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We couple a recently established N � 1 globally supersymmetric self-dual Yang-Mills multiplet in
three dimensions to supergravity. This becomes possible due to our previous result on globally super-
symmetric formulation based on a compensator multiplet. We further couple the self-dual vector to a
supersymmetric �-model on the coset SO�8; n�=SO�8� � SO�n� via minimal couplings for an arbitrary
gauged subgroup H0 � SO�8� � SO�n�. A corresponding superspace formulation is also presented.
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I. INTRODUCTION

The concept of ‘‘self-duality’’ for an Abelian vector in
three dimensions (3D) was first introduced in [1], dictated
by the relationship1

 

1
2 ��

��F�� �
:
mA�: (1.1)

As is usual for a vector field in any dimensions, the original
physical degrees of freedom for A� is 3� 2 � 1, after the
deduction of 2 by the gauge fixing the longitudinal and
time components. On the other hand, a repeated use of
Eq. (1.1) leads to

 F�� �
:
�m���

�A� ) @�F
�� �

:
�m2A�: (1.2)

This also implies that A is divergenceless,

 @�A
� �
:

0; (1.3)

and therefore (1.2) implies the massive vector field equa-
tion

 �@2
� �m2�A� �

:
0: (1.4)

Hence, the physical degrees of freedom should be 3� 1 �
2 as in the case for a massive vector instead of the massless
one with 3� 2 � 1 degree of freedom. However, these two
massive degrees of freedom are again halved due to the
self-duality condition (1.1), leaving only 1 degree of free-
dom after all [1]. Similar treatments in general odd dimen-
sions are also given in [1].

We have recently generalized the supersymmetric
Abelian result in [1] to non-Abelian gauge groups, i.e.,
we have presented a globally N � 1 supersymmetric self-
dual Yang-Mills multiplet in 3D [2]. The key ingredient
was to introduce the compensator scalar multiplet that
makes the whole system gauge invariant, even though
gauge symmetry is a ‘‘fake’’ symmetry. We have also
succeeded in the corresponding superspace formulation,

and its coupling to supersymmetric Dirac-Born-Infeld ac-
tion [2].

Since all of these results are based on global N � 1
supersymmetry, the next natural step is to generalize
them to local supersymmetry. In the present paper, we
accomplish the coupling of our N � 1 globally supersym-
metric self-dual Yang-Mills [2] to N � 1 supergravity [3].
Thanks to the compensator multiplet, the supergravity
coupling works in a straightforward manner as in a con-
ventional supergravity theory [4], such as Noether cou-
plings at the cubic order, and quartic couplings which show
the internal consistency of the system. We next couple the
self-dual Yang-Mills multiplet to a �-model for the coset
G=H � SO�8; n�=SO�8� � SO�n� via minimal coupling
for an arbitrary subgroup H0 � H. Subsequently, we re-
formulate some of these couplings in terms of superspace
language.

The motivations of our present work can be now sum-
marized into two items:

(i) The coupling of a N � 1 globally supersymmetric
system toN � 1 supergravity is the next natural (and
in a sense imperative) step.

(ii) By coupling to N � 1 supergravity with all the
quartic terms, we will see the classical consistency
of our system.

We stress that item (ii) is for classical consistency, because
the quantum consistency of our model might be problem-
atic, due to the compensator scalar involved. However,
there are two main reasons for our optimism for quantum
behavior of our model: (1) The consistent coupling to
supergravity provides a good support also for quantum
consistency. For example, type IIA massive supergravity
in 10D [5] has a 1-form (vector) field playing a role of a
compensator for a 2-form tensor field. Type IIA massive
supergravity has a good quantum behavior based on super-
string theory. Even though our model is not based on
superstring, type IIA massive theory [5] is an encouraging
example to deal with compensators. (2) Thanks to local
supersymmetry inherent in the system, we expect that
quantum behaviors will be improved compared with non-
supersymmetric systems. In fact, we have seen such as
suppressed quadratic divergences, as well as finite super-
symmetric theories.
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1We use the symbol �

:
for a field equation distinguished from

an algebraic one in our paper.
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At any rate, the quantum-level consistency is outside the
scope of the present work. As such, we do not address this
question here.

II. PRELIMINARIES ON COMPENSATORS

We review the procedure of describing the compensators
for an arbitrary non-Abelian gauge group H0 [2].2 We first
introduce the compensator scalar field in the adjoint rep-
resentation ’ � ’ITI, where TI�I � 1; 2; . . . ; dimH0� are
the anti-Hermitian generators, satisfying the commutator

 �TI; TJ	 � fIJKTK; (2.1)

with the usual structure constant fIJK. Relevantly, the main
definitions and important relationships in our previous
paper [2] are summarized as follows:
 

F�� � @�A�� @�A�
m�A�;A�	; (2.2a)

D�e
’ � @�e

’
mA�e
’; P� � �D�e

’�e�’; (2.2b)

D��P�	 � 

1
2mF��


1
2�P�;P�	: (2.2c)

We sometimes omit adjoint indices, whenever there is no
ambiguity involved. The gauge-coupling constantm forH0

has the dimension of mass in 3D, because we assign the
mass dimension 0 (or 1=2) to the bosons (or fermions) [2].
The finite gauge transformation properties of these quan-
tities for the local H0 group have been well known [6,7]
 

�e’�0 � e��e’; �e�’�0 � e�’e�;

�D�e
’�0 � e���D�e

’�; (2.3a)

A�
0 � m�1e��@�e

� 
 e��A�e
�;

F��0 � e��F��e�; (2.3b)

where � � �I�x�TI are x-dependent finite local gauge
transformation parameters. All the terms in (2.3) are Lie-
ring valued, as the adjoint indices are suppressed.

We can now depict the role of the compensator scalars
through the ‘‘toy’’ Lagrangian3

 L 1 � �
1
4�F��

I�2 � 1
2�P�

I�2: (2.4)

The new field redefined by

 

~A� � e�’A�e
’ 
m�1e�’�@�e

’� � m�1e�’P�e
’;

(2.5)

and its field strength do not transform [7,8]: ~A�
0 � ~A�,

~F��
0 � ~F��. The original Lagrangian (2.4) can now be

completely rewritten as the following Lagrangian, where
the exponential factors e�’ are entirely absent:

 L 1 � �
1
4�

~F��
I�2 � 1

2m
2� ~A�

I�2: (2.6)

As usual in compensator formulations, the original kinetic
term for’ is now reduced to the mass term of ~A� [7,8], and
the original gauge invariance is no longer manifest.

Instead of the F2
��-term in (2.4), consider now the super-

symmetric Chern-Simons Lagrangian [9] with an addi-
tional mass parameter �:

 

L2 �
1
4��

����F��IA�I �
1
3f
IJKA�IA�JA�K� �

1
2�P�

I�2

� 1
4��

���� ~F��
I ~A�

I � 1
3f
IJK ~A�

I ~A�
J ~A�

K�

� 1
2m

2� ~A�
I�2: (2.7)

This yields the A-field equation, or equivalently the ~A-field
equation

 

1
2��

���F��
I �
:
mP�

I; 1
2��

��� ~F��
I �
:
m2 ~A�

I:

(2.8)

The latter is nothing but the self-duality (1.1), if � � m,
and ~A� is identified with A�.

As we have seen here, the advantage of the compensator
formulation is to use the gauge invariance to fix
Lagrangians easily, because only limited Lagrangian terms
are allowed under the gauge invariance of the action.

III. LOCALLY SUPERSYMMETRIC SELF-DUAL
YANG-MILLS MULTIPLET

We are now ready to couple the N � 1 globally super-
symmetric self-dual Yang-Mills to supergravity. Our field
content is the multiplet of N � 1 supergravity �e�m;  ��,
the Yang-Mills multiplet �A�I; �I�, and the compensator
scalar multiplet �’I; �I�.

Even though the self-dual Yang-Mills multiplet in 3D
implies the absence of the usual kinetic terms starting with
��1=4��F��I�2, we first consider such kinetic terms, as the
general option. The coupling procedure then is similar to
the routine Noether couplings, together with the conven-
tional method for quartic fermion terms [4]. Thanks to the
compensator multiplet, the coupling procedure is
simplified.

Our first result is summarized by the total action I3 �
ISG 
 IVM 
 ISM 
 ICS 
 ICC, where ISG is the kinetic
terms for supergravity, IVM is for the kinetic terms for
the Yang-Mills multiplet, ISM is for the kinetic terms for
the compensator scalar multiplet, ICS is the supersymmet-
ric Chern-Simons terms, and ICC is for a cosmological
constant. Their corresponding Lagrangians are, respec-
tively,

2We call this gauge group H0 instead of G which will be used
for G � SO�8; n� for a �-model.

3Our metric in this paper is ����� � diag:��;
;
�.
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e�1LSG � �
1
4R� e

�1����� � �D��!� ��; (3.1a)

e�1LVM � �
1
4�F��

I�2 � 1
2�

��ID6 �!;A��I� � 1
4�

� �	��	��I��F��I 
 F̂��
I� �m� ��I�I� 
 1

8�
��I�I�2; (3.1b)

e�1LSM � �
1

2
�P�I�2 �

1

2
� ��ID�I� 


1

48
hIJ;KL� ��I�K�� ��J�L� 


1

2
� � �	�	��I��P�I 
 P̂�

I�

�
1

8
� ��I�I�2 


1

4
� ��I�I�� ��J�J�; (3.1c)

e�1LCS � 

1
4�e

�1�����F��
IA�

I � 1
3mf

IJKA�
IA�

JA�
K� � 1

2��
��I�I�; (3.1d)

e�1LCC � 
M� � �	
�� �� 
 2M2 
 1

2M�
��I�I� 
 1

2M� ��
I�I�: (3.1e)

The constant h’s in LSM are defined in terms of the
structure constant fIJK of H0:

 hIJ;KL � fIJMfMKL: (3.2)

The covariant derivative D acts on � as in the globally
supersymmetric case [2] except for the Lorentz connection
term:

 D ��
I � �1

2mf
IJKP�

J�K 
 @��
I � 1

4!�
rs	rs�

I: (3.3)

The field strength F��I is the same as (2.2a), while all the
hatted field strengths are their supercovariantizations [4],
defined by
 

F̂��
I � F��I � 2� � 

��	�	�
I�; (3.4a)

P̂�
I � ��D̂�e

’�e�’	I

� �f@�e
’ � � � ���e

’ 
mA�e
’ge�’	I: (3.4b)

Our total action I3 is invariant under local N � 1 super-
symmetry
 


Qe�m � 
2� ��	m ��; (3.5a)


Q � � 
D��!̂��
M�	���; (3.5b)


QA�
I � 
� ��	��

I�; (3.5c)


Q�I � �
1
2�	

����F̂��
I; (3.5d)


Qe’ � 
� ���I�e’; (3.5e)


Q�
I � 
�	����P̂�

I � 1
4f
IJK� ��J	��

K�	: (3.5f)

As usual, !̂�
rs � !̂�

rs�e;  � is the Lorentz connection
with the  -torsion included [4].

Some remarks are in order. First, the normalization of
the coefficient for the gravitino kinetic term is the unit
strength instead of 1=2, due to the commutation relations
�
Q��1�; 
Q��2�	 � 
2��2	

m�1�Pm, also reflected in the
coefficient ‘‘
2’’ in (3.5a).

Second, for a self-dual VM, the kinetic Lagrangian LVM

should be dropped, and the total action should be I4 �
ISDVM � ISG 
 ISM 
 ICS 
 ICC. Accordingly, when LVM

is dropped, the self-duality condition in the globally super-
symmetric case is now generalized to the locally super-
symmetric equation

 

1
2�e

�1��
��F̂�� �

:
mP̂� �

1
4mf

IJK� ��J	��
K�: (3.6)

This is nothing but the locally supersymmetric general-
ization of the gauge-covariantized form (2.8) of the self-
duality (1.1). Because of the free parameter �, we have
more freedom than the special case � � m. The globally
supersymmetric version in [2] can be also reobtained by
deleting the gravitino and graviton fields.

Third, the normalization of the terms in LCS has been
chosen, such that the self-duality condition (3.6) easily
recovers the nonsupersymmetric case (1.1). However, for
any gauge group whose �3-mapping is nontrivial, such as
[10]

 �3�H0� �

8><
>:
Z �for H0 � Ai; Bi; Ci; Di�i � 2; H0 � D2�; F4; G2; E6; E7; E8�;
Z  Z �for H0 � SO�4��;
0 �for H0 � U�1��;

(3.7)

the constant � should be quantized as [2]

 � �
nm2

�
�n � 0;�1;�2; . . .�: (3.8)

Fourth, the supersymmetric cosmological constant term
LCC can be obtained by the routine procedure starting with
the cosmological constant proportional to M2 and the
gravitino mass term proportional to M� � �	

�� ��. The
positive definite signature M2 > 0 implies the anti-de
Sitter space-time in 3D. The new feature here is that this
cosmological constant induces the mass terms both for the

gaugino � and the fermionic partner � in the compensator
multiplet. The mass terms of spin 1=2 fields � and �
induced by the cosmological constant are not peculiar to
this system, but are rather universal in other dimensions,
e.g., type IIA supergravity [11].

Fifth, each Lagrangian in (3.1) is not by itself invariant.
For example, ISDVM defined above is invariant, but not each
Lagrangian in ISDVM. We also need a special care, when
dropping some Lagrangians (3.1a) through (3.1e) in I3, in
order to maintain the invariance of the resulting total
action. For example, when we drop LCC, we have to
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drop the M-term in the transformation (3.5b), setting M �
0 everywhere in the system.

Sixth, there are three mass terms for the � and �-fields:

 

1

2
� ��I; ��I�

M�� �m
�m M

� �
�I

�I

� �
; (3.9)

whose eigenvalues M are computed to be

 M � M�
�
2
�

�������������������
�2

4

m2

s

� M�
nm2

2�
�

������������������������
n2m4

4�2 
m
2

s

�n � 0;�1;�2; . . .�;

(3.10)

due to (3.8) for a non-Abelian group in the unit of � � 1. If
we further impose an additional condition between these
eigenvalues, such as one of them to be zero, then the
cosmological constant � � 2M2 itself and/or the gauge-
coupling constant m will be quantized.

IV. COUPLING TO �-MODEL ON
SO�8; n�=SO�8� � SO�n�

As another example of nontrivial couplings of our self-
dual Yang-Mills multiplet in 3D, we introduce the
SO�8; n�=SO�8� � SO�n� �-model originally developed
by [12] for extended N�8 supergravity, and applied also
to N � 1 supergravity in 3D in our previous paper [13].

We choose the coset G=H � SO�8; n�=SO�8� � SO�n�
because of its nontrivial and rich structure. In particular,
since n � 1; 2; . . . can be general, the size of this coset can
be arbitrarily large with many potential applications.
Moreover, the existence of two groups in H � SO�8� �
SO�n� makes the system nontrivial, serving as a template
for more complicated cosets. Despite such a rich coset
structure, the number of supersymmetry remains to beN �
1, as will be elucidated in the supersymmetry transforma-
tion rule (4.8) and also in [13]. This is in contrast with, e.g.,
a N � 2 hyper-Kähler manifold in 4D [14], where ex-
tended N � 2 supersymmetries are required.

The new multiplet introduced is the �-model multiplet
��; �Aa� in addition to the Yang-Mills multiplet �A�I; �I�,
the compensator multiplet �’I; �I�, and that of supergrav-
ity �e�m;  ��. The latter three are the same multiplets
introduced in the previous section. The scalars � are
the coordinates of the coset G=H � SO�8; n�=SO�8� �
SO�n� [13]. The vector A�I is supposed to satisfy the
self-duality condition (1.1) with its supersymmetric gen-
eralizations. The indices �;�; . . .�1;2; . . . ;8n�dim�G=H�
are for the curved indices of the manifold G=H, while
A;B; . . .�1;2; . . . ;8 are for the vectorial 8V of SO�8�,4 while

a; b; . . . � 1; 2; . . . ; n are for the n of SO�n�. The indices
I; J; . . . � 1; 2; . . . ; dimH0 are for the adjoint representa-
tion for H0 which is an arbitrary gauged subgroup of H �
SO�8� � SO�n�.

As usual for supersymmetric �-models, we introduce
the vielbein V�Aa and its inverse VAa

� onG=H [12,13]. For
the gauging of H0 � H, we introduce the Killing vectors
��I into the covariant derivative of the coordinates �

[14,15]:

 D �� � @�� �mA�I��I: (4.1)

Here we have to use m for the gauge-coupling constant for
the total consistency. Equation (4.1) is equivalent to the
expression in terms of the coset representative V [6,12–
14,16]:

 V �1D�V � V�1@�V 
mA�IV
�1TIV

� �D����V�AaYAa 

1
2Q�

ABXAB


 1
2Q�

abXab�: (4.2)

In the contractions among the indices A;B; . . . or a; b; . . . ,
we always use superscripts, because the corresponding
metrics are all positive definite. The TI’s are the generators
of the arbitrary gauged group H0 � H � SO�8� � SO�n�,
and YAa’s are the generators on the coset G=H, while XAB

(or Xab) are the generators of SO�8� [or SO�n�], satisfying
their algebras

 

�XAB; XCD	 � 

BCXAD � 
ACXBD � 
BDXAC


 
ADXBC;

�Xab; Xcd	 � 

bcXad � 
acXbd � 
bdXac 
 
adXbc;

�XAB; YDd	 � 

BDYAd � 
ADYBd;

�Xab; YDd	 � 

bdYDa � 
adYDb;

�YAb; YCd	 � 

ACXbd 
 
bdXAC: (4.3)

Accordingly, the Killing vectors satisfy the relationships

 

DAa�Q��BbI � VAa��@��
BbI 
Q�

BC�CbI 
Q�
bc�BcI�

� 
abCABI 
 
ABCabI; (4.4)

where �BbI � V�
Bb��I, and the C’s defined by

 CABI � Q�
AB��I; CabI � Q�

ab��I (4.5)

have been known [15] to be covariant both under the
composite �-model gauge transformations on G=H and
the gauged subgroup H0 � H.

Our total action is now I5 �
R
d4xL5, where

4In this paper, we assign the vectorial 8V representation for
these indices instead of the spinorial 8S in [13], in order to
simplify supergravity couplings.
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e�1L5 � �
1

4
R� e�1����� � �D� �� �

1

2
g��g���D����D�

�� �
1

2
�P�I�2 �

1

2
� ��ID6 �I� �

1

2
� ��Aa	�D6 �Aa�

�m� ��I�I� 
mV�Aa� ��Aa�I���I 

1

2
V�Aa� � �	�	��Aa��D�� 
 D̂��� 


1

2
� � �	�	��I��P�I 
 P̂�

I�



1

4
�e�1����

�
F��

IA�
I �

1

3
mfIJKA�

IA�
JA�

K
�
�

1

2
�� ��I�I� �

1

8
� ��Aa�Aa�2 �

1

6
� ��Aa	��

Ba�2

�
1

6
� ��Aa	��Ab�2 


1

4
� ��Aa�Aa�� ��I�I� 


1

48
hIJ;KL� ��I�K�� ��J�L� 


1

4
� ��I�I�� ��J�J� �

1

8
� ��I�I�2: (4.6)

The h’s are defined formally by (3.2), but now the structure
constant fIJK is for the gauged group H0 2 H � SO�8� �
SO�n�. As usual in supergravity in 3D [12,13,16], we adopt
the 1.5-order formalism for the Lorentz connection !�

rs

[4], such as D� � � @� � � �1=4�!�
rs	rs �, where the

Lorentz connection ! is treated as an independent field,
satisfying its algebraic field equation. The covariant de-
rivative D� on � is defined by [13]

 D ��Aa � 
@��Aa �
1
4!�

rs	rs�Aa 
Q�
AB�Ba


Q�
ab�Ab 
mA�

I�TI�AB�B: (4.7)

where Q�
IJ � �D�

��Q�
IJ and Q�

bc � �D�
��Q�

bc

are the composite connections with their pullbacks, as
usual [12,13,16]. The underlined indices A;B; . . . are for
the pair of indices A0a0; B0b0; . . . , e.g., �B � �B

0b0 , etc.,
where these primed indices A0; B0; . . . and a0; b0; . . . are
the subgroups of the original indices A;B; . . . and
a; b; . . . , depending on the gauged subgroup H0 on which
TI acts nontrivially.

Our total action I5 is invariant under local N � 1 super-
symmetry:
 


Qe�
m � 
2� ��	m ��; (4.8a)


Q � � 
D��!̂��; (4.8b)


QA�I � 
� ��	��I�; (4.8c)


Q�
I � �1

2�	
����F̂��

I; (4.8d)


Qe
’ � 
� ����e’; (4.8e)


Q�I � 
�	����P̂�
I � 1

4f
IJK� ��J	��K�	; (4.8f)


Q� � 
VAa�� ���Aa�; (4.8g)


Q�Aa � 
�	���V�AaD̂��

� �
Q
���Q�

AB�Ba 
Q�
ab�Ab�: (4.8h)

Note that we have N � 1 supersymmetry, despite the coset
SO�8; n�=SO�8� � SO�n�, as the index structures in (4.8g)
and (4.8h) show. As before, all the hatted field strengths are
supercovariantized [4], e.g.,

 D̂ �� �D�� � VAa�� � ��Aa�: (4.9)

Some remarks are in order. First, since we are dealing
with the self-dual Yang-Mills multiplet, we do not need the
kinetic terms for this multiplet. Accordingly, terms in

LVM, such as the Noether term � 		�F, or the quartic
terms such as  2�2 or �4 are all absent.

Second, as far as the �-model part is concerned, these
couplings are essentially the same as our previous paper
[13]. The only differences are with the coefficients, caused
by the notational change from [13], such as the metric
signature, the 8V of SO�8�, or the scaling of supersymme-
try commutator algebra.

Third, we see that the self-dual Yang-Mills vector can be
coupled to the �-model on the coset SO�8; n�=SO�8� �
SO�n� consistently with supersymmetry. In particular, the
A�-field equation yields the �-model corrected version of
the self-duality condition (3.6), as
 

1
2���

��F̂��
I �
:

mP̂�

I � 1
4mf

IJK� ��J	��
K�

�m��
ID̂�

� 
 1
2m�T

I�AB� ��A	��
B�

� 1
2mC

ABI� ��Aa	��
Ba�

� 1
2mC

abI� ��Aa	��
Ab�: (4.10)

This result is also due to our previous formulation based on
the compensator multiplet that simplifies supergravity cou-
plings. Self-dual vectors coupled to the �-model have been
presented also in the context of N � 16 gauged supergrav-
ity [16]. However, our coupling between a self-dual gauge
field and a �-model in 3D is the simplest one that can be
used as a template for more applications related to
�-models.

Fourth, the invariance of the action I5 can be confirmed
as in usual supergravity. Aside from quartic terms, all the
m-independent cubic terms are the usual routine computa-
tions. As for the m-dependent cubic terms, only �-model
dependent terms are the new contributions, categorized
into four sectors (i) m�F, (ii) m�D, (iii) m�2�, and
(iv) m ��. To all of these sectors, the explicit term m ����
in the Lagrangian contributes, analogously to the usual
gaugino-quark-squark mixing term [17]. Sector (i) comes
from the variation of the gravitino in the Noether term
� �D and the m ����-term in the Lagrangian. The former

generates the commutator �D�;D�	 canceling the like
term from the variation of the latter. Sector (ii) comes
from the minimal coupling of the -kinetic term and the
m ����-term. Sector (iii) comes from the composite con-
nections in the �-kinetic term, and them ����-term. Finally,
sector (iv) comes from the m ����-term and the Noether

SELF-DUAL YANG-MILLS MULTIPLET IN THREE . . . PHYSICAL REVIEW D 75, 125016 (2007)

125016-5



term � �D. In these computations, the following
�-model related formulas are needed [6,14,15]:
 

D�D��� @�D���mA�I�@���I�D�
�; (4.11a)

L�J�
�I � ��J@��

�I���I@��
�J
mfIJK��K � 0;

(4.11b)

L�IV�
Aa� ��I@�V�

Aa
�@��
�I�V�

Aa


m�TI�ABV�
B� 0; (4.11c)

�D�;D�	���mF��I��I; (4.11d)

where L�I stands for a Lie derivative in the ��I-direction.
Fifth, the remaining quartic terms in the Lagrangian are

also parallel to the previous section, or to the usual N � 1
supergravity [13] which do not need additional
clarifications.

V. SUPERSPACE REFORMULATION

Once we have established component formulation of
coupling between self-dual Yang-Mills based on compen-
sator scalar multiplet, the next natural step is to reformulate
in superspace [18]. Even though we do not include the
�-model multiplet and supergravity in this section, we
already see highly nontrivial relationships needed for the
mutual consistency of superfield equations.

Although a Lagrangian formulation in superspace has
been presented in our previous paper [2], we present here
another superspace formulation based on Bianchi identities
(BIds), which provides important formulas, as will be seen.
The relevant superfield strengths are the Yang-Mills super-
field strength FAB

I, supertorsion TAB
C, and supercurvature

RABc
d [18], together with our new superfield strength PA

I5:
 

1
2r�ATBC�

D � 1
2T�ABj

ETEjC�
D

�1
4R�ABje

f�Mf
e�
jC�

D � 0; (5.1a)
1
2r�AFBC�

I � 1
2T�ABj

DFDjC�
I � 0; (5.1b)

r
�APB�

I � TAB
CPC

I � fIJKPA
JPB

K �mFAB
I � 0: (5.1c)

Here, the superfield strength PA
I is defined by [2]

 PA � �rAe
’�e�’ � �DAe

’ 
mAAe
’�e�’; (5.2)

so that we have

 P�I � ��r�e’�e�’	I � ���I: (5.3)

The superspace constraints satisfying the BIds (5.1) are
given by
 

T��
c � �2�	c���;

T��
	 � T�b

c � T�b
	 � Tab

c � 0; (5.4a)

F�b
I � ��	b�I��; F��

I � 0; (5.4b)

r���I � �
1
2�	

cd��
�Fcd

I; (5.4c)

r�e’ � ���e’; (5.4d)

r���
I � 
�	c����Pc

I � 1
4f
IJK� ��J	c�

K�	; (5.4e)

r�Pb
I � �rb��I � ���; Pb	I �m�	b�I��; (5.4f)

r
�aPb	

I � 
mFab
I 
 �Pa; Pb	

I: (5.4g)

We can see that the transformation rules (3.5c)–(3.5f) can
be recovered by the usual technique in superspace [18]
relating to their component fields.

As usual, we can get also the component field equations
with supercovariantized field strengths from the BIds at
dimensions d � 3=2. These are superfield equations whose
� � 0 sector corresponds to component field equations,
summarized as
 

�r6 �I 
m�I�� �
:

0; (5.5a)

�D6 �I�� 
m��
I �

1

12
hIJKL��

K� ��J�L� �
:

0; (5.5b)

rbFabI �
1

2
mfIJK� ��J	a�K� 
mPaI

�
1

4
mfIJK� ��J	a�K� �

:
0; (5.5c)

raP
aI 


1

2
fIJK� ��JD6 �K�

�
1

8
hIJ;KL� ��K	a�L�PaJ �

:
0: (5.5d)

We stress not only that these superfield equations obtained
from BIds at d � 3=2 are consistent with our component
results, but also that the mutual consistency among equa-
tions in (5.5) can be confirmed. For example, we can
confirm that the ra-divergence of (5.5c) actually vanishes
by the use of other superfield equations:

 ra

�
rbFabI �

1

2
mfIJK� ��J	a�K� 
mPaI

�
1

4
mfIJK� ��J	a�K�

�

� 
mfIJK� ��JF K
���� �mF

I
�P� 
mf

IJK� ��JF K
����

�
1

12
m2kIJ;L;MN� ��J�M�� ��L�N�; (5.6)

where

 kIJ;K;LM � fIJNhNK;LM � fIJNfNKPfPLM: (5.7)

The F ’s correspond, respectively, to the left-hand sides of
(5.5a) through (5.5d), defined by

5We use the indices A � �a; ��, B � �b;��; . . . in superspace,
where a; b; . . . � 0, 1, 2 (or �;�; . . . � 1, 2) are used for bosonic
(or fermionic) superspace coordinates. Even though we use the
same indices A;B; . . . both for superspace local coordinates and
the 8V of SO�8�, or a; b; . . . both for bosonic superspace local
coordinates and the n of SO�n�, they can be easily distinguished
by the context. The antisymmetrization symbols are defined,
e.g., by M�AB� � MAB � ���

ABMBA. In superspace, we also use
the same space-time signature ��ab� � diag��;
;
�.
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F ����
I � ��r6 �I 
m�I��; (5.8a)

F
����

I � �

�
D6 �I 
m�I �

1

12
hIJ;KL�K� ��J�L�

�
�
; (5.8b)

F �A�a
I � �rbFa

bI 
 1
2mf

IJK� ��J	a�
K� �mPa

I


 1
4mf

IJK� ��J	a�
K�; (5.8c)

F �P�
I � 
raP

aI 
 1
2f
IJK� ��JD6 �K�

� 1
8h
IJ;KL� ��K	a�

L�Pa
J: (5.8d)

Note that the last term in (5.6) vanishes identically:

 kIJ;L;MN� ��J�M�� ��L�N� � 0; (5.9)

as can be confirmed by Fierzing. Note that Eq. (5.6) itself is
rigorously an identity without the use of superfield equa-
tions. However, the superfield equations �5:8a� �

:
�5:8b� �

:

�5:8d� �
:

0 combined with (5.9) yield the consistent result
�5:6� �

:
0.

There are other confirmations of the mutual consistency
among the superfield equations, such as

 r�F ����
I � 
�	c���F �A�c

I �
:

0; (5.10)

where the F
�A�c

I �
:

0 (5.5c) is used only for the last equal-
ity. Similarly, we can confirm that

 

r�F �A�b
I � 
�	br6 F ���

I�� 
m�	bF ���
I�� �rbF ����

I

�
:

0; (5.11)

where we have used F
���

I �
:

0 and F
���

I �
:

0 only for the
last equality.

As we have seen, in the BId formulation, we can get
nontrivial relationships that are technically useful in super-
space. These confirmations provide more than enough
supporting evidence of the total consistency of our system,
in particular, the nontrivial interplay between the vector
multiplet and compensator scalar multiplet.

VI. CONCLUDING REMARKS

In this paper we have completed the coupling of theN �
1 supersymmetric self-dual Yang-Mills multiplet in 3D [2]
to supergravity, including all the quartic terms. Thanks to
the compensator formulation with manifest gauge symme-
try, the coupling to supergravity is straightforward, like
other supergravity formulations [4] for regular field
strengths with Noether couplings. Before our previous
paper [2] based on compensator formulation, such cou-

plings had been thought to be extremely difficult, if not
impossible [1]. We have given the general couplings be-
tween vector, compensator scalar, and supergravity mul-
tiplets in (3.1), including the kinetic terms, topological
mass terms with the supersymmetric Chern-Simons terms
of the vector multiplet, together with the supersymmetric
cosmological constant term. We stress that the completion
of supergravity couplings including all the quartic fermi-
onic terms provides the strong supporting evidence of the
total consistency of our system at the classical level.

There can be three mass parameters possible in our
system, namely, the non-Abelian coupling constant m,
the Chern-Simons mass parameter � quantized for groups
with �3�H0� � 0, and the gravitino mass M related to the
cosmological constant � � 2M2. For a non-Abelian gauge
group H0 with nontrivial �3�H0�, the parameter � should
be quantized as in (3.8). If we require one more mass
relation, such as one of the masses of � or � to be zero
in certain bases, then the cosmological constant � will be
also quantized.

We have further performed the coupling of the self-dual
Yang-Mills gauge field to the �-model on the coset
G=H � SO�8; n�=SO�8� � SO�n�. Namely, we have
gauged an arbitrary subgroup H0 � H by the self-dual
Yang-Mills vector with the arbitrary coupling constant
m. To our knowledge, this is the first simple system that
entertains the coupling of a self-dual gauge field in 3D to a
gauged �-model on the nontrivial coset SO�8; n�=SO�8� �
SO�n� with arbitrary gauging for 8H0 2 H � SO�8� �
SO�n�.

We have also reformulated some of our component
results in superspace. There seems to be no obstruction
against coupling the self-dual supersymmetric Yang-Mills
multiplet, based on compensator scalar multiplet. The
compensator multiplet has provided a good framework to
make these couplings straightforward. We have seen that
the BIds at d � 3=2 provide all the superfield equations,
and their mutual consistency can be confirmed by highly
nontrivial relationships, including Fierzing of fermions
such as (5.9). This superspace result also provides the
supporting evidence of the classical consistency of our
system.

Even though the number of supersymmetry is limited to
N � 1, nevertheless rich and nontrivial structures are seen
to emerge in our model. This is due to general non-Abelian
gauge groups we are dealing with, together with such
topological properties as self-duality in 3D. We can expect
more results for further generalizations of self-dual Yang-
Mills fields in 3D to extended global or local supersym-
metric models.
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