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To a domain wall or string object, Noether charge and topological spatial objects can be attracted,
forming a composite Bogomolny-Prasad-Sommerfield (BPS) object. We consider two field theories and
derive a new BPS bound on composite linear solitons involving multiple charges. Among the BPS objects
‘‘supertubes’’ appear when the wall or string tension is canceled by the bound energy, and could take an
arbitrary closed curve. In our theories, supertubes manifest as Chern-Simons solitons, dyonic instantons,
charged semilocal vortices, and dyonic instantons on the vortex flux sheet.
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In the last few years there has been some interest in
supertubes, which are Bogomolny-Prasad-Sommerfield
(BPS) objects of tubular shape with a cross section of
arbitrary shape. Initially supertubes as the bound state of
D2, D0 branes and fundamental strings (F1) have been
found by studying the Dirac-Born-Infeld (DBI) action of
D2 branes [1]. Later they have been found in many other
contexts [2–5]. The DBI description of static D2 branes of
tubular shape with uniform magnetic flux and electric flux
along the tube direction shows that the D2 brane tension
could be canceled by the bound energy of flux and charge,
leading to the energy to be the sum of those for D0 and F1
branes. There would be a linear momentum of constant
magnitude flows around the tube, which could lead to
nonzero angular momentum.

In this work we ask whether such a description sug-
gested by the DBI action analysis of the D2 brane is
possible in field theories. In a couple of the theories con-
sidered here, we find that straight linear topological struc-
tures attract both Noether charges and topological spatial
solitons and form composite linear BPS objects, with a
linear momentum along the line. Among them, there are
supertubes, in which the bound energy cancels the tension
of the linear structure. Supertubes remain BPS when the
linear structure gets bended. In these theories, supertubes
manifest as Chern-Simons solitons, dyonic instantons,
charged semilocal strings, and dyonic instantons on the
vortex sheet at the Higgs phase, and some more compli-
cated composite configurations.

In field theory, composite BPS objects usually involve
only two charges. BPS dyons typify one kind with the

energy
���������������������
Q2 �T 2

q
, where Q and T are the energies for

two charges. Clearly the charge is attractive to magnetic
monopoles. Another type is typified by q lumps whose
BPS energy is jQj � jF j where Q is the energy for the
Noether charge and F is that for the lump [6]. Supertubes
in field theories are the generalization of q lumps, and in

addition, the interior of supertubes have closed loops of
domain wall or string in arbitrary shape. Dyonic instantons
and generalizations have been studied as field theoretic
supertubes [7,8].

The composite linear BPS objects may have the energy
contributions from five sources. The original linear BPS
structure has the tension T . Noether charge leads to the
energy density Q, and the spatial topological charge does
to F . There is an induced linear momentum density P
along the line, which is not quite independent of Q and F .
In addition the linear structure may be imbedded in addi-
tional structure which costs energy density E0. We find the
BPS energy per unit length to be

 E line � E0 �
�������������������������������������������������
�F �Q�2 � �T � P �2

q
: (1)

This shows what the energy of the composite BPS object is
made of. For the supertube case, jT j � jP j, the BPS
energy density becomes Etube � E0 � jF j � jQj, indicat-
ing that the tension of the linear structure does not matter
anymore. In all cases the diagonal component of the energy
momentum tension along the momentum direction van-
ishes, which is another indication that it does not cost any
energy to bend the linear structure. The linear momentum
density P is given by the original tension T , and so it has
constant magnitude. For supertubes of linear shape, one
can have F and Q arbitrary such that FQ is fixed. (If
jF j � jQj, the BPS configurations are chiral waves along
the linear structure.)

Let us start with an Abelian Chern-Simons Higgs theory
[9–11], whose Lagrangian is

 L �
�
2
����A�@�A��

1

2
jD��j

2�
1

8�2 j�j
2�j�j2�v2�2;

(2)

where �012 � 1 and D�� � �@� � iA���. There are two
degenerated vacua, the symmetric phase � � 0 and the
asymmetric phase � � v, which allow BPS domain walls.
There are Chern-Simons solitons in both symmetric and
broken phases. The Gauss law is �F12 �

i
2 �

�D0�	���	D0�� � 0. The Chern-Simons solitons are
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charge-magnetic flux composite objects, carrying frac-
tional spin and satisfying fractional statistics.

For any field configuration, we rewrite the energy per
unit length along a chosen direction, say x2, as
 

E�
1

2

Z
dx1

���������D0��
i

2�
��j�j2�v2�cos��D2�sin�

��������
2

�

��������D1�� iD2�cos��
1

2�
��j�j2�v2�sin�

��������
2
�

�Bcos���T �P �sin�; (3)

where the magnetic flux energy density per unit length, the
domain wall energy density, and the linear momentum
along the domain wall are, respectively,
 

B �
v2

2

Z
dx1F12;

T �
1

8�

Z
dx1@1�2v

2j�j2 � j�j4�;

P �
1

2

Z
dx1�D0�	D2��D2�	D0��:

(4)

As all terms in the integration of Eq. (3) are non-negetive
for any angle �, we have the bound on the energy density

 E 
 Eline �
����������������������������������
B2 � �T � P �2

q

 Etube � jBj: (5)

Note that in the Chern-Simons theory, the Gauss law
relates the Noether charge with topological magnetic
flux. The composite of the domain wall and solitons has
been studied before but without the above result [12].

Among these linear BPS configurations which saturate
the bound E � Eline, the special ones are those that satisfy
T � P , so that cos� � �1. The energy would be deter-
mined purely by the magnetic flux as Etube � jBj. Thus the
wall energy is canceled by the bound energy of the wall and
charge, and so the domain wall can bend. These supertube
configurations satisfy the Gauss law and the self-dual
Chern-Simons soliton equation,

 D0��
i
2
��j�j2 � v2� � 0; D1�� iD2� � 0;

(6)

which is the equation studied well in Resf. [9–11]. Thus, if
we imagine the effective string action for the supertube, it
costs no energy to bend the domain wall. To find
explicitly the linear configuration of the supertube, we
choose cos� � 1 and � > 0 with ansatz � �
j�j�x1�e�iv

2�x0�x2�=2�, A2�x
1� � A0�x

1�. The self-dual
equations (6) and the Gauss law can be solved with noting
A0 � j�j2=2�. The solution is given by j�j2�x1� �

v2ev
2x1=2��1� ev

2x1=2�� with the boundary condition � �
0 at x � �1 and j�j � v at x � 1. From this we can find
T � P � v4=�8�� and F � v4=�4��. Note that the direc-
tion of the momentum flow is fixed by the orientation of the

domain walls. This is the case for the Chern-Simons
solitons.

While many properties of Chern-Simons solitons are
known, we obtain a somewhat new perspective of these
objects from the fact that they can be regarded as super-
tubes. (The tubular direction is unclear in this theory at the
moment.) In large magnetic flux limit, vortices can be
regarded as a collection of supertubes inside of which is
in the symmetric phase and outside of which is in the
asymmetric phase. Nontopological solitons in large charge
limit can be regarded as a collection of supertubes inside of
which is in the asymmetric phase and outside of which is in
the symmetric phase. One can have nontopological solitons
with vortices, which can be regarded as supertubes in
supertubes. The almost linear structure of the large flux
limit suggests more. For example, the maximal angular
momentum can be achieved by a single supertube of
circular shape. Indeed, there is such a bound on angular
momentum on Chern-Simons solitons [10]. The supersym-
metry of these solitons has been studied in N � 2 Chern-
Simons theory and is shown to be 1=2.

The second theory we consider here is a N � 1 U(N)
gauge theory with Nf � 0 or Nf 
 N flavors in 5-
dimensional spacetime. For simplicity, we consider the
bosonic fields, which are made of the gauge multiplet
AM, A5 � � and the flavor multiplets qf; q

0
f; f �

1 . . .Nf. Here q0f vanish for the BPS configurations and
so are neglected. The bosonic part of the Lagrangian is

 L �
1

2e2 tr
�
�

1

2
FMNF

MN �DM�D
M��D2

�

�
1

2
tr�DM �qfD

Mqf � ���mf�
2 �qfqf�; (7)

where the nonvanishing D term is D � D3 � e2�v2 �

�qfqf�=2 and DMqf � @Mqf � iqfAM. The Gauss law is

 D�F�0 � i��;D0� �
ie2

2
� �qfD0qi �D0 �qfqf� � 0: (8)

The supersymmetry transformation of the gaugino field
�i and the matter fermion  f is given as (see, for example
[13,14])

 	�i �
1
2FMN�MN�i � iDa
aij�j; 	 f � DMqfi�M�i

(9)

in 6-dimensional notation with symplectic Majorana-Weyl
spinor �i, �i. For our theory, qf1 � qf, qf2 � q0f, and
D5qf � qf���mf�. We impose a 1=4 BPS condition
on the spinor parameter by imposing two conditions,

 �34e��45
i
3

ij�j � �i; �05e��45
�i � ��i; (10)

which imply �12i
3
ij�j � ��i as �i is chiral. For such a

constant nonzero spinor �i, the supersymmetric transfor-
mations 	�i and 	 f vanish if the bosonic configurations
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satisfy the BPS equations
 

Bi � 	i3D
3 � Fi4 cos��Di� sin� � 0;

Fi0 � Fi4 sin��Di� cos� � 0;

F40 �D4� cos� � 0;

D0��D4� sin� � 0;

�D1 � iD2�qf � 0;

D0qf �D4qf sin�� iqf���mf� cos� � 0;

D3qf � iD4qf cos�� qf���mf� sin� � 0;

(11)

where B3 � F12 and so on. The energy density is given by
the square of the above terms with a proper coefficient and
the boundary terms after the Gauss law is used. As the
square terms are positive definite, we get a bound on the
energy density

 E 
 �
v2

2
trF12 � �F �Q� cos�� �T � P � sin�;

(12)

where � is arbitrary and
 

F �
v2

2
trF34 �

1

e2 trBiFi4;

Q �
1

e2 @� tr�F�0�� �
i
2
mf tr� �qfD0qf �D0 �qfqf�;

T � �
1

e2 @i tr�Bi�� �
1

2
@3 tr�v2�� �qfqf���mf��;

P �
1

e2 tr�Fi0Fi4 �D0�D4��

�
1

2
tr�D0 �qfD4qf �D4 �qfD0qf�: (13)

The first term F12 term comes from the magnetic flux
vortex sheet. The linear structure of magnetic monopole
string or domain wall lead to the tension part T . The linear
momentum density along x4 is P . Q is the energy due to
the flavor charge. F is the energy density due to the
magnetic flux trF34 and the instanton density. We have to
integrate over the transverse direction to the linear struc-
ture to get the energy density, leading to the BPS energy
density (1). In a gauge A0 � ���, the supertube configu-
rations, which saturate the energy bound with cos� � � �
�1, satisfy the following equations,

 Bi � �Fi4 � 	i3
e2

2
�v2 � �qfqf� � 0;

�D1 � iD2�qf � 0; �D3 � i�D4�qf � 0;

D2
i ��

e2

2
����mf� �qfqf � �qfqf���mf�� � 0:

(14)

Note that the first three equations are for the spatial struc-
ture. The last one is additional structure on the spatial
structure. Typically the spatial solitons have some scaling

parameters, which collapse when some symmetry is further
broken. But the repulsive force among Noether charge
balances the collapsing force, making supertubes as dyonic
spatial solitons.

We will consider the four supertube examples in this
theory. First of all, let us neglect all flavor. The supersym-
metry can be enlarged to N � 2 in 5 dimensions if we add
an adjoint matter multiplet. Assume the gauge group is
SU�2�. Then the obvious linear object is the monopole
string, to which electric charge and instantons are attracted.
The integration all above densities over 3-dimensional
space transverse monopole string leads to the BPS bound
(1) on the energy density along the string. (Here we are a
bit loose on the notation for the energy densities and its
integrated quantities.) Here the 16 SUSY leads to more
sign freedom and so more sign combinations are allowed.
When cos� � �1, we get the supertube configuration,
whose BPS equation (14) becomes that for dyonic instan-
tons, in which arbitrary shaped closed loops of magnetic
monopoles are present.

For a single monopole string with known Ai, �, the
linear density for these quantities are trivial to get with
� � vA4=h where A4 � h
3=2 and � � v
3=2 asymp-
totically. They are T � P � 4�v=e2, F � 4�h=e2, and
Q � 4�v2=e2h, and so QF is independent of h. This tells
us the characteristics of dyonic instantons in large instan-
ton and charge limit, where the linear approximation for
the monopole strings may work. Dyonic instantons have
been studied in many directions [15,16]. The monopole
string composite with charge and instantons has been also
studied [17,18]. Monopole strings inside dyonic instantons
appear when the instanton number is at least two, showing
they are supertubes [7].

The second case is the U�1� theory with Nf � 2. When
the flavor symmetry is non-Abelian with m1 � m2, the
theory allows semilocal vortices [19,20]. With m1 <m2,
there are two degenerated vacua with q1 � v, q2 � 0,� �
m1 and q1 � 0, q2 � v, � � m2, which allows a domain
wall [21,22]. With m1 <m2, the core of the semilocal
vortices collapse. We ignore x1 and x2 direction com-
pletely. The domain wall attracts the flavor charge and
magnetic flux F34. For energy density along the line x4,
we integrate over x3, with F due to the magnetic flux F34.
Again we obtain BPS energy bound (1) per length.
Especially for cos� � �1, the domain wall can bend,
and the BPS equation (14) becomes those for charged
semilocal vortices [23]. For a straight domain wall with
ansatz qf � jqfje�mfx0�ikfx3

with field choice so thatm2 �

�m1 � m> 0 and k2 � �k1 � k > 0, with appropriate
boundary condition, we see that A4 � k�=m and so obtain
that T � P � mv2, F � kv2, and Q � mv2=2k. Again
FQ is independent of k and the component T44 along the
domain wall direction vanishes.

A supertube for generic charged semilocal vortices of
U�1� theory with two flavors of different mass with a large
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magnetic flux can be caricatured as follows. Say the vac-
uum is where q1 � v, q2 � 0. The vortex lies in the 3-4
plane, and we ignore the 1,2 direction. For large vorticity,
there is an arbitrary shaped closed line of domain wall,
outside of which jq1j � v and q2 � 0, and inside of which
q1 � 0 and jq2j � v. Along the line there is energy density
which is identical to the momentum density given above.
There is nontrivial magnetic flux and flavor charge which
can vary along the line as long as their product is fixed as in
the previous paragraph.

The third case appears in theU�2� gauge theory with two
flavors. The vacuum is in the color-flavor locking phase
�q1 � �v; 0�, �q2 � �0; v�, and � � diga�m1; m2�. We con-
sider a vortex sheet on the 3-4 plane at x1, x2 � 0 with
nonzero F12, and with a magnetic monopole string along x4

direction at x3 � 0 when m1 � m2 [24,25]. The gauge
orientation of the magnetic flux F12 changes from
diag(1,0) to diag(0,1) as x3 goes from �1 to 1. Thus
the energy would have a contribution E0 from the magnetic
flux trF12 which is localized near x1 � x2 � 0 and the
monopole string tension T . Monopole strings attract flavor
charge and instantons, which leads to energy contribution
Q and F . Integration over x1, x2, x3 with some appropriate
infrared cutoff in x3 direction would lead to an energy
density bound (1). The BPS equation (14) becomes that
for dyonic instantons on the vortex sheet, where qf �
e�imfx0

. When m1 � m2, one can have instantons in the
vortex sheet in the Higgs phase [26], which collapsesm1 �

m2. Flavor Noether charges keep them from collapsing.
For the linear configuration with additional ansatz qf �

e�ikfx
4
, and we shift the fields A4 and � so that m1 �

�m2 � m=2 and k1 � �k2 � k=2, which implies the
asymptotic value of A4 � diag�k;�k�=2, and � �
diag�m;�m�=2. The self-dual equation and the gauss law
are compatible if A4 � k�=m. For a single monopole
string, we obtain T � P � 4�m=e2, F � 4�k=e2, and
Q � 4�m=k after some effort. Again FQ is independent
of k.

Then for large instanton number and flavor charge, the
supertube configuration can be pictured as follows. We

have a flat vortex sheet on which an arbitrary shaped closed
curve of monopole string is present. On the sheet, outside
of the curve q1 � 0, q2 � diag�0; v� at the sheet center and
inside of the curve q1 � diag�v; 0� and q2 � 0. On the
curve, there is nonzero flavor charge and instanton density
per unit length, their product remains uniform. (It is of
course not well defined unless the curve can be approxi-
mated to be straight.) Along the curve, there is a linear
momentum flow with uniform magnitude given by the
monopole tension. This configuration would become
dyonic instanton in the Coulomb when the FI parameter
v2 approaches zero.

For the last case, we consider the theory withU�2� gauge
group and Nf � 3 case. As there are degenerated vacua,
one can have domain walls. In addition, one can have a
vortices sheet with magnetic monopoles strings, which
allows a composition of vortex-monopole-domain wall
[27,28]. Our BPS equation allows the adding of instanton
numbers, flavor charges, and additional flux F34.
Consequently we can imagine a composition of charged
semilocal vortices and a dyonic instanton in the vortex
sheet. The interpretation of the above field theory as the
field theory on D4-D8 branes seems to show above super-
tubes in a nice figurative way.

To conclude, we found a new BPS energy bound on
straight composite linear BPS objects. Especially super-
tubes seem to be everywhere when one can add Noether
charge to topological solitons. While our analysis has been
done on relatively simpler systems, one can generalize to
non-Abelian gauge groups and more matter fields, which
would allow richer supertube structures.
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