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Using the anti–de Sitter/conformal field theories (AdS/CFT) correspondence, we address the question
of how to measure complicated space-time metrics using gauge theory probes. In particular, we consider
the case of the 1=2 Bogomol’nyi-Prasad-Sommerfield geometries of type IIB supergravity. These
geometries are classified by certain droplets in a two-dimensional spacelike hypersurface. We show
how to reconstruct the full metric inside these droplets using the one-loop N � 4 super Yang-Mills
theory dilatation operator. This is done by considering long operators in the SU�2� sector, which are dual
to fast rotating strings on the droplets. We develop new powerful techniques for large N complex matrix
models that allow us to construct the Hamiltonian for these strings. We find that the Hamiltonian can be
mapped to a dynamical spin chain. That is, the length of the chain is not fixed. Moreover, all of these spin
chains can be explicitly constructed using an interesting algebra which is derived from the matrix model.
Our techniques work for general droplet configurations. As an example, we study a single elliptical droplet
and the hypotrochoid.
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I. INTRODUCTION

One of the most striking predictions of the AdS/CFT
(anti–de Sitter/conformal field theories) correspondence is
the emergence of space-time geometry from the large N
limit of non-Abelian gauge theories. The best understood
example is the duality between N � 4 super Yang-Mills
(SYM) theory on R� S3 and type IIB string theory on
asymptotically AdS5 � S5 space-times [1].

It was understood early on that the ground state of N �
4 SYM was dual to AdS5 � S5 itself. This matching was
originally guessed based on the symmetries of the ground
state. However, it was later understood that one also can
consider states dual to fast rotating strings on this back-
ground [2]. These states allowed a matching of the string
spectrum, including the sigma model, in the appropriate
limits [3]. (See [4] for a review and more references.) By
matching the sigma model of these strings one is also
measuring the space-time metric of AdS5 � S5.

More recently, it has been possible to identify space-
times that are dual to ‘‘heavy’’ 1=2 Bogomol’nyi-Prasad-
Sommerfield (BPS) states of the gauge theory [5]. These
geometries have complicated metrics and topologies.
Nevertheless, it was shown in [5] that they are classified
in terms of ‘‘droplets’’ in a plane. Remarkably, the 1=2
BPS states of SYM are classified in exactly the same way
[6,7].

Space-times corresponding to 1=4 and 1=8 BPS states
also have been studied in [8]. Their classification in terms
of gauge theory operators is not completely understood,
but some proposals have been put forward [9,10].

In this paper we address the question of how to measure
the complicated metrics of the 1=2 BPS geometries using
only gauge theory probes. To simplify the problem we

focus on the SU�2� sector of the gauge theory. As we
explain below, this sector corresponds to strings that live
inside the droplets and rotate along an S1 fiber. As usual,
one can match a one-loop gauge theory calculation by
studying strings with large angular momentum along this
circle.

On the gauge theory side, the SU�2� dilatation operator
can be described by a model of matrix quantum mechanics
with two matrices [11]. Using this model, we explain how
one can excite a heavy 1=2 BPS state, and then put a probe
string on it. The reduced Hamiltonian for the probe string
can be computed using random matrix theory techniques.
Some of these techniques are developed here for the first
time.

We find that the Hamiltonian of the probe string can be
described by a bosonic lattice. This model has the usual
hopping terms, but also include sources and sinks of bo-
sons at each site. Alternatively, one can visualize the lattice
as a ‘‘dynamical’’ spin chain. As it turns out, this
Hamiltonian is completely determined by a very interest-
ing algebra underlying the random matrix model. Using
coherent states, one can match the thermodynamic limit of
this lattice to the sigma model of the fast string. This is how
we measure the metric.

The techniques developed here are valid for any droplet
configuration, including the case of multiple-connected
domains. As an example, we study a single elliptical
droplet, and the so-called ‘‘hypotrochoid.’’

The paper is organized as follows. In Sec. II we review
the 1=2 BPS geometries and set up the basic notation. In
Sec. III, we study the fast rotating strings. We derive their
sigma-model for a general droplet configuration. We then
specialize to the case of a single elliptical droplet, and the
Hypotrochoid. In Sec. IV we derive some general results
for the gauge theory. We start with a review of the SU�2�
sector in order to set up notation. We then define the Hilbert*Electronic address: svazquez@physics.ucsb.edu
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space for a probe string around an arbitrary 1=2 BPS
background. Next, we derive the corresponding
Hamiltonian using the one-loop dilatation operator.
Coherent states are defined, and an effective sigma model
is derived. At this stage, we show that the general form of
the sigma model is exactly the same as the one found in the
string theory calculation. This allows the full metric on the
droplet to be defined in terms of gauge theory quantities.

In Secs. V and VI, we consider the particular examples
of the elliptical droplet and the hypotrochoid, this time
from the gauge theory side. We reproduce all string theory
results.

We conclude in Sec. VI with a discussion which includes
topics such as integrability, the prospect of probing black
hole states, and extension of this procedure to other sectors
of the gauge theory.

The reader familiar with normal random matrices will
find that this paper is basically an extension of these
techniques to large N complex ensembles.

II. 1=2 BPS METRICS

All 1=2 BPS solutions to type IIB supergravity with N
units of Ramond-Ramond five-form flux have been found
in [5]. They preserve a bosonic R� SO�4� � SO�4� sym-
metry of the ten-dimensional space-time. All solutions are
classified by a single function, which we call �, on a two-
dimensional plane. The metrics can be written as
 

ds2 � �h�2�Dt�2 � h2�dy2 � dzd�z� � ye�Gd�2
3

� yeGd ~�2
3;

h�2 � 2y coshG; f �
1

2
tanhG;

f�z; �z; y� � �
y2

2

Z
d2z0

��z0; �z0�

�jz� z0j2 � y2�2
:

(1)

Here, we have defined the covariant derivative, Dt � dt�
V � dt� 1

2 i
�Vdz� 1

2 iVd�z, and we are using complex co-
ordinates in the y � 0 plane: z � x1 � ix2, �z � x1 � ix2.
Moreover,

 V�z; �z; y� � �V2 � iV1 �
1

2

Z
d2z0

��z0; �z0��z� z0�

�jz� z0j2 � y2�2
:

(2)

All nonsingular solutions must have � � �1=�.
Therefore, we can separate the integrations above in do-
mains or droplets (Di) for which � � 1=� (say) inside and
� � �1=� outside. These are the configurations that we
will consider in this paper. See [12] for a classification of
the resulting space-times.

The size of the asymptotic AdS5 � S
5 is set by [5]

 R4
AdS5
� R4

S5 �
X
i

Z
Di

d2z��z; �z�: (3)

Therefore, we can rescale all spatial coordinates by xi !

R2
AdSx

i and we get an overall factor of R2
AdS in front of the

metric. Then, our area quantization condition is simply,P
i

R
Di
d2z� � 1. This makes it easier to compare with the

gauge theory.
For a single simply connected domain D, we can rewrite

the integrals over the droplet as contour integrals over its
boundary. We have
 

V �
1

2

Z
D

d2z0

�
�@0

1

jz� z0j2 � y2

�
1

2

Z
CnD

d2z0

�
�@0

1

jz� z0j2 � y2

�
I
@D

dz0

2�i
1

jz� z0j2 � y2 : (4)

Similarly,
 

f � �
1

2

Z
D

d2z0

�
�@0@0 log�jz� z0j2 � y2�

�
1

2

Z
CnD

d2z0

�
�@0@0 log�jz� z0j2 � y2�

�
1

2
�
I
@D

dz0

2�i
�z0 � �z

jz� z0j2 � y2 : (5)

The factor of 1=2 in f comes from the boundary at infinity,
and the contour integrals are taken counterclockwise.

This procedure is valid even for multiple droplets or
nonsimply connected domains. One obtains a superposi-
tion of contour integrals over the different boundaries of
the domains. The orientation of the contours is such that we
keep the regions with � � 1=� (the area of Di) to our left.
These contour integrals can be solved, in general, by a
conformal map from the boundaries to the unit circle. The
problem then reduces to holomorphic contour integrals.
We will illustrate this in the next section.

III. SEMICLASSICAL STRINGS IN THE SU�2�
SECTOR

The SO�4� subgroups in the isometry group of the 1=2
BPS geometries correspond to rotations on the two S3’s
that appear in the metric (1). In particular, one can see that
in the asymptotic region, ~S3 � AdS5 and S3 � S5. Inside
each droplet (y � 0), the size of ~S3 is zero.

The SU�2� sector of the gauge theory consists of states
with two R charges. These two charges are identified
(asymptotically) by a rotation along S1 � S3, and a rota-
tion around the origin in the y � 0 plane. Therefore, one
expects that the strings dual to these operators will ‘‘live’’
inside each droplet and will rotate along an S1 fiber.

The metric restricted to this subspace can be calculated
by setting y! 0 in (1) and restricting z, �z inside the
droplet. A careful calculation shows that

 ds2jSU�2� � �h�2�Dt�2 � h2dzd�z� h�2d’2; (6)
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where, for a single droplet,

 h4 �
I
@D

dz0

2�i
�z0 � �z

jz� z0j4
; (7)

 V �
I
@D

dz0

2�i
1

jz� z0j2
: (8)

This result can be generalized to the case of multiple
droplets and for nonsimply connected domains. One just
needs to superimpose integrations over the different
boundaries with the appropriate orientations. The impor-
tant point to notice is that, in general, we can write,

 V � �@ logK; h4 � @V � @ �@ logK; (9)

where we define,

 logK 	
X
i

I
@Di

dz0

2�i
1

z� z0
log��z� �z0�: (10)

As we will see, the ‘‘Kähler potential’’ K will have a very
special interpretation as a sum of orthogonal polynomials.

Let us now look at the fast string limit along ’. As usual
[13], we start with the Polyakov action in momentum
space,

 Sp �
���������
�YM

p Z
d�

Z 2�

0

d�
2�

L; (11)

where,

 L � p�@0x� �
1
2A
�1
G��p�p� �G��@1x�@1x��

� BA�1p�@1x
�:

Remember that we have factorized the radius of AdS and
so that, by the AdS/CFT correspondence, �YM � g2

YMN �
R4

AdS=�
02 	 8�2�. Moreover, A, B play the role of

Lagrange multipliers implementing the Virasoro con-
straints Tab � 0.

As usual, the natural gauge choice is the one that dis-
tributes the angular momentum uniformly along ’. Thus
our gauge is

 t � �; p’ � const: (12)

The angular momentum along the ’ coordinate is

 L �
���������
�YM

p Z 2�

0

d�
2�

p’ �
���������
�YM

p
p’:

The Virasoro constraints for our metric (6) read
 

�h2p2
t � h

�2�jpj2�V2
1 � � h

2p2
’� h

2jz0j2� h�2’02 � 0;

(13)

 ptV1 � pz
0 � �p�z0 � p’’

0 � 0: (14)

The notation for the one-form V is the following:

 Va � V�@ax
� � 1

2iV@a �z� 1
2i

�V@az: (15)

The procedure now is the same as in [13]. First, we solve
for pt in terms of the spatial momenta using the Virasoro
constraints (13) and (14). We then plug this into the action
(11), so that the resulting action depends on �xi; _xi; x0i; pi�
only, where i � z, �z. Finally, since the momenta pi will
only enter the Lagrangian algebraically, we can solve for
them in terms of �xi; _xi; x0i� and plug the result back into the
action. At this point, one considers the limit where p’ �
1. Moreover, one assumes that the fields are slowly varying
in time so that _xi 
O�1=p2

’�. With this assumption, one
then follows the procedure of [13] to eliminate higher
powers of the time derivatives in terms of higher orders
of the spatial derivatives. This can be done systematically,
and one finds an action that is linear in the time derivatives.
This form of the action is more natural when comparing
with the gauge theory calculations.

For the leading order in 1=p2
’, we do not need to follow

this complicated procedure. Just expanding to O�1=p2
’�

and with the assumptions above, we find,

 Sp � �L
Z
d�

Z 1

0
d�

�
i
2
V _�z�

i
2

�V _z�1�
�

L2 jz
0j2

�O

�
�2

L4

��
: (16)

Therefore, we see that at one loop, the effective string
action has a very universal form. Nevertheless it does
incorporates nontrivial aspects of the underlying geometry.
Note that the canonical momenta to the coordinates z and �z
are determined by the one-form V. We will later see how
this one-form arises from the gauge theory. The nontrivial-
ity of this one-form reflects the fact that our system has the
constraint: z 2D. One can in practice go to higher loops
and start seeing the emergence of the function h. The same
is possible in the gauge theory side. However, since the full
metric (6) is completely determined by the Kähler potential
(10), we will not pursue this here.

A. Calculation of the one-form V

In this section we show how to calculate V for a general
droplet. We will show explicit results for the elliptical
droplet and the hypotrochoid. The procedure presented
here is also applicable for multiple droplets and nonsimply
connected domains. In fact, it also can be used to calculate
V and h outside the plane of the droplet.

One starts by noting that the exterior of the droplet CnD
can be conformally and univalently mapped to the exterior
of the unit disk [14,15]. We call this map w�x� and its
inverse x�w�. These maps are illustrated in Fig. 1.

The inverse-conformal map takes the form of a semi-
infinite Laurent polynomial,

 x�w� � rw�
X
k>0

ukw�k; jwj> 1: (17)
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The coefficient r can be chosen to be real and positive. Our
interest is the boundary of the domain. Therefore, we can
take the limit where w approaches the boundary of the unit
disk: w! ei	. In this case we obtain the map, x: S1 !
@D. In general, this map can be multivalued, so we need to
be careful in choosing the parameters of the conformal map
to avoid this.

Once we have the inverse-conformal map (17), we can
convert any contour integral over @D to a holomorphic
contour integral over S1. For example, Eq. (8) becomes

 V�z; �z� �
I
S1

dw
2�i

x0�w�
1

�x�w� � z�� �x�w�1� � �z�
; (18)

where the prime is the derivative with respect to w. The
value of the integral will then be the sum of the residues of
the simple poles in w that are inside the unit circle.

Let us now note that not all the parameters in the
conformal map are independent. In our case, we need to
impose the restriction on the area of the droplet. This is
given by

 1 �
Z
D

d2z
�
�
Z
D

d2z
�

�@ �z �
I
S1

dw
2�i

x0�w� �x�w�1�: (19)

It is very convenient to write the parameters of the
inverse-conformal map, in terms of the so-called ‘‘mo-
ments’’ of the domain D. Assuming that we include the
origin in the droplet, the moments are defined by (k > 0)

 tk �
1

k

I
@D

dz
2�i

�zz�k �
1

k

I
S1

dw
2�i

x0�w� �x�w�1�

xk�w�
: (20)

We will see that these moments translate directly to the
parameters of the gauge theory operators.

B. Elliptical droplet

For the elliptical droplet, we can use the simplest sin-
gular inverse map, x�w� � rw� u

w . Using the area nor-
malization (19), we get 1 � r2 � juj2. Without lost of
generality we can take u to be real [16]. Using (20), one

can see that the elliptical droplet has only t2 � 0. The
inverse map can then be parameterized by,

 x�w� �
1��������������

1� 
2
p

�
w�



w

�
; 0 � 
 < 1; (21)

where 
 	 2t2 is the eccentricity of the ellipse. The ellip-
tical droplet is shown in Fig. 2.

The integrand in (18) has the form:

 

��������������
1� 
2
p




w2 � 

�w� w1��w� w2��w� �w1=
��w� �w2=
�

;

(22)

where the poles are given by

 w1;2 �
1

2

��������������
1� 
2

p �
z�

�������������������������
z2 �

4


1� 
2

s �
: (23)

Now we need to find out which poles are inside the unit
circle. To do this, we note that in our coordinates, the origin
z � 0 will always be included inside the droplet.
Moreover, we do not want to encounter any singularities
in V as we move away from the origin (unless we hit the
boundary of the droplet).

For this, the number of poles inside the unit circle has to
remain unchanged as we smoothly move away from the
origin. Therefore, we can evaluate the poles at the origin to
see whether they are inside or outside the unit circle. Doing
this, we find that jw1;2j

2 � 
 < 1. Moreover, jw1;2j
2=
2 �

1=
 > 1. Therefore, only w1;2 will be inside the unit circle.
Summing the residues for finite z we get our final result,

 V �
z�1� 
2� � 2
�z

1� 
2 � 
�z2 � �z2� � jzj2�1� 
2�
� �@ logK; (24)

where

 K�z; �z� �
1

1� 
2 � 
�z2 � �z2� � jzj2�1� 
2�
: (25)

Note that K � 1 gives the equation of the ellipse with
eccentricity 
 [15]. Moreover, for 
 � 0 we recover the
usual result, V � z=�1� jzj2� which was found in [17,18]
in the context of open strings on giant gravitons.

FIG. 2. Elliptical droplet. We have chosen t2 to be real.

FIG. 1. The conformal map w�x� and its inverse x�w�.
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C. Hypotrochoid

The hypotrochoid is shown in Fig. 3. This is another one-
parameter family of droplets. It has been studied also in the
context of normal random matrix theory [15,19]. The only
nonzero moment is t3. The inverse of the conformal map is
given by

 x�w� � rw�
u

w2 : (26)

The parameters are related by Eqs. (19) and (20),

 1 � r2�1� 2a2r2�; u � 3t3r2 	 ar2: (27)

Again, one can take u to be real without lost of generality.
If we vary a, we find that the boundary of the droplet

develops singularities at a > 1=
���
8
p

. This kind of singular
behavior has been studied from the point of view of ran-
dom matrix theory [19]. The string theory interpretation is
not clear, but it would be interesting to understand it. This
is, however, outside of the scope of this paper. In any case,
these singularities are of no concern since, in what follows,
we will only expand near small a.

We can now calculate V from (18) as before. One finds
that the integrand contains the inverse of a sixth-order
polynomial in w. Only three roots are inside the circle.
The resulting expression is quite complicated, so we will
only show the first four orders in a:

 V �
z

1� jzj2
�
�z4 � �z2�3� 2z�z��a

�1� jzj2�2

�
�2z� z7 � 3�z5 � 2z�z6�a2

�1� jzj2�3

�
�z4�3� z6� � 3�z2 � 3�z8 � 2z�z9�a3

�1� jzj2�4
�O�a4�:

(28)

In Sec. VI, we will see how a gauge theory calculation can
reproduce this nontrivial result.

D. Laplacian growth

In this section, we will briefly mention how to construct
a one-to-one map from the interior of a simply connected
droplet to the interior of the unit disk. We will find a
‘‘quantum’’ version of this map in the gauge theory.

Suppose that we normalize the area of the droplet ac-
cording to,

 

Z
D
d2z� �

Z
DR

d2z�; (29)

where DR is a circular disk of radius R � 1. Our new
normalization condition is then

 R2 �
I
@D

dz
�

�z: (30)

Now consider varying R but keeping the moments tk
defined in (20) fixed. This process is known as Laplacian
growth (or shrink, if we decrease R) [14,15]. That is,
varying R gives ‘‘concentric’’ droplets.

Using the inverse-conformal map (17), one can con-
struct the desired map from the interior of the unit disk
(D1), to the interior of the droplet:

 L�y� 	 x�R;w � ei	� 2D; y 	 Rw � Rei	 2 D1:

(31)

We will call L�y� the ‘‘Laplacian map.’’
Let us give some explicit examples. For the elliptical

droplet, the map is constructed from the normalization
Eqs. (20) and (30): R2 � r2 � juj2, u � 
r. We get

 L�y� �
1��������������

1� 
2
p �y� 
 �y�: (32)

For the Hypotrochoid, one needs to solve, R2 � r2�1�
2a2r2� and u � ar2. We get

 L�y� � r�y� ar �y2�; (33)

where

 r �
�

1�
������������������������
1� 8a2jyj2

p
4a2jyj2

�
1=2
: (34)

Expanding to O�a3� we get

 L�y� � �1� a2jyj2�y� a�1� 2a2jyj2� �y2 �O�a4�: (35)

IV. GAUGE THEORY DESCRIPTION: GENERAL
RESULTS

In this section, we show how the reduced sigma model
(16) arises directly from the one-loop dilatation operator of
N � 4 SYM in the SU�2� sector. We will do this by
translating the problem to the language of random matrix
theory. Our procedure is very general and works for any
droplet configuration, including the case of multiple-
connected domains. Moreover, it is straightforward to ex-FIG. 3. Hypotrochoid. We have chosen t3 to be real.
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tend beyond one loop. We will find that the dilatation
operator for any droplet can be interpreted as a dynamical
spin chain. By dynamical, we mean that the length of the
chain is not conserved and spins can enter and leave the
lattice.

A. Review and notation

The standard operator-state correspondence of N � 4
SYM allows us to define a basis for the Hilbert space of
states in R� S3 in terms of local operators in R1;3. The
inner product in the Hilbert space is then mapped to
correlation functions of local operators. The inner product
is defined at zero coupling. If we work only in the scalar
sector of the theory, we can normalize the local operators
such that the propagator takes the form,

 hXji �x� �Xlk�0�i � �li�
j
k; (36)

where X is any of the three complex scalars of SYM. This
is the usual propagator for a Gaussian random matrix
model of a single complex matrix. Thus, we can just drop
the space-time dependence of the operators and compute
all free-field theory correlation functions using the
Gaussian matrix model.

Increasing the coupling away from zero produces loga-
rithmic divergences in the operator product expansions.
Extracting these divergences gives the action of the
Dilatation operator. However, the combinatorics still can
be encoded in a simple Gaussian matrix model.

In the SU�2� sector, the operators have the general form

  
 Tr�YZYZZ � � ��Tr�ZYZZ � � �� � � � : (37)

The dilatation operator acts on these operators as [11]

 D̂� Ĵ 	 Ĥ � �
g2

YM

8�2 Tr
Z; Y�
@Z; @Y� � . . . (38)

The dots indicate higher loop contributions, and we have
subtracted the R-charge operator (Ĵ). Moreover, the de-
rivatives have the property that �@Z�

j
iZ

l
k � �li�

j
k.

An orthonormal basis in this sector is composed of
operators such that

 h nj mi � h �n� �Y; �Z� m�Y; Z�i � �nm; (39)

where, as usual,

 hOi �

R

d2Yd2Z�e�Tr�jZj2�jYj2�OR

d2Yd2Z�e�Tr�jZj2�jYj2�

: (40)

Here, 
d2Yd2Y� is the standard U�N� invariant measure
defined by the metric, ds2 � Tr�dYd �Y � dZd �Z�. The ma-
trix elements of the dilatation operator are defined in the
usual way,

 �Ĥ�nm � h 
�
n� �Y; �Z�Ĥ m�Y; Z�i: (41)

It is now convenient to rescale our fields as �Y; Z� !
�Y; Z�=

���
@
p

, where @ � 1=N. In this way, correlation func-
tions will be order one in the large N limit (@! 0).

The 1=2 BPS sector is given by any holomorphic wave
function on (say) Z. One obviously has Ĥ �Z� � 0. In this
special case one can integrate out the off-diagonal compo-
nents of Z. This is done by expanding Z � Uy�Zdiag: �

R�U, where Zdiag: is a diagonal matrix, R is an upper-
triangular matrix and U 2 U�N�. It turns out that the
measure of the matrix model transforms as [14]
 


d2Z�e�Tr�jZj2�=@ �
Y
i<j

�d2Rjie
�jRji j

2=@�
Y
k

d2zk

� e�jzkj
2=@
Y
l<m

jzl � zmj
2: (42)

Since Tr��Zdiag: � R�
n� � Tr�Zn�, the matrix R drops from

all holomorphic states. All correlation functions are then
expressed in terms of the eigenvalues Zdiag.

We now can consider a heavy 1=2 BPS state such as

  � eTr��Z�=@: (43)

The normalization of such a state is given by the partition
function,

 h j i /
YN
i�1

Z
d2zie

P
j

W�zj;�zj�=@�
P
i<j

logjzi�zjj2

; (44)

where

 W�z; �z� � �jzj2 ���z� ���z�: (45)

It is well known that in the ‘‘classical’’ limit @! 0, the
eigenvalues condense into constant density droplets
[14,15] in the complex plane. This is the usual 2D
Coulomb gas problem. In fact, the density of the droplets
is � � 1=�@��.

This matches the string theory classification of the 1=2
BPS geometries. However, reconstructing the form of the
droplets given the potential ��z� is a nontrivial inverse
problem that has been the subject of numerous papers. We
will not need to go into these details here, since we will find
a new way of doing this.

Nevertheless, for the case of a single droplet, the prob-
lem simplifies dramatically. One can show [14] that the
moments introduced in (20) are related to the potential as

 ��z� �
X
k>0

tkzk: (46)

This allows us to reconstruct the operator dual to any
single-droplet space-time.

One can also consider potentials that generate multiple
droplets. These potentials have been studied in [20].
Furthermore, to introduce ‘‘holes’’ in the droplets one
must consider potentials such as ��z� 


P
kak log�z�

bk�. In particular, for a single hole in the center of the
circular droplet, one has ��z� 
 logz. This last potential
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was studied in [21]. As we will see, our formalism would
need to be slightly modified for this special case, since
�0�z� is singular at z � 0. However, it still should be
applicable to all other potentials that admit a power-law
expansion around z � 0.

B. Probe string Hilbert space

In this section, we will prove some general results that
are applicable for any potential ��z� whose first derivative
�0�z� admits a power-law expansion around z � 0.
Moreover, we will always work in the large N limit.

Let us consider a ‘‘probe string’’ in a 1=2 BPS geometry.
This can be mapped to a periodic lattice,

 jn1; . . . ; nLi � Tr�Y n1
�Z�Y � � �Y nL�Z��e

Tr��Z�=@; (47)

with some unknown functions  n�Z�. In the large N limit,
the normalization of this state is simply given by

 hn1; . . . ; nLjn
0
1; . . . ; n0Li �

YL
l�1

h@Tr� nl�Z� n0l�Z��i; (48)

where we are considering the generic case where not all ni
are equal to n0i. At this point, it is convenient to absorb the
factors of @ in the normalization of n. The functions n�Z�
must admit a power-law expansion in Z. Moreover, we
define j0i �  0�Z� 	

���
@
p

1. The alert reader might wonder
if  n could also include multiple traces. For example
� �ji 
 Tr�Z2�Zji � � � � . However, one quickly realizes
that, since correlation functions factorize in the large N
limit, one can treat these additional traces as numbers. That
is, just replace (for example) Tr�Z2� ! hTr�Z2�i.

The correlation functions in (48) are computed including
the potential �,

 hOi �

R

d2Z�eTrW=@OR

d2Z�eTrW=@

; (49)

where W is given by (45). Thus, our first task is to find an
orthonormal basis such that,

 hTr� n�Z� m�Z��i � �nm: (50)

For a general potential �, this is a highly nontrivial
problem, because the off-diagonal elements of Z cannot
be decoupled. To the best of the author’s knowledge, this
problem has not been solved in the random matrix theory
literature. Here we will find a purely algebraic solution to it
(in the large N limit). In fact, the procedure is very similar
to the construction of the orthogonal polynomials for the
normal matrix model [15].

Let us start by assuming the existence of the orthonor-
mal basis (52). One can now define the operator

 �L̂y�nm � hTr
 n�Z�Z m�Z��i; (51)

and its conjugate,

 �L̂�nm � hTr
 �Z n�Z� m�Z��i

� hTr
 n�Z��@@Z ��0�Z�� m�Z��i; (52)

where the second equality follows by integrating by parts
in the matrix model. Then, one can prove the following
theorem:

Theorem.—The operators L̂y and L̂ obey the algebra,

 
L̂; L̂y� � P̂0; (53)

 L̂ � �0�L̂y� � �L̂y��1 �
X
k>1

v�k��L̂y��k; (54)

where P̂0 is the projection to j0i, and �L̂y��1 is defined by
left multiplication on L̂. Moreover, v�k� are constants given
by

 v�k� � @

Z
d2z��z; �z�zk�1 �k > 1�; (55)

where � is the eigenvalue distribution of the matrix model.
Proof.—Let us start by proving (53). For this, we first

need to look at a monomial of  n. We have
 


L̂; L̂y�Zm � @�@ZZ� Z@Z�Z
m

� Zm �
X
k�1

@Tr�Zk�Zm�k

� Z
�
Zm�1 �

X
k�1

@Tr�Zk�Zm�k�1

�
� �m;0 � @

X
k�1

�m;k Tr�Zk�: (56)

In the large N limit, we have
 

hTr� � n
L̂; L̂
y�

���
@

p
Zm�i � h

���
@

p
Tr� � n�i

�

�
�m;0 � @

X
k�1

�m;k Tr�Zk�
�

� �n;0cm; (57)

for some constant cm.
Note that in the Hilbert space,

 h0jMmi � @hTr�1Zm�i � cm: (58)

Here jMmi �
���
@
p
Zm is the state corresponding to a mono-

mial, and j0i �
���
@
p

1. Note that we are normalizing states
so that their inner product is of order one in the large N
limit.

Thus, we can write (57) as

 h j
L̂; L̂y�jMmi � h j0ih0jMmi � h njP̂0jMni: (59)

Since every state j ni is a linear superposition of mono-
mials jMni, Eq. (53) follows from (59).

Let us us now prove the second identity (54). This one
follows directly form (52). The last two terms in (54) come
from the matrix derivative in (52). For a monomial state,
we get,
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hTr� � n@@Z
���
@

p
Zm�i �

X
k>0

hTr� � n
���
@

p
Zm�k�@Tr�Zk�1�i

�
X
k>0

hTr� � n
���
@

p
Zm�k�ih@Tr�Zk�1�i

	
X
k>0

h nj�L̂
y��kjMmiv�k�; (60)

where the last line defines the action of the inverse of L̂y

and the constants v�k�. The proof of (54) is completed by
taking a superposition of monomials.

Since the coefficients v�k� are holomorphic correlation
functions, they can be computed by an integration over the
eigenvalue distribution as given in (55). For a single-
droplet distribution, we can write (55) as

 v�k� �
I
@D

dz
2�i

�zzk�1: (61)

This completes the proof of the theorem. �
In practice, one would like to find a particular represen-

tation of the algebra (53) and (54). In this case, we assume
that the wave function  n�Z� is a polynomials of degree n.
For the Gaussian ensemble (� � 0) we have  n 
 Zn.
Clearly, in the general case we will have

 Z n�Z� � rn n�1�Z� �
X
k�0

u�k�n  n�k�Z�: (62)

Our goal will be to calculate the coefficients rn, u�k�n . Once
this is done, the orthogonal polynomials can be calculated
by iterating (62). Moreover, note that we can always define
u�k�n so that it gives zero for k > n.

We can now translate (62) to the Hilbert space using (51)
and (52). Namely,

 L̂ y � âyrn �
X
k�0

âku�k�n ; (63)

 L̂ � rnâ�
X
k�0

�u�k�n �ây�k; (64)

where

 â yjni � jn� 1i; âjni � �1� �n;0�jn� 1i; (65)

and now rn, u�k�n are regarded as diagonal operators. Note
that â, ây are the Cuntz oscillators used in [17,18].
Moreover, one can always take rn to be real without lost
of generality.

The inverse operator �L̂y��1 is defined by left multi-
plication on L̂: �L̂y��1L̂y � 1. Explicitly,

 �L̂y��1 �

��
rn�1 �

X
k�0

âk�1u�k�n

�
ây
�
�1

� â
1

rn�1 �
P
k�0
âk�1u�k�n

; (66)

where the last expression is defined by its power expansion
in â.

The coefficients rn and u�k�n in (63) and (64) are com-
pletely determined by the algebra (53) and (54). In par-
ticular, after some work, one can show that the diagonal
part of (53) reads

 1 � r2
n �

X
k�1

Xn
p�0

ju�k�p�n�k j
2: (67)

Summary.—This section has been quite technical, so let
us summarize the main results. The Hilbert space for a
probe string in a generic 1=2 BPS geometry can be mapped
to a periodic lattice as in (47). This basis is endowed with
the algebra (53) and (54). One then assumes that the wave
functions  n are polynomials. Their explicit form is de-
fined by the recursion relation (62). The coefficients of the
recursion relation are completely determined by the alge-
bra (53) and (54) by using the representation (63) and (64).

C. Hamiltonian

In this section, we will find the action of the Hamiltonian
(38) in the probe string basis studied in the previous
section. We will only work at one loop. First, let us study
the action on a particular Y on the lattice,
 

Ĥj � � � ; nl; nl�1; � � �i � �
g2

YMN

8�2 Tr
Z; Y�
@@Z; @Y�

� Tr�� � � nlY nl�1
� � ��eTr��Z�=@

� �
g2

YMN

8�2 
Tr�� � � nl
Z; Y�

� @@Z
$
 nl�1

� � �� � Tr�� � � nl@@Z
$

� 
Z; Y� nl�1
� � ���eTr��Z�=@: (68)

The double arrow means that the derivative acts on both
sides but always excluding the Z in the commutator. Note
that the derivative will also act on the potential ��Z�.

In the planar limit, one can show that multiple traces in Y
are still suppressed. Therefore, one must not allow the
derivative to act beyond its own site. Then, it is easy to
show that the action of the Hamiltonian has a remarkably
simple form in terms of the operators (63) and (64):

 Ĥ � �
XL
l�1

�L̂yl � L̂
y
l�1��L̂l � L̂l�1�; (69)

where periodic boundary conditions are understood.
The form of the Hamiltonian (69) is very similar to the

bosonized version of the ferromagnetic Heisenberg spin
chain introduced in [17,18]. In the general case, however,
one has a complicated canonical structure given by (53)
and (54).

To get the usual XXX1=2 spin chain, one takes the
simplest case of � � 0. This choice gives the disk distri-
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bution of eigenvalues. Using (61) one can easily prove
v�k� � 0. Thus, the algebra (53) and (54) reduces to

 
L̂; L̂y� � P̂0; L̂L̂y � 1: (70)

In other words,

 Ĥj��0 � �
XL
l�1

�âyl � â
y
l�1��âl � âl�1�: (71)

To translate this to the spin chain language, one makes
the following identification [17,18]:

 jn1; n2; . . . ; nLi � j " ## � � � #|���{z���}
n1

" ## � � � #|���{z���}
n2

" � � � " ## � � � #|���{z���}
nL

i:

(72)

In the spin chain basis, the Hamiltonian (71) can be written
as

 Ĥj��0 � �
XJ
l�1

�1� 4 ~Sl � ~Sl�1�; (73)

where J � L�
PL
l�1 nl. This is indeed the spin chain that

was originally discovered in the context of the AdS/CFT
correspondence in [22].

If we now consider the general case with � � 0, one can
see easily from (63), (64), and (69) that the number of
‘‘spin downs’’ in (72) will not be conserved. In other
words, the length of the spin chain is not preserved. In
this case, the best interpretation for the Hamiltonian (69), is
as a bosonic lattice with nl bosons at each site. Moreover,
the bosons can leave or enter the lattice at any site. This
kind of dynamical lattice was first found in [17,18] in the
study of giant gravitons. Dynamical lattices also have been
studied (in a different context) in [23,24].

D. Coherent states and space-time metric

If we want to gain insight into the classical limit of the
Hamiltonian (69), one must construct coherent states of the
operator L̂. Making the general ansatz for the coherent
states:

 jzi �
X1
n�0

fn�z�jni; (74)

it is easy to show that one needs,

 zfn�z� � rnfn�1�z� �
X
k�0

�u�k�n fn�k�z�: (75)

So we see that fn are really the complex conjugate of the
wave functions (62):

 fn�z� �  �n�z�: (76)

Moreover, the range of the coordinate zwill be given by the
normalization condition,

 0 � hzjzi<1: (77)

This condition will give us the shape of the droplet.
Now, we have not proved that these coherent states are

(over)complete. This is, in general, very difficult. We
remind the reader that, even for the simple case of the
Gaussian ensemble with fn � zn, the completeness rela-
tion requires one to introduce a very special measure in
terms of the so-called ‘‘Jackson integral’’ [17,18]. This
turns out to be irrelevant in our case, since we will only
use the coherent states in the classical limit, where the
measure of the path integral can be ignored. So from now
on, we just assume that a measure exists, such that 1 �R
d��z; �z�jzihzj.
In this case, one can always write the classical action for

a general coherent state jCSi as [25]

 S �
Z
d��ihCSj@�jCSi � hCSjĤjCSi�: (78)

In our case this reduces to

 S �
Z
d�

XL
l�1

�ihzlj@�jzli � �jzl � zl�1j
2�

! �L
Z
d�

Z 1

0
d�

�
i
2
V _�z�

i
2

�V _z�
�

L2 jz
0j2
�
; (79)

where

 V � �@ log
�X1
n�0

j n� �z�j2
�
: (80)

Therefore, we find that in the thermodynamic limit L!
1, the coherent state action of our quantum lattice has the
same form as the string theory result (16). The extra
constant in (16) can be obtained if we add the R-charge
operator ĴY � Tr�Y@Y�.

One can identify readily the function V defined in (80)
with the one-form (8). Moreover, from (9) we also can
reconstruct the remaining function in the metric,

 h4 � @ �@ log
�X1
n�0

j n��z�j2
�
: (81)

The reader can verify easily that for the circular droplet,
with  n � zn, both (80) and (81) reduce to the familiar
results,

 V �
z

1� jzj2
; h4 �

1

�1� jzj2�2
: (82)

In practice, in order to perform the sum over the or-
thogonal polynomials, one needs to find their generating
function:

 G�z; x� �
X1
n�0

fn�z�x
n: (83)

For a general droplet, this is a difficult object to construct.
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However, we will see that one can set up a systematic
expansion around the circular droplet.

V. EXAMPLE 1: ELLIPTICAL DROPLET

This is the simplest droplet next to the circular one. It is
generated by the simple potential ��z� � t2z

2. From (54) it
is easy to see that L̂y will truncate at O�â�:

 L̂ y � âyrn � u�0� � âu
�1�
n : (84)

Collecting terms of O�ây� and O�1� in (54) one finds
that

 

�u�0�n

u�0�n
� 
;

�u�1�n
rn�1

� 
; (85)

where 
 � 2t2. Since we want to be able to consider the
case 
 < 1, it follows that u�0�n � 0. Moreover, from (67) it
follows that,

 1 � r2
n � jun�1j

2: (86)

Thus, we find

 rn �
1��������������

1� 
2
p ; un �


��������������
1� 
2
p ; (87)

where we have chosen 
 real without lost of generality.
One can explicitly check that the other nondiagonal

terms in (54) are indeed satisfied. For example, at O�â�
one gets the equation,

 â�1� r2
n � 
unrn� � 0: (88)

which is seen easily to be satisfied if we use (87).
We can now find the generating function of the poly-

nomials by using their recursion relation:

 zG�z; x� �
X1
n�0

�
1��������������

1� 
2
p fn�1 �


��������������
1� 
2
p fn�1

�
xn; (89)

from where we find,

 G�z; x� �
1


x2 �
��������������
1� 
2
p

xz� 1
: (90)

This is, in fact, the generating function of the Chebyshev
polynomials of the second kind.

The sum over the orthogonal polynomials can be calcu-
lated, in general, from

 

X1
n�0

jfn�z�j2 �
I
S1

dx
2�i

1

x
G�z; x� �G��z; 1=x�: (91)

We can calculate this integral explicitly using the resi-
due theorem. Just like in the string theory calculations, one
can find out which pole is inside the unit circle by slowly
moving away from the point z � 0. Alternatively, one can
require that the solution should be continuously connected
with the case 
 � 0. In any case, one finds that the only

poles inside the unit circle are the roots of the quadratic
equation,

 
�
��������������
1� 
2

p
�zx� x2 � 0: (92)

The sum of the residues gives

 

X1
n�0

jfn�z�j
2 �

1

1� 
2 � 
�z2 � �z2� � jzj2�1� 
2�
: (93)

This is exactly what we found in the string theory calcu-
lation. From this Kähler potential we can reconstruct the
whole metric using (80) and (81). We clearly see that the
shape of the droplet coincides with the range of z that gives
normalizable coherent states [c.f. (77)].

We want to point out that the elliptical droplet is rather
special. One can, in fact, find the explicit form of the
orthogonal polynomials by a direct matrix model calcula-
tion. Using a simple shift in the integration variables in the
matrix model partition function, one can show

 e2 Tr�jXj2�=
 � heTr��X2��ZX�eTr�� �X2�� �Z �X�i; (94)

where � �
�������������������������
2�1� 
2�=


p
.

The orthogonal matrix polynomials are given by

  n�Z� �
��������������



2Nn�1

r
�@X�

neTr��X2��ZX�

								X�0
: (95)

In the large N limit, the derivatives @X must act in such a
way as to avoid the creation of multiple traces in @X.
Moreover, we need to remember that any multiple traces
in Zmust be replaced by their expectation value. Then, it is
easy to show that these are the same polynomials as the
ones found above.

Let us close this section with an interesting observation
regarding the operator L̂. Let us identify the operators â
and ây as coordinates on a unit disk:

 â
 y; ây 
 �y; y 2 D1: (96)

This identification actually follows from the coherent
states of the operator â which are normalized only inside
the unit disk [17,18].

With this identification, the operator L̂ can be seen to
give the classical map (32) from D1 to the interior of the
elliptical droplet. We will find that, in general, L̂ gives a
quantum version of this map (for a single droplet).

VI. EXAMPLE 2: HYPOTROCHOID

This droplet is another example of a one-parameter
family of potentials given by ��z� � t3z

3. From
Eq. (54), one can see that the operator L̂ must truncate at
O��ây�2�. Thus, we are left with the ansatz

 L̂ � rnâ� �u�0�n � �u�1�n ây � �u�2�n �ây�2: (97)

Solving the recursion relations with this general ansatz
is very cumbersome. However, one can make the simplify-

SAMUEL E. VÁZQUEZ PHYSICAL REVIEW D 75, 125012 (2007)

125012-10



ing assumption that u�0�n � u�1�n � 0. The motivation for
this is the similarity between the operator L̂ and the con-
formal map (26) (for a single droplet). These same kind of
assumptions are used in the context of the classical or-
thogonal polynomials [15]. We will later see that this is a
self-consistent assumption.

With this simplification, the O��ây�2� term from (54)
gives the relation,

 �u �2�n � arn�1rn�2; (98)

where we have defined a 	 3t3 which we take to be real
without lost of generality. Finally, Eq. (67) gives

 1 � r2
n � ju

�2�
n�1j

2�1� �n;0� � ju
�2�
n�2j

2: (99)

Therefore, we get a closed equation for rn:

 1 � r2
n
1� a

2�r2
n�1�1� �n;0� � r

2
n�1��: (100)

One can solve this order by order in a. We have

 r2
n � 1� a2�2� �n;0� �O�a4�: (101)

Using this result in (98) we obtain

 u�2�n � a� a3�2� 1
2�n�2;0� �O�a5�: (102)

Note that we have discarded the term with ��n�1�;0 since we
always have n � 2 for this operator.

These results allow us to reconstruct the recurrence
relation for the coherent states. Namely,
 

zfn�z� � 
�1�
1
2a

2� � 1
2a

2�1��n;0��fn�1�z� � 
a�1�
3
2a

2�

� 1
2a

3�1��n;2��fn�2�z� �O�a4�: (103)

This recurrence relation allow us to solve for the gen-
erating function to O�a3� accuracy. We have
 

zG�z; x� �
1

x

�
1�

1

2
a2

�
�G�z; x� � 1� �

1

2x
a2�G�z; x� � 1

� f1�z�x� � a
�
1�

3

2
a2

�
x2G�z; x�

�
1

2
a3x2�G�z; x� � 1� �O�a4�: (104)

The polynomial f1�z� can be constructed explicitly from
the recursion formula (103),

 f1�z� �
z

1� 1
2a

2
: (105)

Note that this formula should only be understood as an
approximation which is good to order a3.

The generating function can now be explicitly written as

 G�z; x� �
�2� a2��2� a2�2� ax3�� � 2a2xz

2�2� a2��1� a�a� x3 � 2a2x3� � xz�
:

(106)

In this last result, we have chosen not to expand in powers

of a, since the singularity of G is very important for the
next calculation. However, one must keep in mind that the
final result is only valid up to corrections of order a4.

To calculate the sum of the orthogonal polynomials, we
use (91). Following a similar procedure as with the ellip-
tical droplet, one finds that the integrand has simple poles
inside the unit circle for x � 0, and at the roots of

 a� 2a3 � �zx2 � �1� a3�x3 � 0: (107)

The final sum over the residues is quite complicated, but
the one-form V [c.f. Eq. (80)] simplifies a bit. The answer
turns out to be exactly the one found in the string theory
calculation, Eq. (28).

Let us now return to the interpretation of L̂ as the
Laplacian map. Using our results for rn and u�2�n one can
write L̂ as
 

L̂ � �1� 1
2a

2âyâ�â� â�12a
2âyâ� � a�1� 3

2a
2âyâ��ây�2

� 1
2a

3�ây�2âyâ�O�a4�: (108)

If we interpret â
 y and ây 
 �y as coordinates on D1, and
we ignore their ordering, one obtains precisely the
Laplacian map (33). Note, however, that some of the terms
in (108) are trivial (e.g. ââyâ � â). Nevertheless, they are
important for the interpretation as a Laplacian map.

To finish this section, let us check that our initial as-
sumption, u�0�n � 0 � u�1�n , is consistent. For this, we can
just check explicitly the orthonormality of some of the
polynomials  n�Z�. Let us consider some examples.

The first few polynomials that follow from the generat-
ing function (106) are [remember that fn�z� �  �n�z�, and
we are taking a to be real]

  0�Z� � 1; (109)

  1�Z� � Z�1� 1
2a

2� �O�a4�; (110)

  2�Z� � Z2�1� 3
2a

2� �O�a4�; (111)

  3�Z� � Z3�1� 5
2a

2� � a�1� 1
2a

2� �O�a4�; (112)

  4�Z� � Z4�1� 7
2a

2� � 2aZ�O�a4�: (113)

The simplest orthogonality condition to check is h0jni �
0, which in matrix form reads,

 h0jni � h@Tr� 0�Z� n�Z�i �
Z
D

d2z
�
 n�z�

�
I
@D

dz
2�i

�z n�z� �
I
S1

dw
2�i

x0�w� �x�w�1� n�x�w��;

(114)

where x�w� is given in (26). One can check explicitly that
this expression is zero since there are no simple poles
inside S1.
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Now, let us consider some nontrivial cases, where the
off-diagonal elements of Z do not drop out. As an example,
we can calculate the normalization of  1�Z�. Using the
measure change (42), we get

 h1j1i � �1� a2 �O�a4��h@Tr�jZj2�i

� �1� a2 �O�a4���@hTr�jZdiag:j
2�i � @hTr� �RR�i�

� �1� a2 �O�a4��

�
1

2

I
@D

d2z
2�i

�z2z� @
2 1

2
N2

�
� �1� a2 �O�a4���1� a2 �O�a4�� � 1�O�a4�:

(115)

Finally, let us check the highly nontrivial result h1j4i �
0. For this, we can use the fact that, after integrating out R,
one gets

 hTr� �ZZ4�iR �
X
i

�ziz
4
i �

X
i

z3
i � @

X
i;j

ziz
2
j � 2@

X
i

z3
i ;

(116)

where zi are the elements of Zdiag:. Therefore, in the large
N limit, we can write
 

h1j4i � �1� 4a2 �O�a4��

�
1

2

I
@D

dz
2�i

�z2z4

�
I
@D

dz
2�i

�zz3 �

�I
@D

dz
2�i

�zz
��I

@D

dz
2�i

�zz2

��
� ��2a� a3 �O�a4���1� a2 �O�a4��

� �1� 4a2 �O�a4���2a� 9a3 �O�a4��

� ��2a� a3 �O�a4���1� a2 �O�a4��

� O�a4�: (117)

Therefore, we conclude that our initial ansatz, u�0�n �
0 � u�1�n , was indeed correct.

VII. DISCUSSION AND FUTURE DIRECTIONS

In this paper, we have derived the one-loop Hamiltonian
for a SU�2� probe string on a generic 1=2 BPS background,
defined by the CFT operator  
 exp�Tr��Z�=@�. We
found that the Hamiltonian can be written as (69), where
the operators L̂, L̂y obey the algebra (53) and (54). We also
found a representation of this algebra in terms of the Cuntz
oscillators. In this basis, the Hamiltonian can be interpreted
either as a dynamical spin chain, or as a bosonic lattice
where the total number of bosons is not conserved.

We found that, in general, the full metric on the reduced
space of the probe string can be calculated from the coher-
ent states of L̂ [c.f. (80) and (81)]. Finally, we studied two
special potentials (�) dual to the elliptical droplet and the
hypotrochoid. We found perfect agreement with the string
theory results.

A. Generalizations

Let us now discuss the range of validity of our calcu-
lations, and the possible generalizations of our results. First
of all, note that the algebra (53) and (54) is valid for any
potential ��z�, whose first derivative has a power-law
expansion around z � 0. Moreover, these equations are
valid regardless of the form of  n�Z�. Therefore, the as-
sumption that  n are polynomials does not affect this
result. This assumption is only used when we want to
find an explicit representation of the algebra. Thus, in
general, the droplets are defined by the requirement that
the coherent state of L̂ is normalizable (regardless of the
form of  n).

It would be very interesting to study the case of multiple
domains, and nonsimply connected domains. As we men-
tioned before, this last case can be a bit tricky if �0�z� is not
well defined. Thus, the case of � � logz requires special
treatment. We expect that this potential generates a hole in
the center of the circular droplet. In fact, this potential has
been studied for normal matrices in [21].

Nevertheless, one also can consider creating holes in
other parts of the droplets using ��z� 


P
kck log�z� zk�.

The first derivative of this potential is well defined.
However, the actual representation of the algebra can be
quite complicated [26]. For multiple-connected domains,
one can look at the potentials studied in [20].

The case of multiple domains is very interesting from
the point of view of the Hamiltonian (69). This is because
we expect that, somehow, the Hilbert space should be a
direct sum over sub-Hilbert spaces for each droplet. This is
very analogous to what happens with topological field
theories. It would be very interesting to understand how
this happens.

For nonsimply connected domains, one can wrap strings
around noncontractable cycles. Therefore, one expects that
the corresponding Hamiltonian has topologically stable
solitonic states. It would be interesting to understand
more about these states.

Finally, it would be interesting to extend these tech-
niques to other sectors in the gauge theory. In particular,
one expects that the SL�2� sector describes strings prop-
agating outside the droplets, but still at y � 0. String in this
sector (on AdS5 � S5) have been studied recently in [27–
29]. Moreover, one can leave the y � 0 plane by consid-
ering bigger sectors such as SU�1; 1j2� [30].

B. Integrability

In recent years, there has been great interest in using
integrability to test/prove the AdS/CFT correspondence.
This interest was sparkled by the discovery of one-loop
integrability for single-trace scalar operators [22].
Integrability in the gauge theory has been argued to persist
at higher loops and an all-loop guess for the Bethe ansatz
has been presented in [31,32]. This also has been accom-
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panied by a similar guess for the presumed quantum Bethe
ansatz for the dual string theory [33].

However, all these developments are only relevant for
single-trace operators. That is, a probe string on AdS5 �
S5. It is doubtful that full integrability will be preserved for
a generic 1=2 BPS background. However, it could happen
that integrability is still present for some reduced subsec-
tors. The algebra found in this paper is indeed very
suggestive.

If integrability is indeed present around 1=2 BPS ge-
ometries, it must be realized in a very exotic way. This is
because, as we have seen, the lattice models found in this
paper do not preserve the number of ‘‘particles.’’ Thus, the
usual Bethe Ansatz is totally useless. Perhaps one could
directly construct conserved charges using the algebra (53)
and (54).

Another possible source of integrable structures might
come from the matrix model itself. It is well known that
matrix models show integrable Toda hierarchies (see [34]
for a review). In this context, the ‘‘times’’ of the Toda
hierarchy are identified with the moments of the droplet
tk. Perhaps such a structure, if still present in our model,
could be used to ‘‘adiabatically’’ evolve the spectrum of a
single droplet away from the circular one. Whether this is
possible or not remains to be seen.

C. Probing black hole states

One of the greatest challenges of the AdS/CFT corre-
spondence is to give us a better understanding of black hole
physics. In this context, even if we identify the operator
dual to a black hole microstate, we need a way to measure
the resulting metric. The tools developed in this paper can
be considered as a first step in this direction. In the SU�2�
sector, one can start with the so-called ‘‘superstar’’ con-
figuration [35]. This is a singular 1=2 BPS geometry. It is
the extremal limit of a one R-charge black hole [36].

This geometry must be interpreted as a limit of a very
excited 1=2 BPS state. The limit corresponds to exciting a

large triangular Young tableux as advocated in [37]. See
also [38,39] for related studies. The precise form of the
resulting operator is unknown. However, the dual droplet
must consist of a series of concentric rings. In the limit
where these rings become very thin and closely spaced, we
will get a circular droplet, but with � < 1=�. Since the
operator for this state is holomorphic, the off-diagonal
elements of the matrix Z will drop out. In the eigenvalue
basis, the operator should be described by a fractional
quantum hall state [40]. It would be interesting to probe
geometries like this using our formalism. This can give us a
better understanding of the emergence of singularities in
AdS/CFT.

However, the really interesting story starts to develop
when we move away from extremality. According to the
dictionary in [36], this amounts to adding some excitation
to the superstar operator such that we create an anomalous
dimension. The size of the anomalous dimension is, in fact,
directly related to the nonextremality parameter of the
resulting black hole. Within the SU�2� sector, one can
imagine adding a few Y excitations. These excitations
will produce a finite anomalous dimension. In fact, adding
Y fields corresponds to exciting open string on giant grav-
itons [41]. This is analogous to the mechanism advocated
in [36] to explain the entropy of R-charged black holes.

From the point of view of the matrix model, adding Y
fields will produce a dramatic change in the norm of the
state. This is because the off-diagonal elements of Zwill no
longer drop out. It is then desirable to learn how to probe
such an excited state. Do we really create a black hole? Can
we measure the resulting metric? These questions will be
left for future works [42].
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