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We analyze soliton solutions in the two-family Calogero model. There are two types of solutions, a one-
soliton–antisoliton solution and a wave solution. It is shown that there is no finite number of solitons at
finite distances in the limit when the period of wave solutions tends to infinity.
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I. INTRODUCTION

The multispecies Calogero model has been extensively
studied in the quantum mechanical [1–4] and in the
collective-field theory context [5–9]. It represents the gen-
eralization of the ordinary Calogero model with identical
particles to the Calogero model with nonidentical particles.
This can be achieved by allowing particles to have different
masses and different couplings to each other [10–12]. In all
of these generalizations the interaction parameters and
masses satisfy some specific relations in order to avoid
the cumbersome three-body interactions. It has been shown
quite recently [3,4] that the two-species Calogero models
are exactly solvable if the interaction strength between
particles of the first and the second family �12 is equal to
�1. As far as the other interesting parameter sector �12 �
1 of the same model is concerned, in [7] it was shown that
the Hamiltonian of the Hermitian matrix model can be
interpreted as a two-species Calogero model, whose
families are connected by duality. In the next paper [8],
the same authors studied the solitonic structure of the
aforementioned duality-based matrix model. The multi-
vortex solutions of the coupled Bogomol’nyi-Prasad-
Sommerfeld equations were interpreted as giant gravitons
[13]. On the other hand [5,6], we have studied the same
BPS equations in the collective-field variant of the
Calogero model with distinguishable particles and no mul-
tivortex solutions were found. We think that a more de-
tailed analyses of coupled BPS equations is welcome, not
only to present comparison with earlier investigations but
also to unveil the full spectrum of all possible solitonic
solutions. Therefore, it is natural to ask if our collective-
field approach admits vortexlike solutions and, in this case,
which are their properties. Our approach follows closely
that developed in [5] for constructing soliton solutions in
the two-species Calogero model except that now we dem-
onstrate explicitly that the problem can be reduced to two
decoupled free one-family Calogero systems. In this brief
note we will prove that in the two-species Calogero model,
there are no solutions describing the finite number of

solitons, mutually at finite distances, contrary to the claims
in [7,8].

II. BPS EQUATIONS AND THEIR SOLUTIONS

The Hamiltonian [5–9] for the two-family Calogero
model in the collective-field formulation is
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Z
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up to some singular terms which do not contribute in the
leading order in the 1

N1
and 1

N2
expansions. The collective

fields �1 and �2 are normalized as

 

Z
dx�1�x� � N1;

Z
dx�2�x� � N2; (2)

where N1 and N2 are large numbers of particles in the first
and the second family, respectively, and �1�x� and �2�x�
represent the corresponding canonical momenta. In (1) we
imposed the restriction that there be no three-body inter-
actions which requires [1,2,5,9]

 

�1

m1
2 �

�2

m2
2 �

1

m1m2
: (3)

In addition, we restrict ourselves to the so-called dual
variant of the model in which the coupling parameters
are related by

 �1�2 � 1: (4)

To find the ground-state energy, we assume that the corre-
sponding densities are static. Since their momenta are
vanishing, the leading part of the Hamiltonian (1) in the
1
N1

and 1
N2

expansions is given by the effective potential
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The potential (5) is positive semidefinite and its contribu-
tion to the ground-state energy vanishes if there exist
positive solutions of the coupled BPS equations
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By substracting BPS Eqs. (6) and (7) and having in mind
the condition (4), we easily get

 �1�x��2�x� � c: (8)

Let us now extend our construction of a one-soliton–anti-
soliton solution [5] and obtain a general solution of two
coupled BPS Eqs. (6) and (7). It is more convenient to work
with the simpler, auxiliary problem

 

�1 � 1

2

@xr1

r1
� �1

Z
� dy

r1�y�
x� y

� 0; (9)

 

�2 � 1

2

@xr2

r2
� �2

Z
� dy

r2�y�
x� y

� 0: (10)

These equations are in fact the BPS equations for two
decoupled one-family Calogero systems described by the
collective fields r1 and r2. Our construction of a general
solution to the coupled system (6) and (7) is given by

 �1�x� � �� r1�x�; �2�x� �
c
�
� r2�x�; (11)

where � is some constant parameter. It is easy to verify that
our construction (11) automatically satisfies the coupled
BPS equations (6) and (7). To this end we use Eqs. (4) and
(11) and rewrite �1 and �2 in terms of r1 and r2 as

 �1�x� � �
c
�
r1�x�
r2�x�

; �2�x� � ��
r2�x�
r1�x�

: (12)

By differentiating these relations with respect to x and
using Eqs. (9) and (10), we end up with the coupled BPS
equations (6) and (7) for �1 and �2: In this way, we have
reduced the two-family Calogero model to two one-family
Calogero decoupled systems. We will prove this decou-
pling in Sec. III without relying on any devised ansatz for
�1 and �2: To proceed further, it is useful to recall the
following Hilbert transforms [14]
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From these transforms, one easily finds only two types of
solutions of the auxiliary BPS equations (9) and (10):

(1) Nonperiodic one-soliton solution

 r�x� �
�� 1

��
b

x2 � b2 ; (15)

with the property
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�
: (16)

(2) Periodic, wave solution
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2��
k
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coshu� coskx

; (17)

with arbitrary period 2�
k and with the property
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�
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Let us first analyze the nonperiodic solutions. According to
Eq. (15) the solutions r1 and r2 are given by
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From Eq. (8) and the normalization conditions (2), we find
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It is important to note that the numbers of particles N1, N2

and the length of the system L are simultaneously taken to
infinity keeping the particle densities �1;0 and �2;0 fixed.
We see that in the limit jxj ! 1, r1�x� and r2�x� vanish,
while the �1�x� and �2�x� reduce to constants � and c

� ,
respectively. For �1 < 1, the first soliton �1 behaves like
the hole in the condensate � and the second one �2 behaves
like the particle above the condensate c

� . It is interesting to
observe that in the singular limit c! 0 [5], the first soliton
�1 reduces to the ‘‘vortex’’ profile
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while the second soliton �2 transforms into the sharp delta-
function profile

 �2�x� � �1� �1���x�: (22)

Let us now apply our general construction (11) to the
periodic solutions of the form (14) with the same period 2�

k .
We obtain
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where u1 > u2 � 0. Note that k is a free arbitrary parame-
ter. From Eq. (8) we find
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whereas from Eqs. (11) it follows
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Using Eqs. (25)–(28), we obtain
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Let us now discuss some interesting cases. For u2 ! 0
and finite k and u1, the soliton solutions are

 �1�x� � ��
�1 � 1

2��1
k

sinhu1

coshu1 � coskx
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sin2 kx

2

sinh2 u1
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; (30)
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X
i2Z

�
�
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k
i
�
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where

 �1� �1�k � 2��2;0; � �
1� �1

2��1
k coth

u1

2
: (32)

The solution �1, in fact, represents the large-amplitude
stationary wave with vanishing minimum density. The

other solution �2, is given by the sum of an infinite number
of �-function contributions with the finite period 2�

k . It is
interesting to observe that the product �1�x��2�x� vanishes.
Let us now investigate another interesting case in which
parameter k goes to zero. Taking the limit k! 0, we must
simultaneously take u1 ! 0 in order to have finite � (for
finite u1, � goes to zero, leading to an unacceptable solu-
tion �1 � 0). For u1

k � b finite, we obtain only one non-
periodic solution

 �1�x� � �
x2

x2 � b2 ; �2�x� � �1� �1���x�: (33)

This is the same solution as already obtained, (21) and
(22). Note that the limiting procedure survives only one
�-function contribution in �2�x�, namely, that with i � 0.
Of course, this is to be expected, since the period 2�

k ! 1

and one obtains only one nonperiodic solution (33). In
other words, all of the other copies of the basic profile
(33) escape to infinity. Consequently, there are no solutions
describing the finite number of vortices, mutually at finite
distances, contrary to the claims in [7,8]. The reason for
this is quite clear. While we are considering the BPS
equations on the whole real line, the authors of [7,8] solve
them on the finite interval L with periodic boundary con-
ditions. This enables them to find the periodic solutions
with a finite number of solitons. However, in extrapolating
their solutions to the whole real line, i. e. by taking the limit
L! 1, the authors of [7,8] overlooked the fact that the
mutual distances (L=n) of the n solitons also go to infinity.
Consequently, all multisoliton solutions simply disappear
in that limit. The only solutions that survive are the one-
soliton–antisoliton solution and stationary wave solutions.

III. PROOF OF DECOUPLING AND CONNECTION
WITH MOVING SOLITON SOLUTIONS

Let us now prove in general that the two-family
Calogero model can be reduced (at least in the static sector)
to two decoupled one-family Calogero systems. To this
end, we insert the �2 from Eq. (8) into the Eq. (6) and get
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2
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Z
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Z
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1
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1
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At this point we make use of the identity
 Z
�
Z
� dxdyf�x�g�y�

�
1

x� y
1

x� z
�

1

y� x
1

y� z

�
1

z� x
1
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�
� �2�f�z�g�z� � f0g0�; (35)

where the average densities f0 and g0 satisfy

 

Z
dx�f�x� � f0� �

Z
dx�g�x� � g0� � 0: (36)
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Choosing f � g � �1, we can rewrite the Hilbert trans-
form of Eq. (34) as
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By using the identity (35) for f � g � 1
�2

and then for f �
1
�1

and g � �2, we can completely get rid of all integrals
involving 1

�1
. The final step of the proof is given by

differentiation of Eq. (6) with respect to x. Then Eq. (37)
reduces, after some algebra, to the second order, nonlinear
integro-differential equation for �1:
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(38)

This is nothing but the one-family Calogero model varia-
tional equation for a localized constant profile configura-
tion, propagating at speed v1 given by

 v1 � �
c�
�1;0

: (39)

The analogous equation for �2 and the corresponding
velocity v2 can be obtained from Eqs. (38) and (39) simply
by permuting the family indices 1$ 2. The two-family

Calogero model can thus be thought of as a system of two
separated noninteracting Calogero families. The periodic
and nonperiodic solutions of Eq. (38) were already found
in [15–18]. For example, the nonperiodic soliton solution
reads

 �1�x� � �1;0 �
�1 � 1

��1

s

x2 � s2 ; (40)

where s denotes the parameter given by

 s �
�1��1 � 1���1;0

v2
1 � �1

2�2�1;0
2 : (41)

By substituting velocity v1 from Eq. (39) into Eq. (41), we
obtain the solution (40) which coincides with the form (11)
and relation (15). The same conclusion can be reached
concerning the periodic solutions of Eq. (38).

IV. CONCLUSION

In this paper, we have shown that our general construc-
tion of the solutions of the coupled BPS equations in the
two-family Calogero model leads to the decoupled BPS
equations for one-family Calogero models. This has en-
abled us to find all the solutions of the original BPS
equations which, in fact, reduce only to one-soliton–anti-
soliton solution and periodic, stationary wave solutions.
Finally, we have shown that in the singular limit, when the
period of solutions tends to infinity, there are no solutions
describing the finite number of solitons (vortices), mutu-
ally at finite distances.
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