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We use twist deformation techniques to analyze the behavior under area-preserving diffeomorphisms of
quantum averages of Wilson loops in Yang-Mills theory on the noncommutative plane. We find that while
the classical gauge theory is manifestly twist covariant, the holonomy operators break the quantum
implementation of the twisted symmetry in the usual formal definition of the twisted quantum field theory.
These results are deduced by analyzing general criteria which guarantee twist invariance of noncommu-
tative quantum field theories. From this a number of general results are also obtained, such as the twisted
symplectic invariance of noncommutative scalar quantum field theories with polynomial interactions and
the existence of a large class of holonomy operators with both twisted gauge covariance and twisted
symplectic invariance.
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I. INTRODUCTION AND SUMMARY

Noncommutative gauge theory in two dimensions pos-
sesses many interesting features that can be captured ana-
lytically and used to shed light on generic features of
noncommutative field theory. It is an exactly solvable
model whose partition function has been computed explic-
itly as a semiclassical expansion over instantons on the
noncommutative torus in [1–3], as a sum over fluxons on
the noncommutative plane in [4,5], and also within its
lattice regularization in [3,6]. The instanton expansion
has also been used to obtain exact analytic expressions
for quantum averages of open Wilson lines in [2,5,7].
Exact Wilson loop correlators, on the other hand, have
remained elusive. Perturbative computations on the non-
commutative plane [8,9] reveal that Wilson loop averages
are not invariant under generic area-preserving diffeomor-
phisms, in marked contrast to the commutative case [10].
The quantum gauge theory itself is only invariant under the
subgroup of global symplectic transformations [9] which is
the largest spacetime symmetry under which the Moyal
product is covariant [11]. This breaks the topological sym-
metry of the gauge theory making the exact semiclassical
expansion of Wilson loop correlators intractable. In [12]
this breakdown was interpreted nonperturbatively as the
loss of covariance under gauge Morita equivalence on the
noncommutative torus. Other aspects of Wilson loop cor-
relators in two-dimensional noncommutative Yang-Mills
theory have been analyzed using perturbation theory in
[13,14] and numerically in [15].

In parallel developments it has been realized how to
reinstate spacetime symmetries which are generically bro-
ken by noncommutativity in noncommutative field theories
[16–18]. The idea, well-known from quantum group the-
ory, is that the noncommutativity of the algebra of func-

tions A should be compensated by a noncommutative
deformation of the bialgebra of diffeomorphisms acting
on A. For Moyal planes this is straightforward to do as the
star product is defined in terms of an Abelian Drinfeld twist
element and the required deformation is a twist deforma-
tion. In this paper we will use twisted Hopf algebra tech-
niques to investigate whether or not the twisted form of
area-preserving diffeomorphims can be used to recover the
full symplectic symmetry of two-dimensional noncommu-
tative Yang-Mills theory. Along the way we will add some
general insights into the properties of the much debated
twisted noncommutative quantum field theories. Twisted
conformal transformations in two dimensions have been
analyzed in [19] while generic two-dimensional twisted
diffeomorphisms are discussed in [20]. Some parts of our
analysis have obvious generalizations to higher-
dimensional Moyal planes and the behavior of generic
noncommutative field theories under symplectomorphisms
of flat spacetime Rd.

The origin of twisted spacetime symmetries can be
understood in a relatively straightforward way by proceed-
ing abstractly as follows [21,22]. Let A �A� be the
associative algebra over C generated by operators x̂� obey-
ing the Heisenberg commutation relations

 �x̂�; x̂�� � i���: (1.1)

Let @̂� 2 der�A� be linear derivations of A defined by

 �@̂�; x̂
�� � ���; �@̂�; @̂�� � 0: (1.2)

A generic infinitesimal diffeomorphism, implemented by a
vector field �̂ � ���x̂�@̂�, is not an automorphism of the
algebra A because it does not preserve the defining rela-
tions (1.1). Consider now the new operators

 x� �
:
x̂� � i

2�
��@̂�; @� �

:
@̂� (1.3)

which extend A to the algebra spanned by der�A� and
generate a commutative algebra
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 �x�; x�� � 0; �@�; x�� � ���; �@�; @�� � 0:

(1.4)

The meaning of the operators (1.3) is as follows. The
operators x̂� generate the natural action of the algebra
A on itself via multiplication from the left, whereas
�i���@̂� coincide with the commuting adjoint action of
x̂� [using (1.1)] and generate the natural action of A on
itself via multiplication from the right [21]. This right
A-module is isomorphic to the opposite algebra A0 �
A�� which defines the commutant of the algebra A in the
canonical representation on itself. One has A0 � JAJ�1

where J is the canonical Tomita involution [23]. The
operators (1.3) are then the generators for the action of
A on the Morita equivalence bimodule A �A0.

The commutative bimodule algebra A �A0 carries the
standard action of the diffeomorphism group, whose con-
nected components are generated by smooth vector fields

 � � ���x�@�: (1.5)

Substituting (1.3) into (1.5) using a formal Taylor series
expansion of the smooth functions ���x� gives the corre-
sponding operators acting on A as

 �̂ �
:
��
�
x̂�

i

2
� 	 @̂

�
@̂�

� ���x̂�@̂� 

X1
n�1

�
�

i

2

�
n

�
1

n!
��1�1 	 	 	 ��n�n�@�1

	 	 	 @�n
���

� �x̂�@̂�1
	 	 	 @̂�n @̂�: (1.6)

Thus a vector field becomes a higher-order differential
operator acting on the noncommutative algebra A, and
(1.6) is the usual expression for the twisted action of
diffeomorphisms [16,24,25]. For example, the generators
of the Lorentz group

 M���x; @� � �i�x�@� � x�@�� (1.7)

act on A as

 M̂ �� � M���x̂; @̂� � i
2��

��@̂�@̂
� � ���@̂�@̂

��; (1.8)

which is the usual action of twisted Lorentz transforma-
tions [17,18].

The extra higher-order terms imply that the diffeomor-
phisms do not act as derivations of A as the Leibnitz rule
is deformed. This deformation is exactly what is imple-
mented in the twisted bialgebra of diffeomorphisms. In
particular, the noncommutativity tensor ��� is in this
way manifestly invariant under twisted diffeomorphisms.
On fields one uses the Weyl-Wigner correspondence [26]
to implement the action of the diffeomorphism group using
star products [16,25]. In [21] the usual commutative action
on fields is used instead, leading to a rather different class

of twisted noncommutative field theories than those con-
sidered here. A novel interpretation of the Drinfeld twist-
ing as deformed constraints in canonical quantization of
noncommutative field theory can be found in [27].

When transcribed to quantum field theory, the relative
simplicity of the implementation above appears to be in
agreement with suggestions [28,29] that there are no non-
trivial observable consequences of the twisted Poincaré
symmetry in noncommutative field theory. However,
most of the debates surrounding such issues deal only
with scalar fields and it is not presently clear what the
situation is for gauge theories. To try to understand this
better, in the following we will study the action of these
twisted diffeomorphisms on the observables of two-
dimensional noncommutative Yang-Mills theory. We will
first study the action of the twisted diffeomorphism group
on generic noncommutative quantum field theories in two
dimensions. We will find, quite generally, that classical
invariance already truncates to the subgroup of area-
preserving diffeomorphisms, as expected but in a rather
nontrivial way. In particular, generic scalar quantum field
theories with polynomial interactions are twist invariant
under symplectic transformations. When applied to gauge
theory in two dimensions one can immediately infer from
this the twisted symplectic invariance of the classical non-
commutative Yang-Mills action and all observables. This
ties in nicely with the geometric interpretation of non-
commutative gauge symmetries as ‘‘deformed’’ symplec-
tomorphisms of flat spacetime [23].

We point out the existence of two natural sets of hol-
onomy observables in noncommutative gauge theory, one
associated with the ordinary tensor algebra of fields and the
other with the braided tensor algebra. Both classes of
operators are manifestly covariant under both twisted
gauge transformations [30,31] and twisted area-preserving
diffeomorphisms. The latter class defines the usual non-
commutative Wilson loops which are in addition invariant
under star-gauge transformations [26,32]. Although clas-
sically invariant under twisted area-preserving diffeomor-
phisms, the quantum averages of these holonomies break
the twisted spacetime symmetry. The twisted symmetry is
not anomalous but is instead broken by the quantum im-
plementation of Wilson loop operators in star-gauge in-
variant correlation functions. Thus only some nonstandard
definition of the twisted quantum gauge theory can allow
for full invariance under the symplectic symmetry. This
provides a much more general, explicit and nonperturba-
tive description for the loss of topological symmetry than
those given in [8,9,12]. On the other hand, the twisted
symmetry of the quantum observables under global sym-
plectic transformations follows rather directly from the
structure of the twisted bialgebra of area-preserving
diffeomorphisms.

The organization of the remainder of this paper is as
follows. We begin in Sec. II with a general description of
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twisted symmetries and their specialization to the diffeo-
morphism group of spacetime, describing, in particular, the
twisted bialgebra of area-preserving diffeomorphisms. In
Sec. III we describe the generic implementation of twisted
diffeomorphisms as symmetries of the quantum effective
action in noncommutative field theories, showing, in par-
ticular, that noncommutative scalar quantum field theory is
twist invariant under symplectic transformations. Finally,
in Sec. IV we detail the construction of a broad set of
holonomy observables in twisted noncommutative gauge
theory, and study in detail the behavior of star-Wilson
loops under twisted area-preserving diffeomorphisms.

II. TWISTED SPACETIME SYMMETRIES

In this section we will discuss some basic general as-
pects of twisted symmetry groups of associative algebras in
the context of Hopf algebras and Drinfeld twists [33–35]
(see [36] for the necessary background on quantum
groups). We will then specialize the discussion, following
[16,37], to the case of diffeomorphisms acting on fields on
the Moyal plane. In particular, we describe the twisted
bialgebra of area-preserving diffeomorphisms of R2,
which will be the most pertinent example in the subsequent
sections.

A. Twist deformations of group actions

Let A be an associative algebra over C with multi-
plication map �0: A �A!A. Let G � Aut�A� be a
group of symmetries of A acting by automorphisms. Let
H � CG be the group algebra ofG. We can make H into
a Hopf algebra whose underlying bialgebra structure is
specified by the cocommutative primitive coproduct which
is the homomorphism �0: H !H �H defined by
�0�g� � g � g on generators g 2 G and �0�id� �
id � id. The coproduct implements the action of G on the
tensor product A �A with the fundamental compatibil-
ity condition

 g �0�a � b� � �0  �0�g��a � b� (2.1)

for all g 2H and a, b 2A. This is just the expected
covariance condition on the multiplication in A, and it is a
necessary and sufficient condition for the groupG to act on
the algebra A.

We introduce an operator F 2H �H , called a twist
element [33,35], which acts on the tensor product

 F : A �A!A �A (2.2)

such that the pair

 �A; � �
:
�0 F � (2.3)

is still an associative algebra. If the original multiplication
map �0 is commutative, then generically the twisted prod-
uct � is no longer commutative. We will also write the
twisted product using the star-product notation��a � b� �

:

a ? b. Compatibility of the action of G on the twist de-
formed algebra (2.3) requires twisting of the bialgebra
structure on H as well. The condition (2.1) then becomes

 g ��a � b� � �  ��g��a � b� (2.4)

for all g 2H and a, b 2A. The generically non-
cocommutative twisted coproduct defined by the similarity
transformation

 �: H !H �H ; � �
:
F�1  �0 F (2.5)

makes H into a triangular Hopf algebra. All of this
requires F to be an invertible, co-unital two-cocycle of
the Hopf algebra H . In the star-product notation we will
write the left-hand side of (2.4) as g ��a � b� �

:
g��a ?

b�.
In many cases of interest the algebra A will carry

generic products of arbitrary representations of the Hopf
algebra H . If an element a 2A transforms in a repre-
sentation R of the symmetry groupG, then the correspond-
ing action of an automorphism g 2H is denoted

 g: A!A; a � g�R��a�: (2.6)

On tensor products a1 � a2, with ai 2A transforming in
the representation Ri, the operator g acts via the coproduct
as

 g��a1 � a2� � ��g��a1 � a2� � �g
�R1�
:1 � g

�R2�
:2 ��a1 � a2�:

(2.7)

Here we have used the Sweedler notation ��g� � g:1 � g:2

(with a sum over g:1 and g:2 understood).
Let us now assume that the twist leaves each factor of the

tensor product a1 � a2 in its same representation. We can
then write the compatibility condition (2.4) for g 2 G as

 g��a1 ? a2� � �0  �0�g� F �a1 � a2�

� �0  �g�R1� � g�R2�� F �a1 � a2�

� �0  �g�R1� � g�R2�� F  �g�R1�

� g�R2���1  �g�R1� � g�R2���a1 � a2�:

(2.8)

It follows that the group G acts on the twist operator F
itself through the similarity transformations

 g: F 7 ��! g�F � �g�R1� � g�R2�� F  �g�R1� � g�R2���1:

(2.9)

In our subsequent applications we will be interested in
the infinitesimal version of this construction for the case
when G is a continuous group of symmetries with Lie
algebra g. In that case we take H � U�g� to be the
universal enveloping algebra of g, made into a Hopf alge-
bra with bialgebra structure specified by the primitive
coproduct �0�X� � X � id
 id � X on generators X 2
g. Then the compatibility condition (2.1) implements the
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usual Leibnitz rule for the action of the symmetry algebra g
on �A; �0�, while the twist deformed Leibnitz rule (2.4)
allows for a representation of g on (2.3). The corresponding
action of the Lie algebra on the twist is given by

 X: F 7 ��! X�F � �X�R1�
:1 � X�R2�

:2 ;F �

� �X�R1� � id�R2� 
 id�R1� � X�R2�;F �: (2.10)

This machinery can also be applied if the twist element
does not leave each factor of a1 � a2 in its own represen-
tation. In the general case we can write the compatibility
condition (2.8) in a more generic way as
 

g��a1 ? a2� � �0  �g
�R1� � g�R2�� F  �g�L1� � g�L2���1

� �g�L1� � g�L2���a1 � a2�; (2.11)

where the twist F maps the Ri representation of G into Li.
This modifies the similarity transformation (2.9) of the
twist operator to

 g: F � g�F � �g�R1� � g�R2�� F  �g�L1� � g�L2���1:

(2.12)

B. Braided tensor calculus

The generic situation of interest for noncommutative
field theory is when A is taken to be the algebra of smooth
functions on a manifold M (with appropriate boundary
conditions when M is noncompact), with pointwise multi-
plication �0, and with G � Diff�M� the group of diffeo-
morphisms of M. In this case the algebra A will contain
arbitrary products of representations of the corresponding
Hopf algebra H determined by tensorial rank, and one is
in the situation described in Sec II A. In this paper we are
primarily interested in the case where M � R2 and the
twist element is the bidifferential operator

 F � exp
�
i�
2
�@1 � @2 � @2 � @1�

�

�
X1
k�0

�i�=2�k

k!
�@1 � @2 � @2 � @1�

k (2.13)

with � 2 R constant. This defines an Abelian Drinfeld
twist and the corresponding star product is the Moyal
product on the algebra of functions on R2. Many of the
following results hold analogously for higher-dimensional
Moyal planes.

The connected components of the diffeomorphism
group are generated by smooth vector fields � �
���x�@�. Their infinitesimal action on A is denoted ��,
and the elements of H act on A by the natural extension
of the Lie derivative. Since the twist operator (2.13) is
constructed from translation generators, i.e. constant dif-
feomorphisms, each factor of any tensor product f1 � f2 of
two fields remains in its own representation under the
action of F . This follows from the identity

 �@�; ��� � �@��: (2.14)

Then the transformation (2.10) of the twist in the case at
hand reads

 

���F � �F 
X1
k�1

��i�=2�k

k!

� �@1 � @2 � @2 � @1; . . . ; �@1 � @2 � @2 � @k1

z���������������������������������������}|���������������������������������������{k

;

�0����� . . .�

� �F 
X1
k�1

��i�=2�k

k!

Xk
l�0

k

l

 !
��1�l���R1�

@k�l1 @l2�

� @k�l2 @l1 
 ��1�k@k�l2 @l1 � �
�R2�

@k�l1 @l2�
�: (2.15)

It follows that the transformation of the star product of two
fields under an infinitesimal diffeomorphism of R2 is given
by

 ����f1 ? f2� � ��
�X1
k�0

��i�=2�k

k!

Xk
l�0

k
l

� �
��1�l

����R1�

@k�l1 @l2�
f1 � @k�l2 @l1f2


 ��1�k@k�l2 @l1f1 � �
�R2�

@k�l1 @l2�
f2�

�
:

(2.16)

Let us work out some examples of the transformation
rule (2.16) which will be used in the sequel. If both f1 and
f2 are scalar fields in A, then ��R1�

� � ��R2�
� is the differ-

ential operator ���@� and one has

 ����f1 ? f2� � ��
�X1
k�0

��i�=2�k

k!

Xk
l�0

k
l

� �
��1�l

���@k�l1 @l2�
��@�f1 � @

k�l
2 @l1f2


 ��1�k@k�l2 @l1f1 � �@k�l1 @l2�
��@�f2�

�
:

(2.17)

This can be seen to be equal to the expression

 �0�����@� � id
 id � ��@�� F �f1 � f2��

� �
X1
k�0

�i�=2�k

k!

Xk
l�0

k
l

� �
��1�l����@k�l1 @l2@�f1�

� �@k�l2 @l1f2� 
 ��1�k�@k�l2 @l1f1���
�@k�l1 @l2@�f2��:

(2.18)

Hence if both f1 and f2 are scalar fields, then their star
product f1 ? f2 also transforms as a scalar field,
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����f1 ? f2� � ��0���
�@� � id
 id � ��@��

F �f1 � f2��

� ���@��f1 ? f2�: (2.19)

If instead we take the product of two tensor fields, then
we have to account for the transformations with respect to
contractions of the indices as well. From (2.16) we can

work out as an example the case of two rank-one tensor
fields f1 � V� and f2 � W�. Since

 ��R1�
� V� � ��

�@�V� � �@��
��V�;

��R2�
� W� � ���@�W

� 
 �@��
��W�;

(2.20)

we easily find that

 

����V� ?W
�� � ���@��V� ?W

�� 
�
�X1
n�0

��i�=2�n

n!

Xn
l�0

n

l

 !
��1�l����@n�l1 @l2@��

��V�� � �@
n�l
2 @l1W

��


 �@n�l2 @l1V�� � ��@
n�l
1 @l2@��

��W���

�
� ���@��V� ?W�� 
�0�F  �V� � 1� F�1��@��� �W�� 
F  �1�W�� F�1�V� ��@�����:

(2.21)

Using the similarity transformations

 F  �V� � 1� F�1 �
X1
n�1

�i�=2�n

n!

Xn
l�0

n
l

� �
��1�l�@n�l1 @l2V�� � @

n�l
2 @l1;

F  �1 �W�� F�1 �
X1
n�0

�i�=2�n

n!

Xn
l�0

n
l

� �
��1�l@n�l1 @l2 � �@

n�l
2 @l1W

��;

(2.22)

we obtain
 

����V� ? W�� � ���@��V� ? W�� 
�0���@��� � 1�

F �V� �W
��� 
�0��1 � @��

��

F �V� �W
��� (2.23)

which is the usual rule of tensor calculus for the trans-
formation of a tensor field of rank (1, 1).

In particular, the contraction V� ? W� transforms ex-
pectedly as a scalar field,
 

����V� ? W
�� � ���@��V� ? W

�� 
�0��1 � @��
�

� @��� � 1� F �V� �W���

� ���@��V� ? W��; (2.24)

because in the second term the derivative operators of F do
not act on �. Note that if the vector field � generates a
linear affine transformation in gl�2;R�3 2R2, given by

 ���x� � L��x� 
 a� (2.25)

with constant tensors L�� and a�, then one has

 1 � @��
� � L���1 � 1� � @��

� � 1: (2.26)

This automatically guarantees the scalar property of the
contraction (2.24) under global diffeomorphisms.

The general result [16,37] is that covariant expressions
in ordinary (untwisted, commutative) tensor calculus are
still covariant after the twist deformation. In Sec. IV we
will use this feature to infer the classical invariance of two-

dimensional noncommutative Yang-Mills theory under
twisted area-preserving diffeomorphisms. Note that since
the compatibility Eq. (2.4) is equivalent to the untwisted
one in (2.1), the tensor calculus constructed by using the
standard pointwise multiplication �0 is still covariant as
well under untwisted diffeomorphisms.

C. Twisted area-preserving diffeomorphisms

In order to gain a better understanding of the formalism
above, we now display explicitly the twisted bialgebra
structure of the Lie algebra of area-preserving diffeomor-
phisms of R2, which will be our prominent example of a
twisted symmetry in this paper. These are the symplectic
transformations preserving the area form d2x � dx1 ^ dx2.
Let us denote the generators by Lm;n, m, n 2 N. We select
the representation on A given by the differential operators

 L n;m � mxn1x
m�1
2 @1 � nxn�1

1 xm2 @2: (2.27)

The elementary Lie brackets are those of the infinite-
dimensional W1
1 algebra

 �Lm;n;Lp;q� � �np�mq�Lm
p�1;n
q�1: (2.28)

Then the twisted coproduct of these generators can be
straightforwardly worked out to be
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��Ln;m� � Ln;m � 1
 1 � Ln;m 

Xn
m�1

k�1

��i�=2�k

�
Xk
l�0

n

k� l

 !
m

l

 !
��1�l���1�kLn�k
l;m�l

� �@k�l1 @l2� 
 �@
k�l
1 @l2� � Ln�k
l;m�l�: (2.29)

In particular, for the generators Lm;n with n
m � 2
one finds

 ��L0;1� � ��@1� � 1 � @1 
 @1 � 1;

��L1;0� � ���@2� � 1 � ��@2� 
 ��@2� � 1;

��L1;1� � ��x1@1 � x2@2�

� 1 � �x1@1 � x2@2� 
 �x1@1 � x2@2� � 1;

��L2;0� � ���2x1@2� � 1 � ��2x1@2� 
 ��2x1@2� � 1;

��L0;2� � ��2x2@1� � 1 � �2x2@1� 
 �2x2@1� � 1:

(2.30)

Thus these operators are all primitive with respect to the
twisted coproduct �, and hence the tensor products of their
representation is unchanged. They generate a subalgebra of
W1
1 isomorphic to sl�2;R�3 2R2, comprising global dif-
feomorphisms which generate linear unimodular affine
transformations with L�� � 0 in (2.25). We can further
easily check from (2.30) that these are the only generators
whose primitive coproducts are unchanged by the twist,
since higher-order terms in � can only cancel when simul-
taneously k � 1 and k� l � 1, due to the fact that the
generators Lm;n are linear in derivative operators.
Therefore the Lie algebra sl�2;R�3 2R2 of global area-
preserving diffeomorphisms is the largest subalgebra of
W1
1 whose representations are unaffected by the twist.
This fact will be crucial in determining under which sym-
metry the physical quantum observables of noncommuta-
tive Yang-Mills theory have twisted invariance. It provides
an alternative way to understand the known covariance of
the Moyal product [11] and of noncommutative gauge
theory [9] under linear affine transformations.

III. SPACETIME SYMMETRIES OF TWISTED
NONCOMMUTATIVE FIELD THEORY

In this section we will perform a general analysis of the
invariance of two-dimensional noncommutative field the-
ory under the twisted spacetime symmetries of the previous
section. We adapt the point of view that the twist deforma-
tion realizes diffeomorphisms as potential internal symme-
tries of noncommutative field theory [23,26], so that some
of the ensuing statements also apply to other classes of
twisted symmetries. We will find that, generically, already
at the classical level the twisted invariance truncates to the
area-preserving diffeomorphisms of Sec. II C. However,
this truncation does not arise from setting the Jacobian of

a map equal to 1 in order to preserve the area form d2x in
the action, as the twist does not act on any integration
measure. At the quantum level, we will interpret the po-
tential loss of twisted symmetry as anomalous behavior of
the field theory. In the next section these general consid-
erations will be applied to Wilson loop correlators in non-
commutative Yang-Mills theory.

A. Symmetries and Ward identities

We begin by recalling how to implement (spacetime)
symmetries in quantum field theory. Consider a (noncom-
mutative) field theory on R2 with fields �i and action
functional S���. The symbol �i in general collectively
denotes all fundamental fields such as matter and gauge
fields, as well as any auxiliary and ghost fields, and S���
may generally include Lagrange multiplier and gauge-
fixing terms. Under a symmetry transformation of the field
theory (for instance a diffeomorphism of spacetime), the
infinitesimal variation of the fields is denoted

 �i � �i 
 ��i: (3.1)

We wish to implement this transformation as a symmetry
of the quantum correlation functions of a set of operators
O1���; . . . ;On��� in the quantum field theory. In path
integral quantization, this roughly leads to the identifica-
tion
 Z

D�e�S���O1��� 	 	 	On���

�
Z

D��
 ���e�S��
���

�O1��
 ��� 	 	 	On��
 ��� (3.2)

or equivalently to first order in ��i one has the Schwinger-
Dyson equations

 

Z
D�

�
��i
�e�S���O1��� 	 	 	On���� � 0: (3.3)

One issue is whether or not the functional integration, or
the path integral measure, gives some additional contribu-
tions to these expressions. In standard quantum field theory
parlance, this is the same as the question of whether or not
there is some form of an anomaly in the quantum theory.

To investigate this problem more precisely, we couple
the fields �i to external source fields Ji through the pairing
�J;�� �

: R
d2xJi�i. The response of the system to these

external sources is encoded in the generating functional for
connected Green’s functions given by

 W �J� � � log
Z

D�e�S�����J;��: (3.4)

The effective action is defined by the Legendre transform

 ���̂� �
:
�Ji�̂i �W �J����W �J��=��Ji���̂i

: (3.5)

Under the transformation (3.1), we make the natural as-
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sumption that the functional integration measure is invari-
ant, or equivalently that in the path integral one can iden-
tify

 D ��
 ���e�S��
��� �D�e�S���: (3.6)

Then we obtain the fundamental Ward identity

 0 �
Z

d2x
����̂�

��̂i

h0j��̂ij0iJ�̂i

h0j0iJ�̂i

; (3.7)

where

 J�̂i
� �

����̂�

��̂i

(3.8)

and the vacuum expectation values are taken in the original
quantum field theory coupled to the sources J�̂i

. The Ward
identity (3.7) is a statement of the symmetry of the quan-
tum effective action. These statements all implicitly as-
sume that an appropriate regularization of the Green’s
functions has been specified which respects the symmetry
(3.1).

B. Implementation of twisted symmetries

Let us now examine what features of the above analysis
can be extended to the case where the variation (3.1)
represents twisted symmetries of a noncommutative field
theory, and, in particular, twisted diffeomorphisms. In
implementing these identities, crucial use is made of the
Leibnitz rule for the variational (or the functional deriva-
tive) operator. In the twisted field theory the Leibnitz rule is
also twisted, giving an additional contribution to the var-
iations of star products of fields, or equivalently of the twist
element F as in (2.15). If anomalous behavior arises as
described above, then the hidden symmetry represented by
twisted diffeomorphisms cannot be implemented at the
quantum level. We will begin by deducing the most general
possible twisted spacetime symmetry of noncommutative
field theory.

Let us start with a simple, explicit example of a non-
commutative field theory for illustration. Consider a real
scalar field theory with action of the form

 SV��� �
1

2

Z
d2x����
m2�2 
 2V����: (3.9)

Let us assume, as is customary in noncommutative field
theory, that the path integral measure is the standard
Feynman measure D� �

Q
x2R2 d��x� of commutative

quantum field theory. This definition guarantees that
when V � 0 the generating functional (3.4) is given by
W �J� � �J; CJ�, where C is the free propagator of the
quantum field theory. It also agrees in this case with the
twist-covariant functional integral constructed in [38].
Then the identification (3.6) holds, and so we need only
study the twisted transformation of the action (3.9) under a
shift of the field � by an infinitesimal diffeomorphism
���. For this, we use the twisted covariance of the star
product (2.16) as explained in Sec. II B.

To deduce the general structure of the variation, consider
first noncommutative �3-theory with interaction potential
V��� � g� ? � ? �. One then finds

 S�3���� S�3��� � g
Z

d2x���0����F �� ���� ���

� g
Z

d2x��� ��0����F �� �����

� S��� � 2g
Z

d2x�0����F �� ���� ? �;

(3.10)

where we have used the trace property

 

Z
d2xf1 ? f2 �

Z
d2xf1f2 �

Z
d2xf2 ? f1 (3.11)

for any two Schwartz fields f1, f2 2A. For noncommu-
tative �4-theory with interaction potential V��� � g� ?
� ? � ? �, one instead has

 

S�4���� S�4��� � g
Z

d2x�����0����F �� ���� ��� ��� � g
Z

d2x����� ��0����F �� ����� ���

� g
Z

d2x����� ��� ��0����F �� �����

� S��� � 3g
Z

d2x�0����F �� ���� ? � ? �: (3.12)

These formulas generalize to arbitrary polynomial interactions in the obvious way.
We see that the general structure of the variational terms that we need to manipulate are of the form

 

Z
d2x�0����F �f1 � f2�� � �

Z
d2x

X1
k�1

��i�=2�k

k!

Xk
l�0

k
l

� �
��1�l����R1�

@k�l1 @l2�
f1��@

k�l
2 @l1f2� 
 ��1�k�@k�l2 @l1f1�

� ���R2�

@k�l1 @l2�
f2��: (3.13)
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When f1 and f2 are scalar Schwartz fields on R2, after integrating by parts this becomes

 

Z
d2x�0����F �f1 � f2�� � �

Z
d2x

X1
k�1

��i�=2�k

k!

Xk
l�0

k
l

� �
��1�l��@k�l1 @l2�

���@k�l2 @l1f2��@�f1� 
 ��1�k�@k�l2 @l1f1�

� �@k�l1 @l2�
���@�f2��

� �
Z

d2x
X1
k�1

�i�=2�k

k!

Xk
l�0

k
l

� �
��1�l��@���@

k�l
1 @l2f1��@

k�l
2 @l1f2� 
 �@

k�l
1 @l2f1��@

k�l
2 @l1f2��:

(3.14)

After another integration by parts, the integral vanishes
when

 div ��� � @��
� � 0: (3.15)

This is a necessary and sufficient condition for the vector
field � to generate an infinitesimal area-preserving diffeo-

morphism of R2. It follows that noncommutative scalar
field theory possesses twisted symplectic symmetry.

This calculation can be extended to cases in which f1

and f2 are not scalar fields. Consider as an example the
contraction V� ? W�. Then the part of (3.13) correspond-
ing to the transformations with respect to contractions of
the indices is given by the integral

 �
Z

d2x
X1
k�1

��i�=2�k

k!

Xk
l�0

k
l

� �
��1�l��@k�l1 @l2@��

���@k�l2 @l1V��W
� � ��1�k�@k�l2 @l1W

���@k�l1 @l2@��
��V��

� �
Z

d2x
X1
k�1

�i�=2�k

k!

Xk
l�0

k
l

� �
��1�l�@����@k�l1 @l2W

���@k�l2 @l1V�� � @��
��@k�l1 @l2W

���@k�l2 @l1V���: (3.16)

The integral trivially vanishes after relabeling indices. This
purely algebraic fact is linked to the twisted covariance of
the classical field theory that we established in Sec. II B,
and it enables us to extend the classical symplectic sym-
metry to twisted noncommutative field theories involving
fields of higher rank.

Thus given any noncommutative field theory which is
classically twist invariant under area-preserving diffeo-
morphisms, one can still write down, modulo boundary
contributions, the Ward identity (3.7) for the effective
action � with ��i an area-preserving diffeomorphism.
This is just the statement that the quantum effective action
is twist invariant under symplectic transformations. Recall
that this holds only if the condition (3.6) is satisfied. The
twist invariance of the standard Feynman path integral
measure D� has been somewhat of a matter of debate in
the literature [29,39,40]. We will not enter into this debate
nor elaborate here on the construction of the functional
integral which defines the twisted quantum field theory
[38,41]. Our main analysis of the Wilson loop in the next
section will be independent of this definition in any case.

IV. WILSON LOOPS IN TWISTED
NONCOMMUTATIVE GAUGE THEORY

In this final section we will apply the formalism devel-
oped thus far to investigate the twisted symmetries of
Wilson loop averages in two-dimensional noncommutative
Yang-Mills theory. We will first describe the construction

of Wilson loop operators in the twisted quantum gauge
theory, and then proceed to analyze the correlators. We will
find that the correlation functions of the usual noncommu-
tative Wilson loop operators are not twist invariant under
area-preserving diffeomorphisms of R2. Contrary to the
untwisted case, where even the classical gauge theory is
only invariant under the global sl�2;R�3 2R2 subalgebra
described in Sec. II C [9], the Wilson loop operators on
their own break the full classical W1
1 symmetry of the
twisted gauge theory at the quantum level (up to global
symplectic transformations). This provides a rather more
general, explicit and nonperturbative description for this
loss of invariance than those given previously in [8,9,12].

A. Wilson loop operators

Wilson loops are defined in terms of the holonomy
operator

 hol �R�: �M! G�R�; (4.1)

where �M is the loop space of M � R2, G is the gauge
group, and R is an irreducible unitary representation of G.
Let us examine the effect of the twist deformation on this
operator. The twist changes the way in which the group G
(and therefore hol�R��	� for each 	 2 �M) acts on tensor
products of fields, but not the group structure itself. This
implies that the composition law on the group of gauge
transformations is the ordinary pointwise one induced by
the multiplication in G, i.e. if u1, u2: M! G are gauge
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transformations, then u1  u2 �
:
u1u2. In particular, there

is no restriction on the allowed gauge groups for which the
twist deformation can be implemented [30,31]. This is
radically different from the usual definition in noncommu-
tative gauge theory [26,32], and has also been a focal point
of much debate in the literature [42–44].

Let us regard a given loop 	 2 �M as a smooth
embedding

 	: �0; 1� !M; s � z�s� (4.2)

with z�0� � z�1�. Let A be a g-valued connection one-form
on M. Then we can define the holonomy operator infini-
tesimally along 	 as

 hol �R��	� � P
Y
z2	

�id�R� 
 idz�A�R�� �z��; (4.3)

where the superscript P denotes path ordering along the
loop 	. In this setting it naturally corresponds to the
solution of the parallel transport equation

 

@hol�R�

@s

 _z��s�A�R�� �z�s��hol�R� � 0; (4.4)

where _z��s� � dz��s�=ds.
One can exponentiate the operator (4.3) to write

 hol �R��	� � P exp�i
I
	
A�R��: (4.5)

The equivalence of the two formulas is provided by rewrit-
ing the argument of the exponential in terms of the pull-
back under the map (4.2) as

 

I
	
A �

Z
�0;1�

	��A�; (4.6)

from which we may expand the path-ordered exponential
(4.5) explicitly as
 

hol�R��	� � 1

X1
n�1

in
Z 1

0
ds1

Z s1

0
ds2 	 	 	

�
Z sn�1

0
dsn _z�1�s1� _z

�2�s2� 	 	 	 _z�n�sn�

� A�R��1 �z�s1��A
�R�
�2 �z�s2�� 	 	 	A

�R�
�n �z�sn��: (4.7)

Since the composition law of the group is not affected by
the twist, and since the loop (4.2) is an embedding of the
one-dimensional manifold S1 in M, there are no star
products required in the definition of the holonomy opera-
tor. It thus transforms as usual under the ordinary adjoint
action of the gauge group.

This is very natural from an algebraic point of view, as
the gauge fields in (4.7) are generically multiplied together
at separated points and the holonomy can thus be regarded
as an element of the tensor algebra

 hol �R��	� 2
M1
n�0

�A �U�g�R����n: (4.8)

As a consequence, there is no reason a priori to compose
(4.8) with the deformed product �: A �A!A. Since
the holonomy operator is a generator element of the group
algebra H � CG � G, it acts on tensor products of fields
through the twisted coproduct as

 ��hol�R��	�� � F�1  �hol�R1��	� � hol�R2��	�� F :

(4.9)

From the remarks made at the end of Sec. II B it follows
that hol�R��	� is classically covariant under area-preserving
diffeomorphisms, as well as being gauge covariant.

However, this is not the only definition of Wilson loop
operators which leads to gauge invariant observables that
are covariant under area-preserving diffeomorphisms. We
can systematically deform the holonomy operators (4.7)
into the star-holonomy operators defined by

 

P exp?

�
i
I
	
A�R�

�
�
:

1

X1
n�1

in
Z 1

0
ds1

Z s1

0
ds2 	 	 	

�
Z sn�1

0
dsn _z�1�s1� _z�2�s2� 	 	 	 _z�n�sn�

� A�R��1 �z�s1�� ? A
�R�
�2 �z�s2�� ? 	 	 	

� ?A�R��n �z�sn��: (4.10)

This definition amounts to replacing the tensor product
algebra in (4.8) with the braided tensor product algebra
[28,37,40], as naturally imposed by non-cocommutativity
of the twisted coproduct �. From the general analysis of
Sec. II it follows that these operators possess both twisted
gauge covariance and twisted symplectic covariance. They
are also invariant under the adjoint action of the star-gauge
group [26,32], which is defined to be the gauge group G
with its multiplication deformed by the star product, i.e. if
u1, u2: M! G are gauge transformations, then u1  u2 �

:

u1 ? u2. In contrast to the twist deformation, the star-
product deformation limits the choice of gauge group and
of representation R [45–47], in the simplest settings to the
unitary groups G � U�N� and to the N-dimensional fun-
damental representation. On the other hand, twisted gauge
covariance of (4.10) generically requires the gauge con-
nection A� to be U�g�-valued [30] so that the star holon-
omy is in general a nongenerator element of the group
algebra CG�R�.

The definition of the star-holonomy operator, given in
(4.10) as a star deformation of the ordinary gauge holon-
omy in (4.7), can be understood more fundamentally in the
context of twist deformations as follows. In the argument
of the path-ordered exponential (4.5) we can regard the
contour integral as a bilinear map
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 �0 �
I

: �M �V �M; U�g�� ! U�g�; (4.11)

where V �M; U�g�� is the affine space of enveloping alge-
bra valued connection one-forms on M and the linearity
with respect to the first factor is defined in terms of the
natural Z-module structure on the loop space �M. All
three of the linear spaces in (4.11) carry a natural action of
the semidirect product of the group of gauge transforma-
tions with the diffeomorphism group of M. Then just as
we defined the twisted product in (2.3), following the
philosophy of [37] we can deform the map (4.11) by
combining it with an action of the twist to get � �

:
�0 

F . The twisted map � satisfies the usual covariance con-
dition g  � � �  ��g�. This is a conceptually useful
point of view for calculational purposes, as it allows one
to naturally combine variations of the gauge connection A�
with reparametrizations of the contour 	 [i.e. of the em-
bedding z��s�] in an invariant way.

The star-holonomy operators obey a natural star-
deformed version of the parallel transport Eq. (4.4)
[26,48]. The corresponding Wilson loop is denoted

 W?�	; A� �
:

TrP exp?

�
i
I
	
A
�
; (4.12)

where for brevity we drop the representation label from the
notation. Although the ordinary holonomy operators
hol�R��	� yield the natural observables with respect to the
twisted gauge symmetry, in the remainder of this paper we
will focus on star-gauge invariant observables constructed
from the star-Wilson loops (4.12). The distinction between
the two classes of observables is similar to the distinction
between deformed and undeformed products (or braided
and unbraided tensor products) of fields at separated space-
time points [28,39,40]. In some instances, the incorpora-
tion of both types of observables reflects invariance of the
noncommutative gauge theory under both twisted and star-
gauge symmetries, which has recently been argued to be a
generic requirement for consistency of twisted gauge theo-
ries [49]. Detailed comparisons between the two types of
gauge symmetries can be found in [50].

B. Star-gauge invariant correlators

Noncommutative Yang-Mills theory on R2 is defined by
the action functional

 S?YM�A� �
1

2

Z
d2xTrf2; (4.13)

where f � FA � @1A2 � @2A1 � ie�A1 ? A2 � A2 ? A1�
is the U�g�-valued noncommutative field strength. As the
action (4.13) is defined by the star product, it is natural to
consider star-gauge invariant correlation functions of the
form

 

Z
DAe�S

?
YM�A�O?

1 �A� 	 	 	O
?
n �A�; (4.14)

where the operators O?
i �A� include the star-Wilson loops

(4.12). The ordinary, undeformed Yang-Mills action
SYM�A� is invariant under area-preserving diffeomor-
phisms of R2, because in two dimensions the field strength
f is a scalar field and hence any diffeomorphism which
preserves the area form d2x is a symmetry of the action.
Furthermore, any Wilson loop, constructed from a holon-
omy operator hol�R��	�, is a homotopy invariant which
depends only on the area enclosed by the loop 	, and not
on the shape of 	. This classical symmetry extends to the
quantum gauge theory [10], and, in particular, the func-
tional integral measure DA is invariant under the corre-
sponding transformations of the gauge connection A. From
the general analysis of Sec. II (see remarks at the end of
Sec. II B), it follows that the classical noncommutative
gauge theory is thus invariant under twisted area-
preserving diffeomorphisms. We will now study the be-
havior of the correlators (4.14) under the twisted symplec-
tic symmetry, and decide whether or not it is preserved
after quantization.

To work out Ward identities in path integral quantization
for this case, we proceed as in Sec. III to first determine
whether or not the correlation functions exhibit anomalous
breakdown of the classical symplectic symmetry. For this,
we expand the gauge fields as A� � Aa�Ta, where Ta are
the generators of the gauge group with Tr�TaTb� � �ab,
and couple them to external currents J� � J�a Ta through
the pairing �J; A� �

: R
d2xJ�a Aa�. Then the general argu-

ments of Sec. III can be used to infer that the quantum
effective action constructed through a Legendre transfor-
mation of the connected generating functional

 � log
Z

DAe�S
?
YM�A���J;A� (4.15)

is invariant under twisted area-preserving diffeomor-
phisms. A possible obstruction to this reasoning in the
present case is the implicit presence of the Faddeev-
Popov determinant in the path integral measure DA.
Since it is constructed from the Gauss’ law constraint, it
is built by means of star products of the gauge fields and
hence we need to show that it is twist invariant under a
variation of the gauge field A by an area-preserving
diffeomorphism.

That this is indeed the case can be seen by expressing the
determinant as a functional integral over anticommuting
ghost fields �ca, ca in the adjoint representation of the gauge
group with the Lorentz gauge action

 S?gh� �c; c; A� �
Z

d2x� �ca�ca 
 efabh �ca ? Ab� ? @�ch

� iedabh �ca ? �Ah� ? @
�cb � @�cb ? Ah���;

(4.16)

where fabh are the structure constants of the Lie algebra g
and dabh are invariant tensors for the adjoint action of g.
The proof of twisted invariance of integrals over scalar
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densities given in Sec. III B can now be applied to (4.16).
Moreover, the gauge-fixing term does not break the twisted
symmetry. We conclude that the twisted symplectic sym-
metry is nonanomalous in this case. Hence we need only
further study the behavior of the star-Wilson loops (4.12)
under twisted area-preserving diffeomorphisms, imple-
mented at the quantum level in (4.14).

C. Twist transformations of quantum star-Wilson loops

To analyze the twisted quantum symmetries of the op-
erators (4.12), we shall use a proper path integral repre-
sentation. For this, we introduce a pair of one-dimensional
complex auxiliary fields �
i�s� and 
i�s� on the loop 	
which transform, respectively, in the fundamental and
antifundamental representations of the gauge group.
Their propagator is given by
 

h �
i�s1�
j�s2�i
 �
: Z

D �
D
 �
i�s1�
j�s2�

� exp
�
�
Z 1

0
ds �
k�s� 0
� _
k�s�

�
� �ij��s1 � s2�; (4.17)

where ��s� is the Heaviside step function. The regulariza-
tion indicated in the functional integral takes care of the
ambiguous value of ��s� at s � 0. The technical details of
this regularization play no role below. They are analyzed in
[51] (see also [8] for an analysis in a slightly different
context).

By using the propagator (4.17) and Wick’s theorem, we
can unravel the path ordering operation P [51] in (4.12) to
write the star-Wilson loop operator as
 

W?�	; A� �
�

�
k�0�exp?

�
i
Z 1

0
ds �
i�s� 0
�

� Aij��z�s��
j�s� _z��s�
�

k�1�

�


: (4.18)

We have dropped an irrelevant factor induced by the vac-
uum graphs of the auxiliary quantum field theory on 	
(which is equal to one for unimodular gauge groups and
can be handled in exactly the same way as we do with
(4.18) below). In (4.18) the star products act only on the
arguments of the gauge fields and do not involve the
auxiliary fields. To avoid cluttered formulas below, we
therefore introduce the shorthand notation

 A��z�s�� �
: �
i�s� 0
�Aij��z�s��
j�s�: (4.19)

These fields can be formally star multiplied in (4.18)
without worrying about reordering each term, as our ma-
nipulations will not depend on the details of the loop
integrals anyway.

We now expand the exponential in (4.18) and check for
twisted symplectic invariance order by order in the loop
embedding functions z�. The zeroth and first order terms
are trivially invariant as they do not involve any star

products. The second order term is proportional to

 

Z 1

0
ds1

Z 1

0
ds2A��z�s1�� ? A��z�s2�� _z��s1� _z��s2�: (4.20)

Since there is no star product between A� and _z�, the
arguments used in Sec. II B do not guarantee the scalar
property of this term and we must check its twisted trans-
formation properties directly. Consider the variation

 A� 7 ��! A� 
 �
�R1�
� A� (4.21)

of the Abelianized gauge field (4.19) under an infinitesimal
area-preserving diffeomorphism generated by a vector
field �, where R1 is the representation of the diffeomor-
phism group defined in (2.20). Discarding that part which
can be absorbed into a deformation of the contour 	 under
the diffeomorphism, one finds that the variation of (4.20) is
given by
 Z 1

0
ds1

Z 1

0
ds2 _z��s1� _z��s2�

X1
k�1

��i�=2�k

k!

Xk
l�0

k

l

 !
��1�l

����R1�

@k�l1 @l2�
A��z�s1��?@

k�l
2 @l1A��z�s2��


��1�k@k�l2 @l1A��z�s1��?�
�R1�

@k�l1 @l2�
A��z�s2���: (4.22)

Each term of the summations in (4.24) is of the generic
form

 

Z 1

0
ds2 _z��s2�

Z 1

0
ds1 _z��s1��@

k�l
1 @l2�

�@�A��z�s1��


 @�@
k�l
1 @l2�

�A��z�s1��� ? @
k�l
2 @l1A��z�s2��: (4.23)

At this point, it is tempting to use the twist deformation of
the bilinear contour map (4.11) described in Sec. IVA to
absorb the variation of the contravariant vector field A�
into a deformation of the loop 	 [by appropriately redefin-
ing the embedding functions z��s�]. But this would pro-
duce a sum of loop integrals, each one taken over a
different contour. The only straightforward way to proceed
is to restrict ourselves to some subgroup of the group of
area-preserving diffeomorphisms and study its contribu-
tion to (4.22).

Let us expand the smooth vector field � in a Taylor series

 ���x� �
: X1
l�0

L��1			�lx
�1 	 	 	 x�l ; (4.24)

where L��1			�l is a Schwartz sequence of constant tensors
which are completely symmetric in their lower indices.
The divergence free constraint (3.15) is equivalent to the
traceless conditions

 L��1			�l� � 0: (4.25)

The expression (4.22) may then be rewritten in the conve-
nient form
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 Z 1

0
ds1

Z 1

0
ds2 _z��s1� _z��s2�

X1
l�0

�
z�1�s1� 	 	 	 z�l�s1�

�
X1
k�1

ik

k!
��1�1 	 	 	 ��k�k�L���1			�k�1			�lA��z�s1��


 ���L��1			�k�1			�l@�A��z�s1���

� ?@�1
	 	 	 @�kA��z�s2�� 
 sym:

�
; (4.26)

where the only nonvanishing components of the tensor ���

are �12 � ��21 � �, and the additional term is the corre-
sponding symmetric contribution with s1 and s2 inter-
changed.

Let us first examine the expression (4.26) in the case of a
unimodular linear affine transformation (2.25), i.e. a global
area-preserving diffeomorphism in sl�2;R�3 2R2. One ob-
tains

 Z 1

0
ds1

Z 1

0
ds2 _z��s1� _z

��s2�i�
�1�1����L

�
�1
@�A��z�s1��

? @�1
A��z�s2�� 
 ���L��1

@�1
A��z�s1�� ? @�A��z�s2���

�
Z 1

0
ds1

Z 1

0
ds2 _z��s1� _z��s2�i��1�1�L��1

���1


 ���1
L��1

�@�A��z�s1�� ? @�A��z�s2��: (4.27)

Using the traceless property (4.25) one sees that (4.27)
vanishes. However, with a bit of work it can be seen that
quadratic and higher-order terms in x� in the expansion
(4.24) of the vector field � do not vanish even with the
traceless property (4.25) taken into account. The general-
ization of this calculation to arbitrarily high orders in the
expansion of the exponential in (4.18) is straightforward.

We conclude that the star-Wilson loop is twist invariant
only under global area-preserving diffeomorphims, simi-
larly to the property that linear affine transformations are
the only spacetime symmetries under which the Moyal
product is covariant [11]. However, this does not mean
that the star-Wilson loop is not invariant under general
twisted symplectic transformations, but only that our at-
tempt to realize twisted area-preserving diffeomorphisms
as a symmetry of the noncommutative quantum field the-
ory cannot be implemented on the star-Wilson loop in a
way that keeps it invariant. This result explains the shape
dependence and loss of nonlinear symplectic invariance of
the correlators of Wilson loops observed previously in
[8,9,12]. It also applies to any operator built from the
star-Wilson loop, and it persists for open Wilson lines as
our arguments hold as well when the contour 	 is not
closed. Thus any star-gauge invariant observable will break
the twisted symmetry under nonlinear area-preserving
maps. Since the effect of the twist acts on the contour 	
globally, we also see that the twist variation cannot be
canceled by means of any local operator insertion. The
only remaining hope for full symplectic invariance is an
alternative definition of the twisted noncommutative quan-
tum gauge theory using the braided Wick expansions of
[41], for example, which has recently been argued to be the
correct framework for the implementation of twisted sym-
metries in noncommutative field theory [39].
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