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We exploit the Seiberg-Witten map technique to formulate the theory of gravity defined on a Lie
algebraic noncommutative space-time. Detailed expressions of the Seiberg-Witten maps for the gauge
parameters, gauge potentials, and the field strengths have been worked out. Our results demonstrate that
notwithstanding the introduction of more general noncommutative structure there is no first order
correction, exactly as happens for a canonical (i.e. constant) noncommutativity.
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I. INTRODUCTION

There is a broad consensus that general relativity and
ordinary differential geometry should be replaced by non-
commutative (NC) geometry at some point between cur-
rently accessible energies of about 1–10 TeV (projected for
the LHC at CERN) and the Planck scale, which is 1015

times higher. Indeed, formulation of the general theory of
relativity in the NC perspective is considered to be a
necessity for quantizing gravity [1]. The principal obstacle
in this formulation comes from negotiating general coor-
dinate invariance. Different approaches to the problem can
be broadly classified on the manner in which the diffeo-
morphism invariance of general relativity has been treated
in the NC setting. In [2] a deformation of Einstein’s gravity
was studied using a construction based on gauging the
noncommutative SO�4; 1� de Sitter group and the
Seiberg-Witten (SW) map [3] with subsequent contraction
to ISO�3; 1�. Construction of a noncommutative gravita-
tional theory was proposed based on a twisted diffeomor-
phism algebra [4,5]. On the other hand it has been shown
that the theory can be formulated basing on true physical
symmetries [6] by resorting to a class of restricted coor-
dinate transformations that preserve the NC algebra. The
restriction corresponds to the formulation of NC gravity in
the context of unimodular gravity [7]. This is sometimes
referred to as the minimal formulation of NC gravity. All
these observations are valid only for a constant noncom-
mutative parameter �. There is also an analogous discus-
sion for a covariantly constant � [8].

A remarkable feature is that there is no first order
correction term in � for the various theories of noncommu-
tative gravity for constant � [2,4,9]. It was also conjectured
[9,10] that the underlying symmetry of the commutative

space-time is instrumental in the vanishing of the first order
correction. Nontrivial contribution starts from the second
order term [2,4,11]. However, considering the various es-
timates of the size of the noncommutative parameter [12],
the noncommutative correction to gravity appears to be
insignificant, at least in the intermediate energy regime
below the Planck scale.

All the formulations of noncommutative gravity are
usually discussed assuming the canonical noncommutative
algebra

 �x̂�; x̂�� � i���; (1)

where ��� is a constant antisymmetric two index object.
The question that naturally appears is whether the vanish-
ing of the order � correction is due to this restriction.
Perhaps a more general noncommutative structure might
lead to order � effects.

The motivation of the present paper is to address this
issue of O��� effects for a more general type of noncom-
mutativity. The obvious generalization beyond a constant �
is to take a noncommutative parameter which is linear in
the coordinates. This naturally leads to a noncommutativ-
ity of the form

 �x̂�; x̂�� � i����x̂� � i�f���x̂
�; (2)

where f��� are the structure constants. Later we will find
that for consistency within our approach these constants
assume a Lie algebraic structure so that f��� is antisym-
metric in all the three indices. We prefer to carry out our
analysis in the framework of the minimal theory [6] where
the true symmetries are manifest. This has a distinct ad-
vantage in that it uses the tetrad formalism where the
general coordinate invariance is viewed as a local symme-
try implemented by the tetrad as the gauge field along with
the local Lorentz invariance (SO�3; 1�) generated by the
spin connection fields. This enables one to use the machi-
nery of noncommutative gauge theories elaborately devel-
oped in the literature [3,13–15]. The celebrated Seiberg-
Witten map technique [3] can be used to cast the theory of
noncommutative gravity as a perturbative theory in the
noncommutative parameter �. Such maps have been ex-
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haustively available for the canonical structure [15].
Constructions valid for general coordinate dependent non-
commutativity have been given [16] but these are not
directly suitable for our calculation. We will thus require
to develop the appropriate maps for the Lie algebra valued
coordinate dependent noncommutative structure in the
sequel. Thus apart from the principal motivation of looking
for a first order effect our study of noncommutative gravity
will be intrinsically interesting for the issues of construct-
ing these maps and the noncommutative gauge invariances
involved therein.

Before proceeding further it is useful to dwell on the
organization of the paper. In the next section we will
discuss about the class of the general coordinate trans-
formations which are consistent with the general noncom-
mutative algebra (2). In Sec. III the requirements of the
noncommutative gauge invariances will be analyzed.
Appropriate SW maps will be constructed for the gauge
potentials and field strength tensors valid for the Lie alge-
braic noncommutativity. In Sec. IV the main results of
noncommutative gravity in the tetrad formalism will be
presented. We will show that there is no first order correc-
tion in the commutative equivalent action of NC gravity.
We will conclude in Sec. V.

II. GENERAL COORDINATE TRANSFORMATION
FOR NONCANONICAL NONCOMMUTATIVE

SPACE

The formulation of gravity on NC space-time poses
problems. This is seen by considering the general coordi-
nate transformation,

 x̂ � ! x̂0� � x̂� � �̂��x̂� (3)

and realizing that, for arbitrary �̂��x̂�, it is not compatible
with the algebra (2). However, as in the canonical case [6],

it is possible to find a restricted class of coordinate trans-
formations (3) which preserves the Lie algebraic noncom-
mutative algebra. To demonstrate this assertion in a
convenient way and also for further developments it will
be appropriate to exploit the Weyl correspondence [17] to
work in the deformed phase space with the ordinary multi-
plication substituted by the corresponding star product. A
short review of the formalism is thus appropriate at this
stage.

The noncommutative coordinates x̂� satisfying (2) are
the generators of an associative algebra Ax. According to
the Weyl correspondence we can associate an element of
Ax with a function f�x� of classical variables x� by the
unique prescription

 W�f� �
1

�2��2
Z
d4keik�x̂

� ~f�k�; (4)

where ~f�k� is the Fourier transform of f�x�. The �-product
between two classical functions f�x� and g�x� is denoted by
f � g and is defined by the requirement

 W�f�W�g� � W�f � g�: (5)

The elements of Ax can then be represented by ordinary
functions with their product defined by the star product.
When the generators satisfy the Lie structure the star
product is explicitly given by [13]

 f�x� � g�x� � e�i=2�x�g��i�@=@x0�;i�@=@x00��f�x0�g�x00�j�x0;x00�!x;

(6)

where g� is defined by

 eik�x̂
�
eip�x̂

�
� eifk��p���1=2�g��k;p�gx̂� : (7)

Using the Baker-Campbell-Hausdorff formula,

 eAeB � eA�B��1=2��A;B���1=12���A;�A;B����B;�A;B�����1=48���B;�A;�A;B�����A;�B;�A;B����... (8)

an explicit form of g��k; p� is obtained
 

g��k; p� � ��k�p�f
��

� �
1
6�

2k�p��p� � k��f
��

�f
��

�

� 1
24�

3�p�k	 � k�p	�k�p�f
��

�f
��


f

	

�

� . . . (9)

After this brief digression we now turn to the determi-
nation of the restriction on the transformations (3) such that
the noncommutative algebra (2) is preserved. From (3),
using the Weyl correspondence, we get
 

�x0�; x0��� � �x
�; x��� � �x

�; �̂��x��� � ��̂
��x�; x���

�O��̂2�: (10)

Using the formula (6) one derives the following relation
[13],

 �x�; f�x��� � i�f���x
� @f
@x�

: (11)

It is then straightforward to find, using (11), that in order to
preserve (2), �� must satisfy the condition

 i�f���x
� @�̂

�

@x�
� i�f���x

� @�̂
�

@x�
� i�f����̂

��x�: (12)

A nontrivial solution of the above equation is given by

 �̂ ��x� � f�
	x
	@
g�x�: (13)

This can be checked by using the Jacobi identity following
from (2)
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 f���f��� � f
��
�f��� � f

��
�f��� � 0: (14)

Equation (13) gives the restricted class of general coordi-
nate transformations under which the noncommutative
algebra (2) is preserved. From (13) we find that

 @��̂
��x� � 0:

The Jacobian of the transformations (3) is then unity. In
other words the transformations are volume preserving.
The corresponding theory thus belongs to the noncommu-
tative version of unimodular gravity.

III. SEIBERG-WITTEN MAP FOR LIE ALGEBRAIC
NONCOMMUTATIVITY

In the framework of tetrad gravity two gauge symme-
tries need to be implemented—one is the translation of the
tetrad while the other is the local homogeneous Lorentz
transformations. We thus consider a noncommutative
gauge theory, valued in ISO�3; 1� Lie algebra. The SW
maps for the non-Abelian noncommutative gauge fields
where the noncommutative coordinates satisfy the canoni-
cal algebra are elaborately worked out in the literature
[3,13–15,18]. But the corresponding results for Lie alge-
braic noncommutative structure are only sketched
[13,14,16]. A comprehensive analysis will thus be appro-
priate at this stage which will also be useful for the sub-
sequent calculations. Also all our SW maps are valid up to
first order in � since we are interested only in the first order
effects.

A non-Abelian gauge theory in the noncommutative
space carries two algebraic structures, the associative al-
gebra Ax whose generators are the noncommutative co-
ordinates x̂� and the non-Abelian Lie algebra AT , the
Hermitian generators Ta of which satisfy the algebra

 �Ta; Tb� � ilabcTc: (15)

In classical coordinate space where Ax is commutative
we can define the field  �x� in some representation of the
Lie group and introduce the gauge potential Ai�x� �
Aia�x�Ta in the usual way to make the symmetry local.
The appropriate gauge transformations are

 �
 �x� � i
�x� �x�; 
�x� � 
a�x�Ta; (16)

and

 �
A��x� � @�
�x� � i�
�x�; A��x��: (17)

Note that the commutator of two gauge transformations is
another transformation in the same gauge group

 ��
�	 � �	�
� �x� � ��i�
;	� �x�: (18)

In the noncommutative space, on the other hand, the
closure (18) does not hold [13] within the Lie algebra but is
satisfied in the enveloping algebra. Thus the noncommu-
tative field  ̂�x� transforms as [14]

 �
̂ ̂�x̂� � i
̂�x̂� ̂�x̂� (19)

which is written in � product formalism as

 �
̂ ̂�x� � i
̂�x� �  ̂�x�; (20)

where the gauge parameter 
̂�x� is in the enveloping
algebra [14]

 
̂�x� � 
̂a�x�:Ta:� 
̂1
ab�x�:T

aTb:� . . .

� 
̂n�1
a1...an�x�:T

a1 . . .Tan :� . . . ; (21)

where

 :Ta: � Ta; (22)

 :TaTb: � fTa; Tbg; (23)

 :Ta1 . . .Tan : �
1

n!

X
�2Sn

Ta��1� . . .Ta��n� : (24)

All these infinitely many parameters 
̂n�1
a1...an�x� depend only

on the commutative gauge parameter 
�x�, the gauge
potential A��x�, and on their derivatives. We denote this
as 
̂ 	 
̂�
�x�; A�x��. Then it follows from (20) that the
variation of  ̂ is expressed as1

 �
 ̂�x� � i
̂�
�x�; A�x�� �  ̂�x�: (25)

Now we impose the requirement of closure,

 ��
�	 � �	�
� ̂�x� � ��i�
;	� ̂�x�: (26)

Then the above equation is written in the explicit form
 

i�
	̂�	;A� � i�	
̂�
; A� � 
̂�
;A� � 	̂�	;A�

� 	̂�	;A� � 
̂�
; A�

� i� d�i�
;	����i�
;	�; A�: (27)

Expanding in � we write

 
̂�
;A� � 
� �
1�
;A� �O��2�: (28)

To first order we obtain

 i�
	1�	;A� � i�	
1�
;A� � �
;	1�	;A��

� �	;
1�
; A�� � i��i�
;	��1��i�
;	�; A�

� �
i
2
f���x

�f@�
; @�	g: (29)

The solution is given by

 �
1�
;A� � 1
4�
��f@�
; A�g; (30)

where ��� is defined in (2).

1We are following the notation of [15] in the sense that �
̂ ̂ is
now written as �
 ̂ since 
̂ is expressed as a function of 
.
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Similarly we can expand the field  ̂ also as

  ̂�A� �  � � 1�A� �O��2�: (31)

To first order,

 �
 1�A� � i
 1�A� � i
1�
; A� � 1
2f
��

�x
�@�
@� :

(32)

Its solution is

 � 1�A� � �
1

2
���A�@� �

i
4
���A�A� : (33)

The noncommutative gauge potential Â� is most naturally
introduced by the covariant coordinate X̂� approach de-
veloped by Wess and collaborators [13]. X̂� is defined in
the following way

 X̂ ��x̂� � x̂� � Â��x̂� (34)

which when acts on  ̂ transforms covariantly [14], i.e.

 �
X̂
��x̂� ̂�x̂� � i
̂�x̂�X̂��x̂� ̂�x̂�: (35)

This requirement gives the transformation of Â�

 �
Â
��x̂� � �i�x̂�; 
̂�x̂�� � i�
̂�x̂�; Â��x̂��: (36)

In the star product formalism

 �
Â
��x� � �i�x�; 
̂�x��� � i�
̂�x�; Â

��x���

� ���
@
@x�


̂� i�
̂�x�; Â��x���: (37)

The gauge potential Â� is defined through Â� as in the case
of canonical noncommutativity [15]

 Â � � ���Â�: (38)

Because of the coordinate dependence of the noncommu-
tative structure ��� it is not possible to find the trans-
formation of Â� in closed form but one can obtain results
correct up to the required order in the noncommutative
parameter. To first order in �

 �
Â� � @�
̂� i�
̂; Â�� �
1
2�
��f@�
̂; @�Â�g

� 1
2��
�

��@��

	f@�
̂; Â	g; (39)

where ��
 is the inverse of ��
.
To get the Seiberg-Witten map for the gauge potential

we expand it in a perturbative series in �

 Â ��A� � A� � �A1
��A� �O��2�: (40)

Computing the gauge transformation of Â� from the above
using the corresponding transformation of the commuta-
tive potential and comparing with (39) we get
 

�
A1
��A� � @�
1�
; A� � i�
1�
; A�; A�� � i�
;A1

��A��

� 1
2f
��
�x

�f@�
; @�A�g: (41)

The solution to the last equation is

 �A1
��A� � �

1
4�
��fA�; @�A� � F��g

� 1
4����

��@����fA�; A�g; (42)

where

 F�� � @�A� � @�A� � i�A�; A��: (43)

We then get the Seiberg-Witten map for the gauge potential
correct up to first order in � from (40) and (42) as

 Â ��A� � A� �
1
4�
��fA�; @�A� � F��g

� 1
4����

��@����fA�; A�g: (44)

Note that the last term on the r.h.s. is nonvanishing when
��� is coordinate dependent. In the limit of constant � the
usual SW map is retrieved [3].

Our next task is to construct the Seiberg-Witten maps for
the Yang-Mills field F̂��. We first define a second rank
tensor

 F̂ ���x̂� � �i��X̂��x̂�; X̂��x̂�� � i�f���X̂
��x̂��:

This is written in the � product notation as

 F̂ ���x� � �i��x�; Â��x��� � �x
�; Â��x���

� �Â��x�; Â��x��� � i�f���Â
��x�� (45)

which transforms covariantly as

 �
F̂
�� � i�
̂; F̂����: (46)

This second rank tensor allows us to define the Yang-Mills
F̂�� through

 F̂ �� � ������F̂��: (47)

From Eq. (45), we get the following expression for F̂��,
 

F̂�� � @�Â� � @�Â� � i�Â�; Â�� �
1
2�
��f@�A�; @�A�g

� 1
2�
����
��	@��
�@��	�fA�; A�g

� 1
2�
����
@��


�fA�; @�A�g

� 1
2�
����	@��

	�f@�A�; A�g �O��2�: (48)

The gauge transformation of F̂�� is obtained from (46) and
(47) as

 �
F̂�� � i�
̂; F̂��� �
1
2�
��f@�
̂; @�F̂��g

� 1
2�
����
��	@���


��	��f@�
̂; F̂��g: (49)

An important consistency check is due at this point. The
gauge transformation of F̂�� can alternatively be obtained
from its definition (48) and the gauge transformation (39)
of Â�. For compatibility of the different expressions of
�
F̂�� we require
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������
@���
��

	@	�

��� � �����
@���
��

	@	�

���

� ��	@���
@	��� � ��	@����@	��
 � 0: (50)

This is satisfied if we assume the x̂ dependent ��� accord-
ing to (2).

The SW map for the field strength tensor F̂�� can now
be calculated straightforwardly by substituting the map of
Â� in the defining equation (48). It is given by
 

F̂�� � F�� �
1
2�
��fF��; F��g

� 1
4�
��fA�; �@� �D��F��g

� 1
2����

	�@��
�fF�
; A	g

� 1
2����

	�@��
�fF�
; A	g; (51)

where the covariant derivative is defined in the adjoint
representation

 D �F�� � @�F�� � i�A�; F���: (52)

Note again that in the limit of constant � the map for F̂��
given in (51) reproduces the corresponding well known
SW map [3].

IV. NONCOMMUTATIVE GRAVITY

We have now all the tools at our disposal to develop the
commutative equivalent theory of noncommutative gravity
in the framework of Poincaré gauge gravity. As discussed
in the introduction, the corresponding noncommutative
gauge transformation can be decomposed in the following
way

 �̂�x̂� � �̂��x̂�p� �
1
2�̂

ab�x̂��ab: (53)

Here �̂� is the local translation of the tetrad which must be
restricted to the form given in Eq. (13) in order to preserve
the noncommutative algebra (2). The parameters �̂ab�x̂�
characterize the local Lorentz transformations at x̂ with
�ab as the generators of the Lorentz group. In actual
computation we have to consider some representation of
these generators. In what follows we will assume the vector
representation

 ��cd�ab � �ac�bd � �ad�bc; (54)

where �ab is the Minkowski metric,

 �ab � diag��;�;�;��: (55)

As is usual we will denote the general coordinates by the
Greek indices and components with respect to the tetrad by
Latin indices. Corresponding to the noncommutative
gauge transformations (53) we introduce the gauge poten-
tial

 Â a�x̂� � �D̂a� � iÊ�a �x̂�p� �
i
2
!̂a

bc�x̂��bc; (56)

where E�a �x̂� are the components of the noncommutative

tetrad Êa which are also the gauge fields corresponding to
general coordinate transformations and !̂a

bc�x̂� are the
spin connection fields associated with local Lorentz invari-
ance. Since p� � �i@�, the noncommutative tetrad maps
trivially on the commutative one [6]. Assuming the gauge
transformations and the spin connection fields in the en-
veloping algebra we can write

 �̂ � ��x� ���1��x;!a� �O��2�; (57)

 !̂ a � !a�x� �!
�1�
a �x;!a� �O��2�; (58)

where

 ��x� � ��x�p� �
1
2�

ab�x��ab; (59)

 !a�x� �
1
2!a

bc�bc: (60)

Invoking the results (30) and (42) obtained in the last
section we can immediately write down the order � cor-
rections,

 ��1� � 1
4�
abf@a�; !bg; (61)

 !�1�a � �1
4�
bcf!b; @c!a � Fcag �

1
4�ab�

cd@d�bef!c;!eg:

(62)

The field strength tensor can also be expanded in a power
series of � and we obtain from (51)

 F̂ ab � Fab � F
�1�
ab �O��2�; (63)

where

 F�1�ab �
1
2�
cdfFac; Fbdg �

1
4�
cdf!c; �@d �Dd�Fabg

� 1
2�bc�

de@e�fcfFaf; !dg

� 1
2�ac�

de@e�
fcfFbf; !dg: (64)

The field strength Fab in general contains both Riemann
tensor Rab

cd and the torsion Tab
c. Setting the classical

torsion to be zero we get

 Fab �
1
2Rab

cd�cd: (65)

The noncommutative Riemann tensor R̂ab
cd�x̂� is obtained

from

 R̂ ab�x̂� �
1
2R̂ab

cd�x̂��cd; (66)

where R̂ab is identified with F̂ab under the condition of
zero torsion. Explicitly

 R̂ ab � Rab � R
�1�
ab �O��2�; (67)

where the correction term is obtained from (64) as
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 R�1�ab �
1
2�
cdfRac; Rbdg �

1
4�
cdf!c; �@d �Dd�Rabg

� 1
2�bc�

de@e�
fcfRaf;!dg

� 1
2�ac�

de@e�fcfRbf;!dg: (68)

The Ricci tensor R̂a
c � R̂ab

bc and the Ricci scalar R̂ �
R̂ab

ab are formed to construct the action

 S �
Z
d4x

1

2
2 R̂�x̂� (69)

 �
Z
d4x

1

2
2 �R�x� � R
�1��x�� �O��2�: (70)

The first order correction term to the Lagrangian is

 R�1��x� � R�1�abab � �R�1�ab�
ab: (71)

It is convenient to arrange the correction as

 �R�1�ab�
ab �R1 �R2 �R3 �R4; (72)

where R1; . . . ;R4 correspond to the contributions coming
from the four pieces appearing on the r.h.s. of (68) in the
same order. It is now simple to get the first term

 R 1 � 2�cd�Racg
aRbd

bg � Rac
b
gRbd

ga�: (73)

For evaluating R2 we first compute the part containing the
covariant derivative

 ��@d �Dd�Rab�
e
f � 2@dRab

e
f � i�!d; Rab�

e
f: (74)

We have used the expression (52) for the covariant deriva-
tive Dd. Then the second correction term becomes
 

R2 � ��
cd
�

1

2
�!c

aj@dRabj
b �!c

aj@dRba
b
j�

�

�
i
4
�cd!c

ab�!db
gRajg

j � Rbja
g!dg

j

�!d
jgRjbga � Rja

jg!dgb�: (75)

Exploiting the various symmetries of the Riemann tensor,
spin connection, and the noncommutative structure �ab we
can easily show that both R1 and R2 individually vanish.
Note that these terms do not depend on the coordinate
dependence of �ab and will remain valid for canonical
noncommutative structure. Now the last two terms on the
r.h.s. of (72) are

 R 3 �
1
2�jk�

nl@l�mk�!n
abRamb

j �!n
ajRim

i
a� (76)

and

 R 4 � �
1
2�ik�

nl@l�
mk�!n

aiRjm
j
a �!n

abRamb
i�: (77)

Clearly these terms owe their existence to the Lie algebraic
noncommutativity assumed in the present work. Most sig-
nificantly

 R 3 �R4 � 0 (78)

as can be demonstrated easily by changing dummy varia-
bles in any one of the terms on the l.h.s. We thus find that
the first order correction vanishes again for the more gen-
eral structure of the noncommutative tensor assumed here.

We know that the first order correction to noncommuta-
tive gravity vanishes for constant �. Now we find that the
same result holds for Lie algebraic noncommutativity.
From the analysis presented here it is clear that the non-
existence of the order � correction is due to various sym-
metries of the Riemann tensor and the spin connection of
the zero order theory. It thus appears that the vanishing of
the first order correction is due to the underlying symme-
tries of space-time which will presumably hold for more
general noncommutative structure. However, at this point,
we do not have a definitive proof of this.

V. CONCLUSIONS

A formulation of NC gravity [6] has been discussed
where the coordinates satisfy a general Lie algebra. A
restricted class of general coordinate transformations has
been identified which preserves the noncommutative alge-
bra. This restricted transformation is volume preserving
and the corresponding theory of gravity is referred to as
unimodular gravity [7]. Our formulation of noncommuta-
tive general relativity is based on Poincaré gauge gravity
approach where the diffeomorphism invariance of general
relativity is realized by gauging the translation of the tetrad
along with localizing the Lorentz transformations with
respect to the tetrad. Looking from the point of view of
noncommutative field theories the problem reduces to
solving a noncommutative Yang-Mills theory where the
gauge group is ISO�3; 1�. The SW map technique [3]
allows us to treat the theory as a perturbative Lagrangian
theory. Since the noncommutative gauge transformations
do not satisfy closure one has to take recourse of the
enveloping algebra approach [13–15]. The SW maps for
the noncommutative gauge parameters, potential, and field
strengths have been worked out in detail for the general
type of noncommutativity considered here. Using these
results we have computed the first order correction to NC
gravity. Remarkably the first order correction is found to
vanish. This shows that the vanishing of the first order
correction observed for the case of canonical (constant)
noncommutative algebra [2,4,9] is more general and points
to some deeper underlying connection.

As a future direction, it might be worthwhile to pursue
this analysis for other formulations of NC gravity with a
general noncommutative structure. This is relevant because
it is known that for canonical (constant) noncommutativity
nontrivial corrections begin from O��2� irrespective of the
particular formulation of NC gravity [2,4,11].
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