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We present a measurement of the CP-violating asymmetry in B0 ! ���� decays using 535� 106 B �B
pairs collected with the Belle detector at the KEKB e�e� collider. We measure CP-violating coefficients
A � 0:16� 0:21�stat� � 0:08�syst� and S � 0:19� 0:30�stat� � 0:08�syst�. These values are used to
determine the unitarity triangle angle �2 using an isospin analysis; the solution consistent with the
standard model lies in the range 54� <�2 < 113� at the 90% confidence level.

DOI: 10.1103/PhysRevD.76.011104 PACS numbers: 13.25.Hw, 11.30.Er, 12.15.Hh

CP violation in the standard model is attributed to the
presence of an irreducible complex phase in the Cabibbo-
Kobayashi-Maskawa [1] (CKM) quark-mixing matrix. The
unitarity of the CKM matrix leads to six triangles in the
complex plane. One such triangle is given by the following
relation among the matrix elements: VudV	ub � VcdV

	
cb �

VtdV
	
tb � 0. The phase angle �2, defined as

arg
��VtdV
	
tb�=�VudV

	
ub��, can be determined by measuring

a time-dependent CP asymmetry in b! u �ud decays such
as B0 ! ����, ����0, and ���� [2]. The time-
dependent rate for B! ���� decays tagged with B0

(Q � �1) and �B0 (Q � �1) mesons is given by

 P ����t� �
e�j�tj=�B0

4�B0

f1�Q
A cos��m�t�

� S sin��m�t��g; (1)

where �B0 is the B0 lifetime, �m is the mass difference
between the two B0 mass eigenstates, �t is the proper-time
difference between the two B decays in the event, and A
and S are CP asymmetry coefficients. If the decay ampli-
tude is a pure CP-even state and is dominated by a tree
diagram, S � sin�2�2� and A � 0. The presence of an
amplitude with a different weak phase (such as from a
gluonic penguin diagram) gives rise to direct CP violation
and shifts S from sin�2�2�. However, the size of a penguin
amplitude is constrained to be small with respect to the
leading tree diagram by the small branching fraction of
B0 ! �0�0 [3].

The CP-violating parameters receive contributions from
a longitudinally polarized state (CP-even) and two trans-
versely polarized states (an admixture of CP-even and
CP-odd states). Recent measurements of the polarization
fraction by Belle [4] and BABAR [5] show that the longi-
tudinal polarization fraction is near unity (fL � 0:968�
0:023 [6]).

Here we present an improved measurement of the
CP-violating coefficients A and S using 492 fb�1 of
data containing 535� 106 B �B pairs. This data sample is
about a factor of 2 larger than that used in our earlier
publication [4]. In addition, we have modified the event
selection by reducing the threshold on a continuum sup-
pression variable; this increases our reconstruction effi-
ciency by about 70%. We subsequently introduce a
probability density function (PDF) for the continuum sup-
pression variable into the likelihood function; this provides
additional discrimination between signal and backgrounds.
The improvement in the statistical error of A and S
predicted by Monte Carlo (MC) simulation due to the
new event selection is about 12%.

The B �B pairs were collected with the Belle detector [7]
at the KEKB [8] e�e� asymmetric-energy (3.5 GeV on
8.0 GeV) collider with a center-of-mass (CM) energy at the
��4S� resonance. The ��4S� is produced with a Lorentz
boost of �� � 0:425 nearly along the z axis, which is
oriented antiparallel to the positron beam. Since the B0

and �B0 mesons are produced approximately at rest in the
��4S� CM system, the decay time difference �t is related
to the distance between the decay vertices of the two B
mesons as �t ’ �z=��c, where c is the speed of light.

The Belle detector [7] is a large-solid-angle spectrome-
ter. It includes a silicon vertex detector (SVD), a 50-layer
central drift chamber (CDC), an array of aerogel threshold
Cherenkov counters (ACC), time-of-flight scintillation
counters (TOF), and an electromagnetic calorimeter
(ECL) comprised of CsI(Tl) crystals located inside a super-
conducting solenoid coil that provides a 1.5 T magnetic
field.

We reconstruct B0 ! ���� decays by combining two
oppositely charged pion tracks with two neutral pions.
Each charged track is required to have a transverse mo-
mentum pT > 0:10 GeV=c in the laboratory frame and
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originate within dr < 0:2 cm in the radial direction and
within jdzj< 4:0 cm along the z-axis from the interaction
point, which is determined run by run. A track is identified
as a pion using information from the CDC, ACC, and TOF
systems. Tracks matched with clusters in the ECL that are
consistent with an electron hypothesis are rejected.

The �0 candidates are reconstructed from �� pairs with
an invariant mass in the range 117:8 MeV=c2 <M�� <
150:2 MeV=c2 (about�3� inm�0 resolution). Photons are
required to have energy E� > 50 MeV in the ECL barrel
region (32� < �< 129�) and E� > 90 MeV in the end cap
regions (17� < �< 32� and 129� < �< 150�), where �
denotes the polar angle with respect to the z axis.

To reconstruct �� mesons, we combine �� candidates
with �0 candidates. The ���0 combination must have an
invariant mass in the range 0:62 GeV=c2 <M���0 <
0:92 GeV=c2. To reduce combinatorial background with
low momentum �0’s, we reject �0’s with p < 0:35 GeV=c
in the CM frame. We also require �0:80< cos�� < 0:98,
where �� is the angle between the direction of the �0 from
the �� and the direction opposite the B0 momentum in the
�� rest frame. This requirement decreases backgrounds
arising from spurious combinations of low momentum
�0’s which lead to cos�� values near �1.
B0 ! ���� decays are identified using the beam-en-

ergy-constrained mass Mbc �
������������������������
E2

beam � p
2
B

q
and energy

difference �E � EB � Ebeam, where Ebeam is the beam
energy, and EB and pB are the energy and momentum of
the reconstructed B candidate, all evaluated in the CM
frame.

The flavor of the B meson accompanying the B0 !
���� candidate is identified via its decay products:
charged leptons, kaons, and �’s. A tagging algorithm [9]
yields the flavor of the tagged meson, Q, and a quality
factor, r. The parameter r ranges from 0 for no flavor
discrimination to 1 for unambiguous flavor assignment.
We divide the data sample into six r intervals (denoted ‘ �
1; 2; . . . ; 6). The wrong tag fractions !‘ for these intervals
and the differences �!‘ in these fractions between B0 and
�B0 decays are determined from data [9].

The dominant background originates from e�e� ! q �q
(q � u, d, s, c) continuum events. To separate q �q jetlike
events from more spherical B �B events, we use event-shape
variables, specifically, 16 modified Fox-Wolfram moments
[10] combined into a Fisher discriminant [11]. We form
signal and background likelihood functions Ls and LBG by
multiplying the PDF for the Fisher discriminant by a PDF
for cos�B, where �B is the polar angle in the CM frame
between the B direction and the beam axis. The PDFs for
signal and q �q are obtained from MC simulations and the
data sideband 5:23 GeV=c2 <Mbc < 5:26 GeV=c2, re-
spectively. We calculate the ratio R � Ls=�Ls �LBG�
and make a loose requirement R> 0:15.

The decay vertices of a ���� candidate and the tag-side
Bmeson are reconstructed using charged tracks that have a

sufficient number of SVD hits and an interaction point
constraint. The vertex reconstruction algorithm is de-
scribed in Ref. [12].

The analysis is organized in two main steps. We first
determine the yields of signal and background components
from a fit to the three-dimensional �Mbc;�E;R� distribu-
tion. Here, B0 candidates are required to satisfy
5:23 GeV=c2 <Mbc < 5:29 GeV=c2, �0:2 GeV< �E<
0:26 GeV, and R> 0:15. We subsequently perform a fit to
the �t distribution to determine the CP parameters A and
S. The signal region used for the �t fit is 5:27 GeV=c2 <
Mbc < 5:29 GeV=c2, �0:12 GeV<�E< 0:08 GeV, and
R> 0:15.

About 12.6% of events contain multiple B0 ! ����

candidates, most of which arise from fake �0’s combining
with good tracks. We select the best candidate based on the
�0 masses, i.e., minimizing

P
�0

1;2
�m�� �m�0�2. After this

selection, some multiple candidates remain due to combi-
nations of extraneous �� tracks with a single �0. Such
events constitute about 3% of the total number of events,
and for these events we select one candidate randomly.
Signal decays that have at least one � meson incorrectly
identified are referred to as ‘‘self-cross-feed’’ (SCF)
events.

The likelihood function used to determine the event
yields is given by

 L � exp
�
�
X
j

Nj

�YNevt

i�1

�X
j

NjP j�Mi
bc;�E

i;Ri�

�
; (2)

where j indicates one of the following event categories:
signal and ��� nonresonant decays, SCF events, contin-
uum background (q �q), b! c background, and charmless
(b! u) background. Nj is the yield of each category,
P j�Mi

bc;�E
i;Ri� is the PDF for the ith event for category

j, andNevt is the total number of events in the fit. Except for
the contributions of b! u background and SCF events,
the yields Nj are determined from the fit. Because of the
similar shapes of the Mbc, �E, and R distributions for
signal and ��� events, we cannot distinguish these two
components; the fraction of ��� events is measured in
Ref. [4] and constitutes �6:3� 6:7�% of the total
N�������� signal. The fraction of SCF events is deter-
mined from MC simulation to be 32.1% of all signal events
and is fixed in the fit. TheMbc and �E shapes for the signal
and SCF components are modeled by a two-dimensional
smoothed histogram obtained from a large MC sample. To
take into account a small difference between the MC and
data, the Mbc-�E shapes are corrected according to cali-
bration factors determined from a B� ! �D0��, �D0 !
K����0 control sample. The R shapes are modeled by
one-dimensional histograms, also obtained from MC
simulation.

The PDF for b! c background is the product of a
threshold ARGUS function [13] for Mbc, a quadratic poly-
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nomial for �E, and the sum of a Gaussian and a third-order
polynomial for R. The shapes of the �E and R distribu-
tions depend on the tag quality bin ‘. Parameters for all
distributions are obtained from the MC.

The Mbc and �E PDFs for q �q are modeled by an
ARGUS function and a linear function, respectively. The
�E slope depends on R and the tag quality bin ‘. The
shape parameters for Mbc and �E are floated in the fit. The
R PDF for q �q background is taken to be an eighth-order
polynomial function; the coefficients depend on the bin ‘
and are determined from a data sample collected at a CM
energy 
60 MeV below the ��4S�.

The b! u background is dominated by B!
���; a1�; a1�� decays. We estimate the B� ! �a1���

branching fractions (which are unmeasured) to be �20�
10� � 10�6 using the measured value for B0 ! a�1 �

�

[14]. For B� ! �a1��
� we assume branching fractions

of �30� 15� � 10�6, consistent with the present upper
limit for B0 ! a�1 �

� (< 6� 10�5 [15]). The fraction of
b! u events is very small (0.37%) and thus is fixed in the
fit according to the prediction of MC simulation. A fit to
176 843 events maximizing L yields N������ � 576�
53. Figures 1 and 2 show the Mbc, �E, and R distributions
along with projections of the fit result.

The CP-violating parameters A and S are obtained
using an unbinned ML fit to the �t distribution. The like-
lihood function for event i is given by

 L i �
X
n

Z
fn� ~xi�P n��t0�Rn��ti;�t0�d�t0; (3)

where n is one of the six event categories: correctly re-
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FIG. 1 (color online). Left: projections in Mbc for events satisfying �0:10 GeV<�E< 0:06 GeV. Right: projections in �E for
events with 5:27 GeV=c2 <Mbc < 5:29 GeV=c2. The top plots correspond to good quality tags (0:75< r < 1:0), and the bottom plots
correspond to lower quality tags (r < 0:75). The curves show fit projections: dashed is ���� � ���, dotted is q �q, dot-dashed is
b! c, small solid is b! u, and large solid is the total. For these plots the R requirement has been tightened to increase the ratio of
signal to background.
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constructed signal, SCF events, ��� nonresonant events,
b! c background, q �q background, and b! u back-
ground. The weights fn are functions of ~x 2
�Mbc;�E;R� and are normalized to the event fractions
obtained from the �Mbc;�E;R� fit. The PDFs P n��t� are
convolved with the corresponding �t resolution functions
Rn. Both fn and P n��t� depend on the tag quality bin ‘.

The signal PDF is given by Eq. (1) modified to take
into account the effect of incorrect flavor assign-
ment: e�j�tj=�B0=�4�B0��f1�Q�!‘�Q�1�2!‘�
Acos
��m�t��S sin��m�t��g. As the fraction of longitudinal
polarization fL is close to 100%, we assume that A �
AL, S � SL, and consider the potential contribution from
a transversely polarized amplitude as a systematic uncer-
tainty. The signal PDF is convolved with the same �t
resolution function as that used for Belle’s sin2�1 mea-
surement [12].

The fraction of SCF events with incorrectly recon-
structed vertices is estimated from MC simulation to be
�6:5� 0:1�% of all signal events. The PDFs P ��� and
P SCF are exponential with � � �B and � � 0:96 ps (from
MC), respectively; these are smeared by a common reso-
lution function.

The �t PDFs for the backgrounds are modeled as a sum
of prompt and exponential components: P k � fk		��t� �
�1� fk	�e

�j�tj=�k=2�k, where k represents continuum, b!
c, and b! u backgrounds, fk	 is the fraction of the prompt

component, 	��t� is the Dirac delta function, and �k is an
effective lifetime. These PDFs are convolved with a reso-
lutionlike function Rk parametrized as a sum of two
Gaussian functions. Parameters for P k and Rk are deter-
mined from a data sideband for continuum background and
from large MC samples for b! c and b! u backgrounds.
To account for small correlations between the shape of the
�t distribution and R for q �q background, the parameters
are obtained separately for low (0:15<R< 0:75) and
high (0:75<R< 1:0) R regions.

We determine A and S by maximizing
P
i logLi, where

i runs over the 18 016 events in the �Mbc;�E;R� signal
region. The results are A � 0:16� 0:21 and S � 0:19�
0:30, where the errors are statistical. The correlation coef-
ficient is �0:10. These values are consistent with no CP
violation (A � S � 0); the errors are consistent with MC
expectations. Figure 3 shows the data and projections of
the fit result.

The sources of systematic error are listed in Table I. The
error for most sources is evaluated by varying the corre-
sponding parameters by �1 standard deviation (�). We
vary the wrong tag fractions and the difference in these
fractions between B0 and �B0 decays independently in each
tag quality bin ‘. The effect of a possible asymmetry in
b! c and q �q is evaluated by adding such an asymmetry to
the b! c and q �q�t distributions. The uncertainty due to a
possible asymmetry in ��� nonresonant decays is esti-
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FIG. 3 (color online). The �t distribution and projections of the fit for events satisfying 0:5< r < 1:0: (a)Q � �1 tags, (b)Q � �1
tags. The hatched region shows signal events. The raw CP asymmetry is shown in (c). For these plots the R requirement has been
tightened to increase the ratio of signal to background.
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mated by varying A��� and S��� by 0.68, corresponding
to a 68% confidence interval of a free distribution. We vary
the branching fractions for a1� and a1� decays and also
allow for a CP asymmetry of up to 100% in these modes.
The error due to transverse polarization is obtained by first
setting fL equal to its central value [6] and varying AT , ST
from �1 to �1; then, conservatively assuming that the
transversely polarized component (with fraction fT � 1�
fL) is pureCP-odd for which AT �AL, ST � �SL, and
varying fL by its error. Summing up in quadrature all
systematic uncertainties, we obtain overall systematic er-
rors of �0:08 for both A and S. Thus,

 A � 0:16� 0:21�stat� � 0:08�syst� (4)

 S � 0:19� 0:30�stat� � 0:08�syst�: (5)

These values are consistent with, and supersede, our pre-
vious measurement [4]. They are also consistent with
results obtained by BABAR [5].

We constrain �2 using an isospin analysis [17], which
allows one to relate six observables to six underlying
parameters: five decay amplitudes for B! �� and the
angle �2. The observables are the branching fractions for
B! ����, ���0 [6], and �0�0 [3]; the CP parameters
A and S (our results); and the parameter A�0�0 for B!
�0�0 decays. The last parameter is not yet measured, but
nevertheless one can constrain�2. The branching fractions
must be multiplied by the corresponding longitudinal po-
larization fractions [6]. We neglect possible contributions
from electroweak penguins and I � 1 amplitudes [18] and
possible interference between signal and nonresonant com-
ponents. We follow the statistical method of Ref. [19] and
construct a 
2��2� using the measured values and obtain a

minimum 
2 (denoted 
2
min); we then scan �2 from 0� to

180�, calculating the difference �
2 � 
2��2� � 
2
min.

We insert �
2 into the cumulative distribution function
for the 
2 distribution for 1 degree of freedom to obtain a
confidence level (C.L.) for each �2 value. The resulting
function 1� C:L: (Fig. 4) has more than one peak due to
ambiguities that arise when solving for �2. The ‘‘flattop’’
regions in Fig. 4 arise because A�0�0 is not measured. The
solution consistent with the standard model is 62� <�2 <
106� at 68% C.L. or 54� <�2 < 113� at 90% C.L.
Recently, an alternative model-dependent approach to ex-
tract �2 using flavor SU�3� symmetry has been proposed
[20]. This method could potentially give more stringent
constraints on �2.

In summary, we present an improved measurement of
the CP-violating coefficients A and S in B0 ! ����

decays using 492 fb�1 of data, which corresponds to
535� 106 B �B pairs. These measurements are used to
constrain the angle �2.
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FIG. 4 (color online). 1� C:L: vs �2. The horizontal lines
denote C:L: � 68:3% (solid) and C:L: � 90% (dashed).

TABLE I. Systematic errors for CP coefficients A and S.

�A��10�2� �S��10�2�

Type �� �� �� ��

Wrong tag fractions 0.5 0.5 0.8 0.8
Parameters �m, �B0 0.2 0.3 0.6 0.7
Resolution function 1.4 1.5 1.0 1.7
Background �t distributions 0.5 0.5 1.0 1.1
Component fractions 1.5 1.9 3.9 3.7
��� nonresonant fractions 1.2 1.0 1.5 1.2
SCF fraction, �t PDF 0.2 0.2 0.1 0.1
Shape of R PDF 0.8 0.7 1.2 1.3
Vertexing 2.1 2.1 1.0 1.3
Possible fitting bias 0.3 0.0 0.3 0.0
Background asymmetry 1.1 0.0 0.0 0.4
b! u asymmetry 2.4 2.9 2.4 3.2
��� asymmetry 4.6 4.6 4.6 4.6
Transverse polarization 3.8 2.8 4.6 2.7
Tag-side interference [16] 3.7 3.7 0.1 0.1

Total 8.3 8.0 8.4 7.9
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