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The matrix model formulation of two dimensional string theory has been shown to admit time
dependent classical solutions whose closed string duals are geodesically incomplete space-times with
spacelike boundaries. We investigate some aspects of the dynamics of fermions in one such background.
We show that even though the background solution appears pathological, the time evolution of the system
is smooth in terms of open string degrees of freedom, viz. the fermions. In particular, an initial state of
fermions evolves smoothly into a well-defined final state over an infinite open string time interval, while
the time perceived by closed strings appears to end abruptly. We outline a method of calculating fermion
correlators exactly using symmetry properties. The result for the two-point function is consistent with the
semiclassical picture.
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I. INTRODUCTION

Recently several examples of spacelike and null singu-
larities in string theory have been analyzed using holo-
graphic dual formulations. These include backgrounds in
the matrix model formulation of two dimensional string
theory which lead to spacelike boundaries in the closed
string interpretation [1], ten dimensional backgrounds
which admit a matrix theory type formulation [2–5], and
deformations of AdS space-times which admit a dual
gauge theory description [6,7]. In all these examples,
(which build on a large body of earlier work on strings
on time dependent background [8]), the low energy space-
time description breaks down at the singularity as ex-
pected. However in each case the open string dual appears
to be well defined. This realizes a long held belief that near
singularities the usual notions of space and time have to be
abandoned and replaced by some more fundamental struc-
ture: in these cases this structure is provided by the open
string dual.

The examples in two dimensional string theory are
particularly significant in this respect since the dual matrix
model reduces to a model of free fermions in an external
inverted harmonic potential and therefore in some sense
solvable. In recent years it has been realized that the matrix
model/string theory connection is in fact open-closed dual-
ity just like the AdS/CFT correspondence [9]. The matrix
degrees of freedom—and hence the fermionic eigenval-
ues—are the open strings, while the closed string descrip-
tion is most conveniently provided by collective field
theory [10,11]. The collective field is a bosonization of
the fermion field. Nontrivial time dependent classical so-
lutions of the collective field theory correspond to time
dependent Fermi surfaces. Such backgrounds have been
studied for quite a while [12]. In [13–15] a class of such
backgrounds were studied as toy models of cosmology.

In [1] it was shown that there is a class of backgrounds
whose closed string interpretation involve space-times
with a spacelike boundary. In these latter backgrounds,
the time of the matrix model—which we call the open
string time—runs over the full range �1< t <1.
However, the time in terms of which the collective field
fluctuations define a relativistic theory—which we call the
closed string time—stops abruptly, thus forming a space-
like I�. This I� is however not an asymptotic region since
the coupling is nonvanishing, though there is a part of I�

where the coupling becomes arbitrarily weak.
At first sight, it appears that the spacelike singularity is

caused by the fact that in this background the eigenvalue
space shrinks to zero at late times so that closed strings
have no space to propagate. The same fact might also
suggest that there is no well defined scattering problem.
The analysis of [1] however showed that the ‘‘space’’ on
which the closed string modes propagate is related to the
space of eigenvalues in a nontrivial time dependent way.
As a result, this closed string space is still of infinite extent
at arbitrarily late times and there is indeed a well-posed
scattering problem. This conclusion is based on the qua-
dratic part of the action for collective field fluctuations.
Since a large part of I� is strongly coupled, one might
worry that the effects of nonzero coupling may signifi-
cantly modify this picture.

In this paper we revisit this model from the point of view
of the fermionic theory so that the couplings of the collec-
tive field are treated in an exact fashion. We first study the
classical evolution of small ripples on the Fermi sea and
derive an equation which determines the shape of the ripple
at late times in terms of the initial state, analogous to the
scattering equation for perturbations around the ground
state [16,17]. We find that initial pulses which are approxi-
mately localized at early or late retarded time scatter into
final pulses which are localized on the (spacelike) I� at
large values of the closed string spatial coordinate q—as
expected from linearized collective field theory. This is
consistent, since for large q the coupling is weak. For small
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retarded times, the scattered pulse is still localized,
although its location is shifted compared to the expecta-
tions of free collective theory.

We then establish a general relation between exact fer-
mion correlators in the time dependent background and
those in the ground state. This enables a calculation of
these correlators in terms of those obtained in [18]. We
illustrate this by an exact calculation of the eigenvalue
density. The result again shows that the picture based on
collective field theory is reliable in the expected regime.

The present paper deals with one particular background
in [1]. The methods and results are, however, expected to
be similar for the other backgrounds discussed in that
paper.

In Sec. II, we review the background solution and the
behavior of collective field fluctuations at the linearized
level described in [1]. Section III describes some aspects of
the classical dynamics of small ripples on the Fermi sea
using the exact fermion equations of motion, following
[16,17]. This is used in Sec. IV to derive a scattering
equation for such ripples riding on the time dependent
background. In Sec. V we obtain profiles of the scattered
pulse for an initial Gaussian pulse by numerically inves-
tigating the scattering equations. In Sec. VI we outline a
general method for calculating exact correlation functions
of fermions in such backgrounds, utilizing properties of
W1 symmetry and obtain an explicit expression for the
eigenvalue expectation value.

II. c � 1 MATRIX MODEL AND 2D STRING
THEORY

In this section we review the way (approximate) relativ-
istic space-time appears in the c � 1 matrix model [19].

The dynamical variable of the model is a single N � N
matrix Mij�t� and there is a constraint which restricts the
states to be singlets. In the singlet sector, and in the double
scaling limit [19], matrix quantum mechanics reduces to a
theory of an infinite number of fermions with the single
particle Hamiltonian given by

 H � 1
2�p

2 � x2�; (1)

where we have adopted conventions in which the string
scale �0 � 1 for the bosonic string and �0 � 1

2 in the Type
0B string. The Fermi energy in this rescaled problem will
be denoted by ��.

In the classical limit, the system is equivalent to an
incompressible Fermi fluid in phase space. The ground
state is the static Fermi profile

 �x� p��x� p� � 2�: (2)

The dual closed string theory is best obtained by rewrit-
ing the theory in terms of the collective field ��x; t� which
is defined as the density of eigenvalues of the original
matrix.

 @x��x; t� �
1

N
Tr��M�t� � x 	 I�: (3)

At the classical level the action of the collective field is
given by
 

S � N2
Z
dxdt

�
1

2

�@t��2

�@x��
�
�2

6
�@x��

3

�

�
��

1

2
x2

�
@x�

�
: (4)

This is of course a theory in 1� 1 dimensions, the spatial
dimension arising out of the space of eigenvalues.

Fermi seas with quadratic profiles appear as classical
solutions to collective field theory in the appropriate limit.1

The space-time which is generated may be obtained by
looking at the dynamics of fluctuations of the collective
field around the classical solution. Expanding around an
arbitrary classical solution �0�x; t�

 ��x; t� � �0�x; t� �
1

N
’�x; t�: (5)

The action for these fluctuations at the quadratic level may
be written as

 S�2�’ �
1

2

Z
dtdx

���
g
p
g��@�’@�’; (6)

where �; � � t; x. The line element determined by g�� is
conformal to

 ds2 � �dt2 �
�dx� @t�0

@x�0
dt�2

��@x�0�
2 : (7)

Therefore, regardless of the classical solution, the spec-
trum is always a massless scalar in one space dimension
given by x. The metric can be determined only up to a
conformal factor. However, as we will see below, the global
properties of the space-time can be determined from the
nature of the classical solution.

The classical interaction Hamiltonian is purely cubic
when expressed in terms of the fluctuation field ’ and its
canonically conjugate momentum �’,

 H�3�’ �
Z
dx
�

1

2
�2
’@x’�

�2

6
�@x’�

3

�
: (8)

A. The ground state and its fluctuations

The ground state (2) is a quadratic profile and the
classsical solution is

1Quadratic profiles are those Fermi surfaces f�x; p� � 0 where
p appears at most quadratically. Profiles which are not quadratic
do not correspond to classical solutions of collective field theory
[20]. Rather they are highly quantum states of the collective
theory in which quantum dispersions do not vanish in the
classical limit [21].
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 @x�0 �
1

�

������������������
x2 � 2�

q
; @t�0 � 0: (9)

Around the ground state, the metric (7) is given by

 ds2 � �dt2 �
dx2

x2 � 2�
: (10)

The perturbative fluctuations live in the region jxj>
�������
2�
p

and the field ’ satisfies Dirichlet boundary condition at the
‘‘mirrors’’ given by x � 


�������
2�
p

. The fields on the ‘‘left’’
and ‘‘right’’ side are decoupled at the perturbative level.
The physics of these fields is made transparent by choosing
Minkowskian coordinates ��; �� which in this case are

 t � �; x � 

�������
2�

p
cosh�: (11)

In these coordinates

 ds2 � �d�2 � d�2: (12)

The field ’ may be now thought of being made of two
fields, ’S;A�x; t� each of which live in the region x > 0

 ’S;A�x; t� �
1
2�’�x; t� 
 ’��x; t��: (13)

In terms of the Minkowskian coordinates, solutions to the
linearized equations are plane waves ’S;A �
e�i!�t
��’S;A�!� and these Fourier components are related
to the two space-time fields—the tachyon T and the axion
C—which appear in the standard formulation of Type 0B
string theory [22]:

 T�!� � ��=2��i!=8 ��i!=2�

���i!=2�
’S�!�

C�!� � ��=2��i!=8 ���1� i!�=2�

���1� i!�=2�
’A�!�:

(14)

In any case, the space-time generated is quite simple. The
Penrose diagram is that of two dimensional Minkowski
space with a mirror at � � 0, as shown in Fig. 1. The
fluctuations are massless particles which come in from
I�L;R, get reflected at the mirror, and arrive at I�L;R.

Recall that we are working in string units. The trans-
forms (14) imply that the position space fields are related
by a transform which is nonlocal at the string scale.
Therefore points on the Penrose diagram should be thought
of as smeared over the string scale. But then, this should be
true of any Penrose diagram drawn in a string theory.

In terms of the Minkowskian coordinates the interaction
Hamiltonian becomes

 H3 �
Z
d�

1

2sinh2�

�
1

2
~�’

2@�’�
�2

6
�@�’�

3

�
: (15)

The canonically conjugate momentum ~�’ satisfies the
standard commutator �’���; ~�’��0�� � i���� �0�. The
interactions therefore vanish at � � 1 and are strong at
� � 0—this gives rise to a nontrivial wall S-matrix.

In the Type 0B string theory interpretation, the Penrose
diagram has to be folded across the center.

As emphasized above, the metric is determined only up
to a conformal transformation. So long as the conformal
transformation is nonsingular, this is sufficient to draw
Penrose diagrams. A conformal transformation would,
however, mix up the space � and time � and it would
appear that this leads to an ambiguity. The special property
of the space and time coordinates defined above is that the
interaction Hamiltonian is time-independent with this
choice and a conformal transformation would destroy
this property. This makes the physics transparent and
easy to compare with string theory results. Of course a
different coordinatization with a time dependent
Hamiltonian is physically equivalent and should be com-
pared with the string theory results in an appropriately
chosen gauge.

B. Time dependent Fermi surfaces

The theory has an infinite number of symmetries, the
W1 symmetries. At the classical level, the generators of
these symmetries in fermion phase space are given by

 Wrs � e�r�s�t�x� p�r�x� p�s: (16)

For r � s these generators do not commute with the
Hamiltonian. Therefore starting with the ground state,
one can obtain exact time dependent solutions by the action

mirror

I+

I−

FIG. 1. Penrose diagram of space-time produced by ground
state solution showing an incoming ray getting reflected at the
mirror.
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of these generators [15]. We will be particularly interested
in generators Wr0 and W0r. These generate the transforma-
tions with parameters 	


 �x
 p� ! �x
 p� � 	
e

rt�x� p�r�1 (17)

and leads to the following Fermi surfaces
 

x2 � p2 � 	�e
�rt�x� p�r � 	�e

rt�x� p�r

� 	�	��x
2 � p2�r�1 � 2�: (18)

Formally, the state of the fermion system is related to the
ground state j�i by

 j	i � exp�i	W�j�i; (19)

where W denotes the W1 charge which generates this
solution. However this state is not normalizable and there-
fore not contained in the Hilbert space of the model.
Rather, this corresponds to a deformation of the
Hamiltonian of the theory to

 H0 � e�i	WHei	W: (20)

C. The closing hyperbola solution

In this paper we will concentrate on the ‘‘closing hyper-
bola solution’’ found in [1]. This is the solution generated
by the action of W20, i.e. with 	� � 0 and 	� < 0. In this
case we can choose the origin of time and choose 	� �
�1. Furthermore x and p may be rescaled to set � � 1=2.
In the rest of the paper we will stick to these choices. The
classical collective field is then

 @x�0 �
1

��1� e2t�

�����������������������������
x2 � �1� e2t�

q

@t�0 � �
xe2t

1� e2t @x’0:

(21)

This will be called the ‘‘closing hyperbola’’ solution shown
and explained in Fig. 2.

The (approximately) relativistic space-time perceived
by the fluctuations around this classical solution can be
once again best seen in Minkowskian coordinates q, � in
terms of which the quadratic action is

 S�2� �
Z
dq

Z
d���@�’�2 � �@q’�2� (22)

and the interactions are independent of �. These coordi-
nates are related to the original coordinates �t; x� by the
relations

 x � �
coshq����������������
1� e2�
p ; et �

e�����������������
1� e2�
p : (23)

We have restricted our attention to one side of the inverted
harmonic potential (x < 0) and the range of q can be
chosen to be

 0  q  1: (24)

To describe the other side we need to have another patch of
the �q; �� coordinates. In the rest of the paper we will
restrict to one side since for this background the physics
of the other side is identical.2 The interaction Hamiltonian
is then given by

 H3 �
Z
dq

1

2sinh2q

�
1

2
~�2
’@q’�

�2

6
�@q’�3

�
: (25)

The Eqs. (23) immediately show that as �1< t <1
the time � has the range �1< �< 0. Since the dynamics
of the matrix model ends at t � 1 the resulting space-time
appears to be geodesically incomplete with a spacelike
boundary I� at � � 0. This boundary is, however, not an
asymptotic region since the coupling is generally nonvan-
ishing here except for q! 1.

The edge of the Fermi sea is at q � 0, which forms a
timelike reflecting boundary. If we ignore the couplings of
the collective field theory, fluctuations coming in from I�

along q� � q� � � �0 will get reflected by the mirror at
q � 0 so long as �0 < 0 and hit the spacelike boundary I�

at q � ��0. For �0 > 0 this ray cannot reach the mirror
before time ends—rather it directly hits the spacelike
boundary at q � �0. The Penrose diagram with these two
classes of rays is shown in Fig. 3. Note, however that in x
space the ray always turns around at some point, as may be
seen from the change of variables (23).

x

31 2
p

1

0
0

-1

2

-2

-3 -2 -1

FIG. 2 (color online). The closing hyperbola solution. At late
times the hyperbola closes on into itself draining all the fermi-
ons.

2This is not adequate for some of the other solutions described
in [1].
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In fact, in the fermion picture the Fermi sea gets drained
out and it appears that at t! 1 there is no Fermi sea at all,
whereas in the bosonic picture there is a spacelike I�.
What is happening is that at t � 1, the entire spacelike
boundary � � 0 is at jxj � 1, where the coordinate q runs
over its full range 0  q  1. It is therefore clear that the
scattering problem has to be formulated in the �q; �� space
rather than in the �x; t� space.

Since the bosonic coupling is nonvanishing on the I�,
one might worry that interaction effects might substantially
modify this picture. To address these issues we next ana-
lyze the dynamics of small ripples on the Fermi sea directly
in the fermion picture, thus taking into account the bosonic
interactions in an exact fashion.

III. CLASSICAL DYNAMICS OF RIPPLES ON THE
FERMI SEA

We now set up the exact equations for the dynamics of
fluctuations around an arbitrary time dependent solution
with a quadratic profile, following the method of [16].
Consider a point on the deformed Fermi surface labeled
by a parameter �. The dynamics of this point is then given
by

 x�t� � �a��� cosh�t� ��;

p�t� � �a��� sinh�t� ��:
(26)

This implies

 x2�t� � p2�t� � �a2���; x�t� � p�t� � �a���et��:

(27)

Let this point be at some location x � x1 at some time t1. If

this point returns again to this location at some later time
t2, we must have p�t1� � �p�t2�. Therefore (26) shows
that

 t1 � � � �� t2: (28)

Note that we have assumed that t2 > t1 and this can happen
only if

 jp�t1�j< jx1j p�t1�> 0: (29)

If the first inequality is not satisfied the point goes over to
the other side of the potential. If the second inequality is
violated, the point never returns to the same value of x at a
later time.

Using the equations of motion to eliminate the parame-
ter �, the ripple can be described by a function P�x; t�.
Then the equation p�t1� � �p�t2� provides a scattering
equation for the ripple

 P�x1; t1� � �P�x1; t2�: (30)

Combining (27) and (28) we get
 

t2 � t1 � 2��� t1� � 2�t2 � �� � log
x1 � P�x1; t2�
x1 � P�x1; t2�

� log
x1 � P�x1; t1�
x1 � P�x1; t1�

: (31)

In this paper we will be interested in the evolution of a
pulse around the Fermi surface given by the closing hy-
perbola solution (21). This is given by a Fermi surface

 x2 � p2 � e2t�x� p�2 � 1 (32)

which may be solved to obtain the value of momentum at a
point x at time t

 

�P
�x; t� �
xe2t

1� e2t 


�����������������������������
x2 � �1� e2t�

p
1� e2t : (33)

Expressed in terms of the coordinates �q; �� defined in (23)
these become

 

�P
�q; �� � �
coshqe2�����������������

1� e2�
p 
 sinhq

����������������
1� e2�

p
: (34)

We will call the solution P� the upper branch of the Fermi
sea, and P� the lower branch of the Fermi sea.

Consider a ripple which is a perturbation of the upper
branch �P��x; t� at early times. Since the Fermi surface is
itself time dependent, at late times the ripple can appear
either as a perturbation of the lower branch or the upper
branch, depending on the initial condition. To determine
which branch the final ripple ends up in, it is sufficient to
consider a point exactly on the Fermi surface. The motion
of a generic point may be written as

 x��0; t� � ��cosh�0e
t � 1

2e
�
0e
�t� (35)

where �0 parametrizes the particular point. It is clear from
the solution (33) that the upper and lower branch meet at

I−

I+

mirror

FIG. 3. Penrose diagram for small fluctuations around the
closing hyperbola solution showing two classes of null rays.
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 x � �
���������������
1� e2t

p
: (36)

This means that if

 x��0; t�<�
���������������
1� e2t

p
(37)

for all times, the initial point remains in the upper branch.
From (35) the condition (37) implies

 sinh 2�0e2t � 1
4e

2�0e�2t � �e�0 cosh�0 � 1�> 0: (38)

A sufficient condition for this to happen is

 �0 > 0: (39)

It is straightforward to see that this is also a necessary
condition, by explicitly analyzing the trajectory equation
for small �0 < 0.

To understand the significance of this condition it is
useful to express the trajectory in terms of the coordinates
�q; �� defined in (21). In terms of �, (35) simply becomes

 x��0; �� � �
cosh��0 � ������������������

1� e2�
p : (40)

In other words the trajectory is simply described by

 q� � � �0: (41)

In other words, �0 is the retarded time in the closed string
interpretation and gives us two distinct situations for the
scattering: for �0 < 0, the scattered pulse is a ripple on the
lower branch, while for �0 > 0 it remains on the upper
branch. This is in exact correspondence with the behavior
of an excitation of the collective field theory at the line-
arized level discussed in the previous section. In that case,
the excitation got reflected by the mirror at q � 0 for the
retarded time �0 < 0, while for �0 > 0 the excitation never
reaches the mirror. However, the behavior of the pulse
discussed in this section is exact at the classical level and
therefore includes effects of the interactions in collective
field description.

IV. THE SCATTERING EQUATION

We would like to understand how an initial small fluc-
tuation produced around the closing hyperbola solution
background evolves in time. Perturbing around the classi-
cal solution we define fluctuation fields 

�x; t� as follows

 P
�x; t� � �P
�x; t� 
 

�x; t�: (42)

The initial time will be taken to be localized near some
large negative value of x � �x1 at an early time t! �1.
In terms of the q, � variables defined in (23) this means

 q1 !1 �1 ! �1 (43)

with some finite value of the retarded time

 q1 � �1 � �0 � finite: (44)

The aim is to find the behavior of the pulse at t � t2 � 1 at

some finite value of q2

 �2 ! 1 q2 � finite: (45)

Now let us study both cases separately:

A. The case �0 < 0

For this case, the scattered pulse reaches the lower
branch of the Fermi surface and the scattering equations
will be

 t1 � t2 � 2�t2 � �� � t2 � ln
x1 � P��t2; x1�

x1 � P��t2; x1�
; (46)

where we have used (31). The condition p�t1� � �p�t2�
which describes scattering becomes

 P��x1; t2� � �P��x1; t1�: (47)

Using the fluctuation fields this is

 
��x1; t2� � 
��x1; t1� � � �P��x1; t1� � �P��x1; t2��:

(48)

A straightforward calculation using (34) yields
 

� �P��x1; t1� � �P��x1; t2�� �
1�����������������

1� e2�1

p

�
�e�q1 � eq1�2�1

�
coshq2

coshq1
�1� e2�1�

�
: (49)

In deriving this we have used the fact that the points q2 and
q1 refer to the same value of x � x1 albeit at different
times, so that (23) yields

 x1 � �
coshq1�����������������
1� e2�1

p � �
coshq2�����������������
1� e2�2

p : (50)

In the limit (43)–(45), the right-hand side of (49) vanishes
as e�1 . Therefore the scattering equation simply becomes

 
��x1; t2� � 
��x1; t1�: (51)

It is useful to define new fields �
�q; t� by the relations

 

�x; t� �

����������������
1� e2�
p

sinhq
�
�q; ��: (52)

The motivation for introducing these factors is the follow-
ing. The perturbations 

 are related to the collective field
’ in a complicated way. However at the linearized level
these relationships become

 

�x; t� �

����������������
1� e2�
p

sinhq
�@� 
 @q�’: (53)

Since ’ is a massless field in �q; �� space at the linearized
level, it is clear that in the same approximation �
 are
chiral fields. However, this linearized approximation is
valid only at large q. In our scattering problem, the initial
pulse is at q1 �1 and therefore we can take
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 ���q1; �1� � ����1 � q1�: (54)

Since the final pulse is at finite q2, ���q2; �2� is generally a
function of both q2 and �2.

In terms of �
 the scattering equation becomes

 �out�q2; �2� � ���q2; �2� �
tanhq2

tanhq1
���q1; �1�: (55)

In the limits (43)–(45) this simplifies to

 �out�q2; �2� � ���q2; �2� � tanhq2����1 � q1�: (56)

We now obtain an expression for the time delay (46)
when (43)–(45) holds. Using the Eqs. (33) and (50) re-
peatedly we get
 

� �
x1 � P��x1; t2�
x1 � P��x1; t2�

�
x1 � �P��x1; t2� � 
��x1; t2�

x1 � �P��x1; t2� � 
��x1; t2�

�
2cosh2q1

�1� e2�1� coshq2�e
�q2 � ����2;q2�

sinhq2
�
� 1: (57)

This expression simplifies considerably when the condi-
tions (43)–(45) hold.

 ln� � 2q1 � ln
�

2 coshq2

�
e�q2 �

���q2; 0�
sinhq2

��
(58)

so that the time delay in this limit becomes

 t1 � t2 � 2q1 � ln�1� e�2q2 � 2 cothq2���q2; 0��:

(59)

In the limits defined in (43)–(45) it is easy to see that

 �1 � q1 � t1 � q1 � t2 � q1 � ln�1� e�2q2

� 2 cothq2���q2; 0��: (60)

In the same limit we can again use the definitions of �q; ��
and the relation (50) to show

 t2 � q1 �� ln�2 coshq2�: (61)

Therefore the scattering equation (56) becomes

 ���q2;0�� �tanhq2���

�
ln

1�e�2q2�2cothq2���q2;0�
2coshq2

�
:

(62)

In terms of the redefined scattered pulse

 �out�q2; 0� � cothq2���q2; 0� (63)

we have the simple scattering equation

 �out�q2; 0� � ��

�
ln

1� e�2q2 � 2�out�q2; 0�
2 coshq2

�
: (64)

At this point, one could be worried that the expression
inside the logarithm in (62) can become negative for
certain values of �q2; �2�. However we will show hereafter
that the condition of the existence of scattering automati-
cally rules out the possibility of a singular behavior. The

proof of this assertion goes as follows. From (31) we can
see that as t! �1, P��x; t� !

��������������
x2 � 1
p

and therefore
P��x; t� � �P��x; t� � 
��x; t� �

��������������
x2 � 1
p

� 
��x; t�.
The time delay equation then implies

 et1�t2 �
y�

��������������
y2 � 1

p
� 
�

y�
��������������
y2 � 1

p
� 
�

(65)

where we have defined the positive quantity y � �x1.
Since the left-hand side of this equation is always a positive
quantity, consistency requires

 y�
��������������
y2 � 1

q
� 
� > 0: (66)

Using the definition of �� in (52) and the fact that at �1 !
�1, (50) implies x1 � � coshq1 this becomes

 coshq1 � sinhq1 �
1

sinhq1
�� > 0 (67)

which implies (neglecting terms of order e�2q)

 �� <
1
2: (68)

The basic scattering equation (56) then implies

 2 cothq2�� < 1: (69)

This relation implies that

 1� e�2q2 � 2 cothq2�� > 0 (70)

which proves the consistency of our scattering equation.
For q2 � 0 the scattering equation (62) becomes

 ���q2; 0� � ����q2 � ln�1� 2���q2; 0���: (71)

To lowest order in ��, the scattered pulse is therefore
peaked at the value of j�0j, exactly as in linearized collec-
tive field theory. This is expected since both the incident
and the scattered pulses are in the weak coupling region.

For q2 � 0, the quantity �out satisfies to lowest order

 �out�q2; 0� � ���ln�1��out�q2; 0���: (72)

B. The case �0 > 0

For �0 > 0 the final pulse at t2 ! 1 or �2 ! 0 remains
on the upper branch of the Fermi surface. This implies a
modification of the various formulas in the previous sub-
section. Basically we have to make the replacement

 P��x1; t2� ! P��x1; t2�; 
��x1; t2� ! �
��x1; t2�:

(73)

In particular, the time delay equation (46) gets modified
to

 t1 � t2 � 2�t2 � �� � t2 � ln
x1 � P��t2; x1�

x1 � P��t2; x1�
(74)

while the basic scattering equation becomes
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 P��x1; t2� � �P��x1; t1�: (75)

In a way entirely analogous to the derivation of (49), the
quantity � �P��x1; t1� � �P��x1; t2�� now vanishes exponen-
tially fast so that the scattering equation reduces to

 
��x1; t2� � �
��x1; t1�: (76)

The remaining steps to the final scattering equation are also
identical, leading to

 �out�q2; 0� � ����2; q2� � � tanhq2����1 � q1�: (77)

Once again in the limit (43)–(45) the expression for the
time delay simplifies, which now leads to, instead of (60)

 �1 � q1 � t1 � q1 � t2 � q1 � ln�1� e2q2

� 2 cothq2����2; q2��: (78)

Using (61) the final equation which yields the scattered
pulse at late times becomes, instead of (62)

 �out�q2; 0� � ���q2; 0�

� ��tanhq2���

�
ln

1� e2q2 � 2 cothq2��
2 coshq2

�
:

(79)

V. BEHAVIOR OF THE SCATTERED PULSE

In this section we numerically investigate the behavior
of the scattered pulse for a given initial pulse for various
values of �0. We start with a Gaussian pulse which is
centered at a retarded time equal to �0, i.e. the function
�� is

 ���w� � A exp
�
�
�w� �0�

2

a2

�
(80)

with some constant A which is small, so that the condition
(68) is satisfied. We then numerically find the final scat-
tered pulse at t! 1 or equivalently � � 0 using (62) or
(79).

At the level of linearized collective field theory, the
behavior of the scattered pulse is described at the end of
Sec. II and depicted in Fig. 3. This shows that at this level
of approximation, the scattered pulse is also a Gaussian
which is peaked at q � j�0j. For �0 < 0 this happens due to
a reflection from the mirror. Such a reflection would invert
the pulse—however we have defined the quantity ��
above to incorporate this. For �0 > 0 there is no reflec-
tion—this means the �out now has the opposite sign of
��.

This behavior is exactly what we observe in the exact
solution. Figure 4 shows the initial pulse, while the Figs. 5
and 6 are the scattered pulses for �0 � �2 and �0 � 2
respectively. These are reasonably large values of j�0j.
Note the scattered pulse is also centered around q � �2
and q � 2 respectively. This is expected since for large

values of q on the � � 0 surface, the collective field theory
is reasonably weakly coupled and the linearized approxi-

retarded time

0

0.25

0.2

0.05

0

0.15

0.1

INITIALPULSE

FIG. 4 (color online). The initial pulse, i.e. �� as a function of
the retarded time.

86

q

14

0.2

0.15

12

0.1

0.05

0
10

tau_0=-2.0

FIG. 5 (color online). The scattered pulse for �0 � �2.
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mation reliable. Furthermore, as we would expect there is
not much deformation of the pulse.

Figures 7 and 8 show the scattered pulse for small values
of j�0j.

Unlike the previous cases, the scattered pulses are cen-
tered at values of q > j�0j. This is then the effect of
nonlinearities in the collective field description which are

expected to be strong at small values of q. This trend
becomes more pronounced as we go to smaller values of
j�0j

The main point is that the scattering problem is well
defined for all values of �0 and the scattered pulse is
smooth, always vanishing at q � 0. In the original space
x provided by the eigenvalues of the matrix, the back-
ground Fermi sea gets completely drained out and ceases
to exist for any finite x. It might appear from this that the
scattering problem is pathological since the pulses do not
seem to have any space to move in at infinitely late times.
Our discussion shows that this is not the space in which the
scattering problem has to be formulated. In the closed
string space, q, scattering makes perfect sense and smooth.
While the closed string time ends at � � 0 the real time
evolution of the ripple on the Fermi sea is over a complete
time range, and the fact that I� is not weakly coupled does
not pose any problem for the scattering data.

VI. FERMION CORRELATORS IN TIME
DEPENDENT BACKGROUNDS

In this section, we will outline a method to obtain exact
fermionic correlators in the nontrivial time dependent
background. We will calculate the two-point function ex-
plicitly and show that there is no pathological behavior at
late times. This is something we already know at the
classical level from the previous section. However the
following considerations take into account all quantum
corrections.

The strategy is to use the fact that these time dependent
solutions are obtained from the ground state by the action

-0.02

1.2

-0.04

-0.06

0.8

-0.08

0.4

q

21.6

tau_0=+0.1

FIG. 8 (color online). The scattered pulse for �0 � 0:1.

1.20.80.4

0.07

0.06

0.05

0.04

0.03

0.02

0.01

q

21.6

tau_0=-0.1

FIG. 7 (color online). The scattered pulse for �0 � �0:1.
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0
5

-0.05

4
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FIG. 6 (color online). The scattered pulse for �0 � 2.
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of nondiagonal W1 transformations, as described by the
Eq. (20). As discussed extensively in [23,24], these sym-
metry generators can be obtained from the basic quantity

 W��;�; t� �
1

2

Z
dxei�x y�x� �=2; t� �x� �=2; t�:

(81)

In terms of W��;�; t�, the charges are Wr;s:

 Wrs � e��r�s�t
Z
d�d�Frs

�
�� ����

2
p ;

�� ����
2
p

�
W��;�; t�

(82)

where

 Frs�a; b� � 2 cos
�
ab
2

�
�i@a�

r�i@b�
s��a���b�: (83)

The basic quantity in the fermionic theory is the Wigner
operator

 u�x; p� �
Z
dyeipy:  y�x� y=2� �x� y=2�:: (84)

Under theW1 transformations this quantity changes by the
basic commutator [24]
 

�W��;�; t�; u�x; p�� � 1
2e
i��x��p��u�x� �=2; p� �=2�

� u�x� �=2; p� �=2��: (85)

Using these expressions, we can calculate the change of the
phase space density operator u�x; p; :t� under a finite trans-
formation

 u�x; p� ! u0�x; p� � exp��i	Wrs�u�x; p; t� exp�i	Wrs�:

(86)

Now consider a time dependent background which is de-
scribed by a non-normalizable state

 j	i � ei	Wrs j�i; (87)

where j�> denotes the ground state. Then we have the
identity

 h	ju�x1; p1�u�x2; p2� 	 	 	 j	i � h�ju0�x1; p1�u0�x2; p2� 	 	 	 j�i:

(88)

Since the operator

 : y�x1� �x2�: (89)

can be expressed in terms of the operator u�x; p� we can
use (88) to calculate correlators like

 h	j: y�x1� �y1�:: y�x2� �y2�: 	 	 	 j	i (90)

in terms of the correlators in the ground state. The latter
have been calculated exactly in [18], which may be then
used to calculate the correlators in the nontrivial
background.

Essentially the same philosophy was used in [14] for the
draining Fermi sea solution. However in that case, the
corresponding W1 transformation did not involve a non-
trivial transformation of the momentum variable. This
meant that the correlators of density operators  y in the

nontrivial background can be written in terms of correla-
tors of density operators in the ground state. In the cases of
our interest, we need correlators of higher moments of the
phase space density.

In the following we will perform an explicit computation
of the expectation value of the density operator in the
closing hyperbola solution.

A. Density operator in the closing hyperbola solution

The density operator � is

 ��x; t� � : y�x; t� �x; t� �
1

2�

Z
dpu�x; p; t�: (91)

The state in the fermionic theory which corresponds to the
closing hyperbola solution is

 j	i � ei	W02 j�i: (92)

For r � 0; s � 2 the relations (82) and (83) become

 W02 � �e2t�@� � @��2W��;�; t�j����0: (93)

A straightforward calculation using (85) then yields

 �u�x; p�; W02� � e2t��i��x� p��@x � @p�u�x; p�: (94)

The form of this commutator immediately shows that a
finite transformation of the Wigner operator itself is
 

exp��i	W02�u�x; p� exp�i	W02� � e	e
2t�x�p��@x�@p�u�x; p�

� u�x0; p0�; (95)

where we have defined

 x0 � x� 	e2t�x� p� p0 � p� 	e2t�x� p�: (96)

This is what one would expect at the classical level since
these are precisely the transformations in the single particle
phase space. What we have shown, however, is that the
result is exact at the quantum level.

The above results show that the expectation value of the
density operator in the closing hyperbola state j	i is given
in terms of the two-point fermion correlator in the ground
state j�i by
 

h	j��x�j	i �
1

2�

Z
dydpeip

0y
�
�
�������� y

�
x0 �

y
2

�

�  
�
x0 �

y
2

����������
�

(97)

with x0, p0 given by (96).
In [18] the two-point fermion correlator was determined

in the ground state as3

3In [18] the single particle Hamiltonian is taken as h � p2 �
1
4 x

2 which differs from ours by rescaling of p and x. The formula
(98) differs from that in [18]) since takes into account this
rescaling as well as a rescaling of the fermion field necessary
to preserve the correct anticommutation relation.
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h y �x1� �x2�i� �
���
2
p
i
Z �1
�1

dq
2�

Z sgn�q�1

0
ds

�
e�sq�is�

��4�i sinhs�1=2
eH �x1;x2� (98)

where

 H �x1; x2� � �
i
2

�
x2

1 � x
2
2

tanhs
� 2

x1x2

sinhs

�
: (99)

Using (96) we therefore get
 

h	j��x; t�j	i �
���
2
p 1

2�
i
Z �1
�1

dp
Z �1
�1

dyeip
0yi
Z �1
�1

dq
2�

�
Z sgnq�1�

0
dsF�s�G�s; x0; y� � �s! �s�

(100)

where

 

F�s� �
e�sq�is�

��4i� sinhs�1=2

G�s; x0; y� � exp
�
�
i
2

�
2 tanh

s
2
x02 � coth

s
2

y2

2

��
:

(101)

Performing the integration over y we get

 h	j��x; t�j	i �

���
2
p

2�

�
i
Z ds

2�s

�
�4�i

coths=2

�
1=2

�
eis�

��4i� sinhs�1=2

�
Z �1
�1

dpe�i tanh�s=2��x02�p02� � c:c:
�
:

(102)

Defining the functions

 f�t� � 1� 2	e2t h�t� � �2	e2t

g�t� � ��1� 2	e2t�
(103)

(96) yields

 x02 � p02 � �
1

g�t�
x2 � g

�
p�

h�t�x
g�t�

�
2

(104)

so that integrating over p we get the final answer

 h	j��x; t�j	i � 2
���
2
p �

i
�
�1

g�t�

�
1=2 Z 1

0

ds
2�s

�
eis���i tanh�s=2�x2=�g�t��

��4i� sinhs�1=2
� c:c:

�
: (105)

The density expectation value therefore satisfies the re-

markably simple relation
 

h	j��x; t�j	i �
1

�1� 2	e2t�1=2

�

�
�
���������

�
x���������������������

1� 2	e2t
p ; t

����������
�
: (106)

It is easy to check that this exact expression leads to the
correct semiclassical answer. To do this, it is necessary to
perform a derivative with respect to �,

 @�h	j��x; t�j	i � �2
���
2
p ��

�1

g�t�

�
1=2 Z 1

0

ds
2�

�
eis���i tanh�s=2�x2�=�g�t��

��4i� sinhs�1=2
� c:c:

�

(107)

and consider the limit s � 0 in (107). This leads, after
redefining z2 � x2

�g�t� , to:
 

@�h	j��x; t�j	i � �2
���
2
p ��

�1

g

�
1=2 Z 1

0

ds
2�

1

��4�i�1=2

�
i��� z2

2 �s���
s
p � c:c:

�
: (108)

Integration over s then gives

 @�h	j��x; t�j	i � �
1

��g�1=2

1

�
������������������
z2 � 2�

p : (109)

To compare with the semiclassical answer (21) for the
closing hyperbola, we need to set 2� � 1 and
2	 � �1.4 This yields

 

�
�

1

2
j��x; t�j �

1

2

�
�

1

�

�����������������������������
x2 � �1� e2t�

p
1� e2t (110)

which is identical to (21).
The exact answer in fact corroborates our conclusions

about the nature of the background based on the semiclas-
sical solution. At large times, Eq. (106) shows that the
density goes to zero at any finite x. However, as our
previous sections show the physics at late times occurs at
infinite values of jxj and finite values of the closed string
coordinate q.

Our result for the one point function of the eigenvalue
density does not reveal any pathological behavior. The
scattering matrix is related to higher point functions which
may be calculated using similar techniques. It is important
to see whether these have any interesting behavior coming
from nonperturbative effects.

4Note that the 	 of this section is related to 	� of Sec. II B by
2	 � 	�
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