, and �’< 1 rad (cf. the
relevant figures in Ref. [2]). The DIPHOX cross section
can be raised to agree with data in this shoulder region, if a
much larger isolation energy (Eiso

T � 4 GeV) is chosen,
and smaller factorization and renormalization scales are
used (�F � �R � Q=2). These are the choices made in
the CDF study [1]. Since Eiso

T is an approximate character-
istic of the experimental isolation, one might argue that
both Eiso

T � 1 and 4 GeV can be appropriate in a calcula-
tion to match the conditions of the CDF measurement. The
direct contribution is weakly sensitive to Eiso

T , while the
one-fragmentation part of d�=dQT is roughly proportional
to Eiso

T (cf. Sec. II C). The one-fragmentation contribution
is enhanced on average by 400% if Eiso

T is increased in the
calculation from 1 to 4 GeV. The rate in the shoulder region
is enhanced further if the factorization scale�F is reduced.

Since the theoretical specifications for isolation and for
the fragmentation contribution are admittedly approxi-
mate, we question whether great importance should be
placed on the agreement of theory and experiment in the
region of small �’ or in the shoulder region in the QT
distribution. A straightforward way to reduce sensitivity to
fragmentation is to require Q> 27 GeV or QT <Q,

as discussed above. The two cuts have similar effects on
the event distributions. Figure 8 shows the effects of the
QT <Q cut on theQT and �’ distributions. The cutQT <
Q is particularly efficient at suppressing the fragmentation
QT shoulder (and the region of small �’ altogether), while
only a small portion of the event sample is lost. This cut is
especially favorable, since it constrains the comparison
with data to a region where the theory is well understood
and has a small uncertainty. Furthermore, with the require-
ment of QT <Q, the dependence of differential cross
sections on the choices of isolation energy Eiso

T and facto-
rization scale �F is greatly reduced to the typical size of
higher-order corrections. We predict that if a QT < Q cut,
or a Q> 27 GeV cut, is applied to the Tevatron data, the
enhancement at low �’ and intermediate QT associated
with the fragmentation contribution will disappear. This is
an important conclusion of our study, and we urge the CDF
and D0 collaborations to apply these cuts in their future
analyses of the diphoton data.

5. Average transverse momentum

An important prediction of the resummation formalism
is the change of the transverse momentum distribution with
the diphoton invariant mass. This dependence comes, in
part, from the lnQ2 dependence in the Sudakov exponent,
Eq. (17), and it is desirable to identify this feature amid
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FIG. 8 (color online). Predicted cross sections for diphoton production in p �p! ��X at
���
S
p
� 1:96 TeV as a function of (a) the ��

pair transverse momentum QT and (b) the difference �’ in the azimuthal angles of the two photons. Our resummed predictions (solid
line) are shown together with DIPHOX predictions for the default isolation energy Eiso

T � 1 GeV and factorization scale �F � Q
(dashed line), and for Eiso

T � 4 GeV, �F � Q=2 (dotted line). We impose the condition QT <Q to reduce theoretical uncertainties
associated with fragmentation.
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other influences. In Fig. 9(a), we show normalized re-
summed transverse momentum distributions for various
selections of the invariant mass of the photon pairs.
Without kinematical constraints on the decay photons,
the QT distribution is expected to broaden with increasing
Q, and the position of the peak in d�=dQT to shift to larger
QT values. The shift of the peak may or may not be
observed in the data depending on the chosen lower cuts
on pT of the photons, which suppress the event rate at low
Q and QT . The interplay of the Sudakov broadening of the
QT distribution and kinematical suppression by the photon
pT cuts is reflected in the shape of d�=dQT in different Q
bins.

According to dimensional analysis, the average hQTi in
the interval QT � Q may be expected to behave as

 hQTiQT�Q � Qf�Q=
���
S
p
�; (25)

where the scaling function f�Q=
���
S
p
� reflects phase-space

constraints, dependence on the Sudakov logarithm, and the
x dependence of the PDFs. Figure 9(b) shows our calcu-
lated diphoton mass dependence of hQTi. The linear in-
crease shown in Eq. (25) is observed over the range
30<Q< 80 GeV. For values of Q below the kinematic
cutoff at about 30 GeV, the cuts shown in Fig. 3 suppress
diphoton production at small QT , and hQT=Qi grows to-

ward 1 asQ decreases (corresponding to production only at
QT close to Q). For Q� 80 GeV and above, we see a
saturation of the growth of hQTi, a reflection of the influ-
ences of the x dependence of the PDFs, and other factors.
Similar saturation behavior is observed in calculations of
hQTi in other processes [36]. It would be interesting to see
a comparison of our prediction with data from the CDF and
D0 collaborations.

B. Results for the LHC

1. Event selection

To obtain predictions for pp collisions at the LHC at���
S
p
� 14 TeV, we employ the cuts on the individual pho-

tons used by the ATLAS collaboration in their simulations
of Higgs boson decay, h! �� [37]. We require

 transverse momentum p�T

> 40�25� GeV for the harder �softer� photon; (26)

 and rapidity jy�j< 2:5 for each photon. (27)

In accord with ATLAS specifications, we impose a looser
isolation restriction than for our Tevatron study, requiring
less than Eiso

T � 15 GeV of hadronic and extra electromag-
netic transverse energy inside a �R � 0:4 cone around
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FIG. 9 (color online). (a) Resummed transverse momentum distributions of photon pairs in various invariant mass bins used in the
CDF measurement, normalized to the total cross section in each Q bin. (b) The average QT as a function of the �� invariant mass,
computed for QT <Q.
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each photon. We also require the separation �R�� between
the two isolated photons to be above 0.4.

The cuts listed above, optimized for the Higgs boson
search, may require adjustments in order to test perturba-
tive QCD predictions in the full �� invariant mass range
accessible at the LHC. The values of the p�T cuts on the
photons in Eq. (26) preserve a large fraction of Higgs
boson events with Q> 115 GeV. These cuts may be too
restrictive in studies of �� production at smaller Q, con-
sidering that the two final-state photons most likely origi-
nate from a �� pair with small QT and have similar values
of p�T of aboutQ=2. The pT cuts interfere with the expected
Sudakov broadening of QT distributions with increasing
diphoton invariant mass, as discussed in Sec. III A 5. We
further note that the asymmetry between the p�T cuts on the
harder and softer photons is necessary in a fixed-order
perturbative QCD calculation, but it is not required in the
resummed calculation. At a fixed order of �s, asymmetry
in the p�T cuts prevents instabilities in d�=dQ caused by
logarithmic divergences in d�=dQT at small QT . Such
instabilities are eliminated altogether once the small-QT
logarithmic terms are resummed to all orders of �s. Here
we do not consider alternative p�T cuts, although experi-
mental collaborations are encouraged to employ relaxed
and/or symmetric cuts to increase the �� event sample in
their data analysis.

2. Resummed QT distributions and average transverse
momentum

Figure 10 shows transverse momentum distributions of
the photon pairs for various invariant masses. The average
�� transverse momentum grows with Q, as demonstrated
by Fig. 11. However, the rate of the growth decreases
monotonically with Q, for similar reasons as at the
Tevatron.

The �� distributions in Q and �’ for different combi-
nations of scattering subchannels and choices of theoretical
parameters are discussed in Refs. [2,3]. In all ranges of Q,
the �� production rate is dominated by a large qg contri-
bution, accounting for about 50% of the fixed-order (NLO)
rate. Although this number depends on the choice of the
factorization scheme and scale, and, on the other hand,
separate treatment of the q �q and qg cross sections is not
meaningful in the resummation calculation [3], it nonethe-
less reflects, in a crude way, the increased relative impor-
tance of the qg cross section. The gg� gqS channel
contributes about 25% at Q� 80 GeV (the location of
the cutoff in d�=dQ due to the cuts on p�T) and less at
larger Q. As at the Tevatron, the dependence of the cross
sections on the resummation scheme is small [3]. The
dependence on the nonperturbative model can also be
neglected, as long as the nonperturbative function does
not vary strongly with x [3].

3. Final-state fragmentation and comparison with
DIPHOX

The impact of the final-state fragmentation at the LHC
can be evaluated if we compare our results with DIPHOX
predictions. The transverse momentum and invariant mass
distributions in the q �q� qg channel from the two ap-
proaches are shown in Fig. 12. In both calculations, qua-
siexperimental isolation removes direct NLO events with
collinear final-state photons and partons when QT >
Eiso
T � 15 GeV, but not when QT is below Eiso

T .
Concentrating first on �� events with QT > Eiso

T , we
observe that, at QT > 80 GeV, the resummed q �q� qg
cross section reduces to the direct fixed-order cross section,
evaluated in the same way as in the DIPHOX code. Our
resummed and the direct DIPHOX cross sections, shown as
solid and dashed curves, respectively, in Fig. 12(a) con-
sequently agree well at large QT . At smaller QT , the
resummed cross section is enhanced by towers of higher-
order logarithmic contributions. On the other hand, the full
q �q� qg DIPHOX rate (shown as a dotted line) also in-
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tributions of photon pairs in various invariant mass bins at the
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cludes single-photon fragmentation contributions, which
add to the direct production cross section. For the nominal
isolation parameters, the explicit fragmentation contribu-
tion constitutes about 25% of the full DIPHOX rate for
60<QT < 120 GeV. Its magnitude increases approxi-
mately linearly with the assumed Eiso

T value.
For QT < Eiso

T , the final-state collinear region of the
direct contribution is regulated by the collinear subtraction
prescription adopted in the resummation calculation,
whereas the fragmentation singularity is subtracted from
the direct contribution and replaced by photon fragmenta-
tion functions in the DIPHOX calculation. Subtraction of
singularities in DIPHOX introduces integrable singular-
ities in d�=dQT at different values of QT below Eiso

T .
The origin of the final-state logarithmic singularities at
values of QT below Eiso

T is discussed in Refs. [22–24].
For QT < Eiso

T , the DIPHOX curves represent the average
over singular contributions in this QT interval.

After the fragmentation singularity is subtracted, the
DIPHOX direct contribution (dashed line) is on average
below our resummed q �q� qg rate (solid line) over most of
the range of QT shown in Fig. 12(a). After integration over
all QT , our resummed and DIPHOX q �q� qg cross sec-
tions agree within 10%–20% at most values of Q
(cf. Fig. 12(b)], with our resummed rate being below the
DIPHOX rate at all Q. The largest difference occurs at the
lowest values of Q (below the cutoff), where the rates can
differ by a factor of 2. In this region, corresponding to

diphoton events with small �’ and QT larger than Q, the
photon fragmentation contributions included in the
DIPHOX calculation are large in comparison to the direct
rate. Finally, we note that the integrated rate in DIPHOX is
more stable with respect to variations in Eiso

T than the
differential distributions in DIPHOX, because Eiso

T depen-
dence for QT > Eiso

T is canceled to a good degree by Eiso
T

dependence for QT < Eiso
T .

To obtain the final �� production cross sections, after
inclusion of all channels, we combine the respective q �q�
qg results with the resummed NLO gg� gqS cross section
in our case and with the LO gg cross section in the
DIPHOX case. The distributions in the �� invariant mass
Q, the transverse momentum QT , and the azimuthal angle
separation �’ in the lab frame are shown in Fig. 13. For
the cuts chosen, the LO gg and the resummed gg� gqS
total rates constitute about 9% and 20% of the total rate.
The resummed and DIPHOX invariant mass distributions
[Fig. 13(a)] are brought closer to one another as a result of
the inclusion of the gg� gqS contribution in the re-
summed calculation. For QT � 0, the full DIPHOX QT
distribution in Fig. 13(b) is determined entirely by direct
plus fragmentation contributions (the same as in
Fig. 12(a)], because the LO gg cross section contributes
at QT � 0 only. In contrast, our resummed gg� gqS con-
tribution modifies the event rate at all QT .

The resummed and DIPHOX rates are in a reasonable
agreement for 1:5 & �’ & 2:5, as shown in Fig. 13(c). In
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FIG. 12 (color online). Transverse momentum and invariant mass distributions d�=dQ in the q �q� qg channel obtained in the
resummation (solid line) and DIPHOX (dotted line) calculations.
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the �’! � limit, the fixed-order rates in DIPHOX di-
verge because of the singularities at small QT , while our
resummed rate yields a finite value. For �’< 1:5, the
DIPHOX cross section is enhanced by photon fragmenta-

tion contributions. As at the energy of the Tevatron, theo-
retical uncertainties are greater at small �’.

Predictions are most reliable when QT < Q (and
the angles �
 and ’
 are away from 0 or �). With the
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FIG. 13 (color online). Invariant mass, transverse momentum, and �’ distributions from our resummed calculation and from
DIPHOX at the LHC. We show our fixed-order (dashed line) and resummed (solid line) distributions. All initial states are included in
both calculations, and the single-� fragmentation contributions are included in DIPHOX.
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QT < Q cut imposed, the uncertain large-QT photon frag-
mentation contributions are suppressed, and the resummed
and DIPHOX cross sections agree well at large QT
(cf. Fig. 14(b)]. The QT distribution in the interval 70<
Q< 115 GeV with the QT <Q constraint is shown in
Fig. 10 by a dotted curve. Distributions in the other two
mass bins in Fig. 10 are essentially not affected by this cut
in the QT range presented.

Our calculation captures the dominant contributions to
�� production at the LHC. However, as we noted, direct
qg scattering, evaluated at order O��s� in our calculation,
is the leading scattering channel in the region relevant for
the Higgs boson search at the LHC. It is important to
emphasize that the final-state collinear radiation is not
the main reason behind the enhancement of the qg rate,
which is increased predominantly by contributions from
nonsingular phase-space regions. Consequently, the q �q�
qg direct rate is only weakly sensitive to adjustments in the
isolation parameters Eiso

T and �R [10]. The unknown
O��2

s� contributions to qg scattering may be non-
negligible, and it would be valuable to compute them in
the future when LHC data are available.

C. Comparison with Higgs boson signal distributions

We highlight some similarities and differences between
the production spectra for the Higgs boson signal and the
QCD background discussed in this paper. We focus on the
diphoton decay mode of a SM Higgs boson produced from
the dominant gluon-fusion mechanism, gg! h0 ! ��,

where the Higgs boson production cross section is calcu-
lated at the same order of precision as the QCD continuum
background. We include initial-state QCD contributions at
O��3

s� (NLO) and resummed contributions at NNLL accu-
racy. These contributions are also coded in RESBOS [38],
and we can apply the same cuts on the momenta of the
photons to the signal and background. Our findings should
remain broadly applicable after the NNLO corrections to
Higgs boson production [39,40] are included. We compute
the background in the range 128<Q< 132 GeV, and the
signal at a fixed Higgs boson mass mH � 130 GeV. We
impose the kinematic selectionQT < Q, but its influence is
not important at the large values of diphoton mass of
interest here.

The cross section times branching ratio for the Higgs
boson signal is substantially smaller than the QCD con-
tinuum. To better illustrate their differences, Fig. 15
presents distributions normalized to the respective total
rates. The top-left panel shows normalized transverse mo-
mentum distributions of photon pairs. The signal and
background peak at about 12 and 5 GeV, respectively.
The average values of QT are 26 and 23 GeV, computed
over the range 0 to 75 GeV.

Differences in the shapes of these QT spectra can be
attributed to the different structure of the leading terms in
the initial-state Sudakov exponents and to the effects of
final-state photon fragmentation. The Higgs boson signal is
controlled by the characteristics of the gg� gqS initial
state, whereas the continuum is controlled primarily by the
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FIG. 14 (color online). Invariant mass and transverse momentum distributions from our resummed, NLO, and DIPHOX calculations
at the LHC, with the QT < Q constraint imposed.
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q �q� qg initial state. Because the dominant Sudakov co-
efficient A�k�

q / CF in the q �q case is smaller than A�k�
g �

�CA=CF�A
�k�
q in the gg case, the resummed q �q� qg

initial-state radiation produces narrower QT distributions
than gg� gqS initial-state radiation. About 80% of the
diphoton rate is provided by the q �q� qg channel, imply-
ing a narrower QT distribution of the background, if based
on the value of A�k� alone.

The continuum background contribution is also en-
hanced by final-state radiation in qg scattering. The QT
profile of the final-state collinear terms depends more on
the isolation model (including Eiso

T and �R) than on the
initial-state Sudakov exponent. For the nominal ATLAS
cuts, the final-state collinear contribution in our calculation
hardens the background QT distribution, diminishing its
difference from the Higgs boson signal distribution. More
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FIG. 15 (color online). Comparison of the normalized Higgs boson signal and diphoton background distributions at the LHC, both
computed at NNLL accuracy. The Higgs boson mass is taken to be mH � 130 GeV, and the background is calculated for 128<
Q< 132 GeV.

CALCULATION OF PROMPT DIPHOTON PRODUCTION . . . PHYSICAL REVIEW D 76, 013009 (2007)

013009-19



effective isolation may reduce the impact of the final-state
radiation on QT distributions.

Another difference between the signal and continuum is
observed in the distribution in the azimuthal angle of the
photons, such as the angle ’
 in the Collins-Soper frame
shown in the top-right panel of Fig. 15. This distribution is
qualitatively the same if integrated over all QT , as in
Fig. 15, or integrated above some minimal QT value, as
in an experimental measurement. Without isolation im-
posed, the spin-0 Higgs boson signal must be flat in ’
,
but the QCD background peaks toward ’
 � 0 and � (i.e.,
sin’
 � 0) as a result of the final-state qg singularity.2,3

Isolation cuts suppress both the signal and the background
for sin’
 < sin�R. The result is a signal distribution with a
broad peak near ’
 � �=2, while the background favors
values of ’
 near 0 and �. A selection of events with ’
 in
the vicinity of �=2, and QT large enough, helps to reduce
the impact of the qg background.4

A third potential discriminator between the signal and
background is the difference in the rapidities �y � yhard �
ysoft of the photons with harder and softer values of p�T in
the lab frame, calculated on an event by event basis. This
distribution is displayed in the lower-left frame of Fig. 15.
The background distribution peaks at the origin, while the
signal is almost flat over a wide range of �y. Different spin
correlations in the decay of a spin-0 Higgs boson from
those characteristics of QCD background processes are the
source of this distinction. Discrimination based on this
difference can improve the statistical significance of the
signal [10]. We note that our resummed calculation does
not exhibit the kinematic singularity at �y � 2 present in
the finite-order cross section and obvious in Fig. 10 of
Ref. [10], where the distribution with respect to y
 �
�y=2 is shown. The discontinuity in d�=dQT caused by
the finite-order approximation is resummed in our calcu-
lation, yielding a smooth result.

The rapidity difference is related to the scattering angle
in the Collins-Soper frame: tanh��y=2� � cos�
 when QT
is zero. The cos�
 distribution is shown in the lower-right
frame of Fig. 15. The difference between the signal and
background rates is even more pronounced in this variable,
clearly expressing the difference in the spin correlations of
the systems producing the photons.

A comparison ofQT distributions in the top-left panel of
Fig. 15 suggests that the signal versus background ratio

would be enhanced if a cut is made to restrict QT >
10 GeV. After applying this cut, we may again examine
the distributions in the rapidity difference of the two pho-
tons, the scattering angle in the Collins-Soper frame, and
the azimuthal angle distribution of the photons in the
Collins-Soper frame. The results are qualitatively similar
to those in Fig. 15 and are not shown here. A more efficient
procedure to increase the Higgs boson discovery signifi-
cance is to apply a simultaneous likelihood analysis to
several kinematic distributions. Based on the present dis-
cussion, we would argue that the resummed QT , ’
, and
cos�
 distributions are good discriminators between the
Higgs boson signal and background in such an analysis.

IV. CONCLUSIONS

The theoretical study of continuum diphoton production
in hadron collisions is interesting and valuable for several
reasons: there are data from the CDF and D0 collaborations
at Fermilab with the promise of larger event samples; there
are new theoretical challenges associated with all-orders
soft-gluon resummation of two-loop amplitudes; and con-
tinuum diphotons are a large standard model background
above which one may observe the products of Higgs boson
decay into a pair of photons at the LHC.

In this paper and Refs. [2,3], we present our calculation
of the fully differential cross section d�=�dQdQTdyd�
�
as a function of the massQ, transverse momentum QT , and
rapidity y of the diphoton system, and of the polar and
azimuthal angles of the individual photons in the diphoton
rest frame. Our basic QCD hard-scattering subprocesses
are all computed at NLO in the strong coupling strength
�s, and we include the state-of-art resummation of initial-
state gluon radiation to all orders in �s, valid to next-to-
next-to-leading logarithmic accuracy. Resummation is es-
sential for a realistic and reliable calculation of the QT
dependence in the region of small and intermediate values
of QT , where the cross section is the greatest. It is also
needed for stable estimates of the effects of experimental
acceptance on distributions in the diphoton invariant mass
and other variables.

Our analytical results are included in a fully updated
RESBOS code [31,32]. This numerical program allows us to
impose selections on the transverse momenta and angles of
the final photons, in order to match those employed by the
CDF and D0 collaborations, as well as those anticipated in
experiments at the LHC. Our predictions are especially
pertinent in the regionQT & Q. We show that our results at
the Tevatron and at the LHC are insensitive to the choice of
the resummation scheme and of the nonperturbative func-
tions required by the integration into the region of large
impact parameter.

The published collider data are presented in the form of
singly differential distributions. We follow suit in order to
make comparisons, and we find excellent agreement with
data, as shown in Sec. III. We recommend that more

2The recoil parton 5 always lies in the Oxz plane (has zero
azimuthal angle) in the Collins-Soper frame. For the final-state
singularity to occur at NLO, the photons should lie in the same
plane with 5, i.e., have sin’
 � 0.

3One of the resummed structure functions for the gg back-
ground is modulated by cos2’
 (see Sec. II B), but we neglect
this modulation in our present calculation.

4In the lab frame, a related distribution is in the variable
j’3T � ’4T j, where ’iT is the azimuthal angle between ~p�iT
and ~QT . The signal (background) processes tend to have more
events with large (small) magnitude of j’3T � ’4T j.
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differential studies be made, and, to motivate these, we
present predictions for the changes expected in the QT

distribution as a function of mass Q, and for the depen-
dence of the mean transverse momentum on Q.

We make predictions for continuum diphoton mass,
transverse momentum, and angular distributions at the
energy of the LHC. Moreover, we contrast in Fig. 15 the
shapes of some of these distributions with those expected
from the decay of a Higgs boson. The distinct features of
the signal and background suggest that the Higgs boson
discovery significance can be increased via a simultaneous
likelihood analysis of several kinematic distributions, par-
ticularly the resummed QT , ’
, and cos�
 distributions.

Another approach to the computation of continuum
diphoton production is presented by the DIPHOX collabo-
ration [14]. This calculation includes both the direct pro-
duction of photons from hard-scattering processes and the
photons produced from fragmentation of (anti)quarks or
gluons. It is valid at NLO, except for the gg subprocess,
which is included at leading order only. The DIPHOX code
is useful for rates integrated over transverse momentum,
but it is not designed to predict the transverse momentum
distribution or other distributions sensitive to the region in
which the transverse momentum of the diphoton pair is
small. Compared to a fixed-order calculation, such as
direct photon pair calculation in DIPHOX, our calculation
improves the theoretical prediction for event distributions
which are sensitive to the region of low QT . Furthermore,
our calculation includes the NLO contribution from the
combined gg� gqS channel, leading to more accurate
predictions at the LHC, where the gg� gqS contribution
is generally not small.

Only isolated, not inclusive, photons are identified ex-
perimentally. While it is straightforward to define an iso-
lated photon in a given experiment, it is challenging to
devise a theoretical prescription that can match the experi-
mental definition, short of first understanding the long-
distance dynamics of QCD. The isolated diphoton produc-
tion rate is modeled in the DIPHOX code by including
explicit photon fragmentation function contributions at
NLO accuracy. A shortcoming of this approach (as well
as of our method for treating isolation) is that one cannot
accurately represent photon fragmentation without includ-
ing final-state parton showering in the presence of isolation
constraints. There is inevitable ambiguity and uncertainty
in the choice of the ‘‘isolation energy’’ used to define an
isolated photon theoretically for comparison with the iso-
lated photon measured experimentally. As shown in
Sec. III, the DIPHOX cross section can vary by a large
factor in some regions of phase space at the Tevatron when
Eiso
T is changed from 1 GeV to 4 GeV.
Our approach is to concentrate on physical observables

which are less sensitive to the fragmentation contributions.
We apply the ‘‘collinear subtraction’’ prescription or the
‘‘smooth-cone isolation’’ prescription to define an isolated

photon in our calculation. We find good agreement with the
data, except in the region with small Q and �’< �=2,
consistent with our theoretical expectation that higher-
order direct photon production and photon fragmentation
contributions can strongly modify the rate of diphoton
pairs in this region. We suggest that much better agreement
with current and future data will be obtained if an addition
requirement of QT < Q is applied. With this cut, the frag-
mentation contributions are largely suppressed. With the
cut QT < Q applied to the Tevatron data, the enhancement
at low �’ and intermediate QT (the shoulder region)
should disappear. We urge the CDF and D0 collaborations
to apply these cuts in future analyses of the diphoton
data.

In our calculation, we identify an interesting spin-flip
contribution (with cos2’
 dependence) in the gg channel,
cf. Ref. [3], and we suggest that measurements be made of
the distribution of ’
 as a function of QT . All-orders
resummation of the gluon spin-flip contribution may be
needed when a larger statistical sample of diphoton data is
available.

The contributions from qg� �qg processes become
more important at the LHC than at the Tevatron, and
calculations at a higher order of precision may be war-
ranted eventually. To improve the theoretical prediction in
the region of phase space with QT < Eiso

T and ’
 � 0 or �,
a joint resummation calculation is needed in which the
effects of both the initial- and final-state multiple parton
emissions are treated simultaneously.

Although we emphasize that better agreement of our
predictions with data should be apparent if the selection
QT <Q is made, we also point out that the region QT >Q
should manifest very interesting physics of a different
sort. Additional logarithmic singularities of the form
log�Q=QT� are encountered in the region QT � Q.
These logarithms are associated with the fragmentation
of a parton carrying large transverse momentum QT into
a system of small invariant mass Q [27,28], a light �� pair
in our case. Small-Q �� fragmentation of this kind is not
implemented yet in theoretical models. Experimental study
of the region QT � Q may offer the opportunity to mea-
sure the parton to two-photon fragmentation function
D���z1; z2�.
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APPENDIX A: SUMMARY OF PERTURBATIVE
COEFFICIENTS

In this appendix we present an overview of the pertur-
bative QCD expressions for the resummed and asymptotic
cross sections used in our computation.

The functions Aa�C1; ���, Ba�C1; C2; ���,
Ca=a1

�x; b;C1=C2; ��, and ha�Q; �
� are introduced in
Sec. II. These functions are derived as perturbative expan-
sions in the small parameter �s=�:
 

Aa�C1; ��� �
X1
n�1

A�n�
a �C1�

�
�s� ���
�

�
n
;

Ba�C1; C2; ��� �
X1
n�1

B�n�a �C1; C2�

�
�s� ���
�

�
n
;

Ca=a1

�
x; b;

C1

C2
; �
�
�
X1
n�0

C�n�a=a1

�
x; b�;

C1

C2

��
�s���
�

�
n
;

ha�Q; �
� �
X1
n�0

h�n�a ��
�
�
�s�Q�
�

�
n
:

The value of a perturbative coefficient F�n� for a set of
scales C1=b and C2Q can be expressed in terms of its value
F�n;c� obtained for the ‘‘canonical’’ combination C1 � c0

and C2 � 1. Here c0 � 2e��E � 1:123, where �E �
0:5772 . . . is the Euler constant. The relationships between
F�n� and F�n;c� take the form

 A �1�
a �C1� �A�1;c�

a ; (A1)

 A �2�
a �C1� �A�2;c�

a �A�1;c�
a �0 ln

c0

C1
; (A2)

 

A�3�
a �C1� �A�3;c�

a � 2A�2;c�
a �0 ln

c0

C1

�
A�1;c�

a

2
�1 ln

c0

C1
�A�1;c�

a �2
0

�
ln
c0

C1

�
2
; (A3)

 B �1�
a �C1; C2� � B�1;c�a �A�1;c�

a ln
c2

0C
2
2

C2
1

; (A4)

 B �2�
a �C1; C2� � B�2;c�a �A�2;c�

a ln
c2

0C
2
2

C2
1

� �0

�
A�1;c�

a ln2 c0

C1
�B�1;c�a lnC2

�A�1;c�
a ln2C2

�
; (A5)

 

C�1�a=a1

�
x; b�;

C1

C2

�
� C�1;c�a=a1

�x� � 	aa1
	�1� x�

�

�
B�1;c�a

2
ln
c2

0C
2
2

C2
1

�
A�1;c�

a

4

�
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2
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�
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�x� ln

�b
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: (A6)

They depend on the QCD beta-function coefficients �0 �

�11Nc � 2Nf�=6, �1 � �17N2
c � 5NcNf � 3CFNf�=6 for

Nc colors and Nf active quark flavors, with CF � �N2
c �

1�=�2Nc� � 4=3 for Nc � 3. The relevant O��s� splitting
functions Pa=a1

�x� are
 

Pq=q � CF

�
1� z2

1� x

�
�

; Pq=g �
1

2
�1� 2x� 2x2�;

Pg=qS � CF
�1� x�2 � 1

x
; (A7)

 

Pg=g � 2CA

�
x

�1� x��
�

1� x
x
� x�1� x�

�
��0	�1� x�:

(A8)

The coefficients h�1���
�, B�2�, and C�1� depend on the
resummation scheme. The hard-scattering function is

 ha�Q; �
� � 1� 	s
�s�Q�
�

V a��
�
4

� . . . ; (A9)

where 	s � 0 in the CSS scheme and 	s � 1 in the CFG
scheme. The functions V q��
� for q �q! �� scattering
and V g��
� for gg! �� scattering are derived in
Refs. [12,13], respectively.

For the q �q� qg initial state, we obtain the following
expressions for the coefficients A, B, and C:
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Here CA � Nc, TR � 1=2, and the Riemann constant 
�3� � 1:202 . . . The C functions are given for j; k � u; �u; d; �d; . . .
These coefficients are taken from [12,41,42].

Similarly, the A, B, and C coefficients in the gg� gqS channel are
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2
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(A12)

These coefficients are taken from Refs. [12,13,43,44]
.

APPENDIX B: COMPONENTS OF THE ASYMPTOTIC CROSS SECTIONS

In Sec. II B we introduce asymptotic small-QT approximations for the q �q� qg and gg� gqS NLO cross sections,

 

Aq �q�Q;QT; y;�
� �
X

i�u; �u;d; �d;:::

�i��
�
S
f	� ~QT�Fi;	�Q; y; �
� � Fi;��Q; y;QT�g; (B1)

and
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� �
1

S
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0
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The functions F in these equations are defined as
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and

 F0g;� �
1

2�
�s
�

�
1

Q2
T

�
�
��P0g=g � fg=h1

��x1; �F�fg=h2
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Expressions for the coefficients A�1;c�
a , B�1;c�a , h�1�a ��
�, C

�1;c�
a=a0 �x�, and splitting functions Pa=c�x�, are listed in Appendix A.

Summation over all relevant parton flavors a0 � g; u; �u; d; �d; . . . for a � q and a0 � g, qS for a � g is assumed. In
addition, the ’
-dependent part �0g��
; ’
�F

0
g�Q; y;QT� of the gg� gqS asymptotic cross section Agg contains a splitting

function

 P0gg�x� � 2CA�1� x�=x; (B8)

contributed by the interference of splitting amplitudes with opposite gluon polarizations in the helicity amplitude
formalism [45–48]. The origin and behavior of this spin-flip function are discussed in Ref. [3].
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