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We study Z(2) lattice gauge theory on triangulations of compact d-manifolds. We reformulate the
theory algebraically, describing it in terms of the structure constants of a bidimensional vector space H
equipped with algebra and coalgebra structures, and prove that in the low-temperature limit H reduces to
a Hopf algebra, in which case the theory becomes equivalent to a topological field theory. The degeneracy
of the ground state is shown to be a topological invariant. This fact is used to compute the zeroth- and first-
order terms in the low-temperature expansion of Z for arbitrary triangulations. In finite temperatures, the
algebraic reformulation gives rise to new duality relations among classical spin models, related to changes
of basis of H .
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I. INTRODUCTION

The Z(2) spin-gauge theory we consider in this work is a
lattice gauge theory, locally invariant under the Abelian
discrete group Z(2), and one of the simplest examples of a
gauge theory on the lattice, according to Wilson’s ideas [1].
There are two main motivations for the study of this model.
First, it is hoped that the understanding of this simple
example will bring some insight into the physics of more
realistic gauge theories. Second, it is known that in three
dimensions this theory is dual to the 3D Ising model [2], an
outstanding problem in statistical mechanics. We study
Z(2) pure gauge theory on arbitrary finite triangulations
of a compact d-manifold. Usually, one considers hyper-
cubic lattices [3,4], but we do not follow this procedure
here, in order to achieve a more general framework for the
study of topological properties.

The theory is defined as follows. Let �a � ��1�a, a �
0, 1, be gauge variables sitting at the links a of a triangu-
lation L. Let !�f� be the product of all gauge variables at
the boundary of a particular face f. Then the action is S �
�
P
f!�f�, where � is the coupling constant of the theory,

and the sum runs over all faces f of L. The partition
function is given by Z �

P
f�ag exp�S�, the sum running

over all gauge configurations f�ag. We will find it conve-
nient to rewrite Z as a product of local Boltzmann weights,
in the form

 Z �
X
f�ag

Y
f

M�f�; (1)

where M�f� � exp��!�f��. The low-temperature limit is
obtained by letting � go to infinity.

As the lattice L is a triangulation, all its faces are
triangular. Thus the weights M�f� describe a three-spin
interaction. We write them as Mabc, where a, b, c are the

indices of the gauge variables �a at the boundary of f. It
follows that Mabc � exp���1�a�b�c��.

We give the theory an algebraic interpretation, in terms
of a bidimensional algebra H . For that, we follow pre-
scriptions introduced by Chung, Fukuma, and Shapere
(CFS) in [5], in the context of topological quantum field
theory [6]. There, it is shown how to build up a field theory
on a three-dimensional lattice from the knowledge of the
structure constants of an algebra of interest. Such a proce-
dure allows one to encode symmetries of the theory in
symmetries of the algebra, and was first applied in the
investigation of topological invariance in three dimensions.
The main result found was that the lattice theory is topo-
logical whenever H is a Hopf algebra [5,7].

Here we show that Z(2) pure gauge theory can be
reformulated as a CFS theory, for any dimension d. We
display explicitly an algebra H which leads to Z(2) gauge
theory through the use of the prescriptions of [5]. The
algebra H depends on the value of �. In the low-
temperature limit, the Hopf algebra axioms hold, up to
the appearance of some extra factors in its defining rela-
tions. It follows that the theory is almost topological in this
limit. In fact, we prove that Zj�!1 is essentially the
product of a volume-dependent factor and a topological
invariant, giving an example of a quasitopological field
theory [8]. This decomposition leads to a solution of the
leading terms in the low-temperature expansion of Z de-
scribed in [9]. The zeroth-order term depends only on the
degeneracy ��L� of the ground state. We prove that it is a
topological invariant, and show how to compute it. The
first-order correction depends on simple combinatorial
factors. It is hoped that higher order terms can be dealt
with in a similar fashion.

II. ALGEBRAIC REFORMULATION

Let us describe the algebra H associated to Z(2) gauge
theory in the CFS formalism. Let B�f�0;�1g be a basis of
H , and B? � f 0;  1g its dual basis, for which  a��b��
�ab. We define a linear product M:H �H �H , which
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sends the pair of vectors u, v 2H into u 	 v 2H , as
usual. The products of the basis vectors read

 �0 	�0 � �1 	�1 � f�0 � e�1;

�0 	�1 � �1 	�0 � e�0 � f�1;
(2)

where e � ��1 sinh�x�, f � ��1 cosh�x�, and � and x are
fixed by the coupling constant � through

 e�2� � tanh�3x�; �6 � 2 sinh�6x�: (3)

The algebra has a unity � � � cosh�x��0 � � sinh�x��1,
and is associative. Its structure constants are the coeffi-
cients Mc

ab �  c��a 	�b� of the product tensor M.
Defining the trace T 2H ? as the dual vector with

coefficients Ta � Mb
ab, it follows that T � 2f 0 � 2e 1,

and that

 Mabc � T��a 	�b 	�c� � Mx
abM

y
xcMz

yz: (4)

This formula shows how the weights of Z(2) gauge theory
are related to the structure constants of the algebra H :
they are coefficients of a three-indexed covariant tensor
built from the product tensor M alone.

The expression in Eq. (4) is an example of the CFS
formalism, and the first step in our reformulation of the
Z(2) theory. In this formalism, the weights Mabc are
thought as determined by the algebra H . If a different
algebra was taken, there would be different local weights
Mabc at the lattice faces, and another set of configurations a
at the links. Thus, a different lattice field theory, is deter-
mined by the structure constants of the algebra. For the
particular algebra H and basis B we defined, the formula
happens to give the weights Mabc � exp���1�a�b�c�� of
Z(2) pure gauge theory, as can be checked. The problem of
finding an algebra H which gives a specified set of
weights Mabc may not be a trivial task. In our case it
involved the solution of a system with eight equations,
reduced to a single ninth degree equation in two variables.

We carry the algebraic reformulation further. We want to
write the partition function Z in tensorial form. As it is a
number, it shall be a scalar of H . Therefore, some kind of
contravariant tensor is needed, so that we can build con-
tractions with Mabc in order to define scalars. For that
purpose, we give H a coalgebra structure, to whose defi-
nition we now turn.

Let �: H � H �H be a coproduct on H , whose
action on basis vectors is given by

 ���a� � �a ��a: (5)

The coalgebra so defined has a co-unity " �  0 �  1, and
is coassociative. Its structure constants are the coefficients
�bc
a � � 

b �  c�����a�� � �ba�
c
a of the tensor �.

In analogy with Eq. (4), we define the n-indexed contra-
variant tensors �a1a2...an�1an by

 �a1a2...an�1an � �x1x2
x1

�a1x3
x2

�a2x4
x3

. . . �an�1an
xn : (6)

For the coalgebra defined by Eq. (5), they read

 �a1a2...an�1an � �a1;an�a2;an . . .�an�1;an ; (7)

where the �0s are Kronecker deltas.
The expression in Eq. (6) is another formula of the CFS

formalism. It defines local weights which are assigned to
links. In their formalism, the local configurations are not
assigned to links or vertices, as usual. Instead, if a link a is
shared by n faces, then there are n configurations ai; i �
1; 2; . . . ; n, sitting at the intersections of the link and the
faces. The link is thought of not as a thin line, but as a sort
of ‘‘hinge’’: an object with n strips emerging from a central
line, where faces are glued (see Ref. [5]). There is a
configuration ai at each strip. The coefficients
�a1a2...an�1an are local weights assigned to hinges, deter-
mined by the configurations at its strips. Different coal-
gebras lead to different hinge weights and, therefore, to
distinct lattice field theories.

The partition function is defined as a scalar written with
contractions of indices of hinge and face weights. Consider
the outer product of all hinge and face weights in the
triangulation L. For each hinge strip, there is a configura-
tion a, which appears as a lower index in a face weight, and
as an upper index in some hinge weight. We contract this
pair of indices. Then we do the same for all hinge strips. A
scalar is obtained, which is defined as the partition function
Z of the theory. In the original work of CFS, there is also an
antipode operator S: H � H , which interferes in the
contractions, and is used to define orientations. The rule
we gave here is equivalent to setting S equal to the identity,
Sba � �ba. This special case is enough for our purposes.

Now it just remains to note that the special form of the
coproduct given in Eq. (5) is just the one needed in order to
recover the interpretation of configurations at links. For,
according to Eq. (7), in this case the hinge weights are zero,
unless all its indices are equal. But then this index can be
thought of as assigned to the link itself. Therefore, under
such a condition, a global configuration is an assignment of
an index a � 0, 1 to each link of L. There is a weightQ
fMabc�f� for each configuration. The contractions of

indices which define Z automatically implements the
sum over configurations. For H , the weights are simply
Mabc � exp���1�a�b�c��, and the result is Z(2) pure
gauge theory’s partition function, as written in Eq. (1).
That completes our reformulation of the theory.

III. LOW-TEMPERATURE LIMIT

Let us turn to the low-temperature limit of the theory
now. It is obtained by letting �! 1, or, equivalently, x!
0, as shown by Eq. (3). The partition function diverges in
this limit, limx!0Z � 1, and we want to understand how
that happens, looking at the algebraic reformulation of the
theory. The structure constants of H are not both well
defined when x goes to zero. The coefficient e presents no
problem, as limx!0e�x� � 0, but for f we have
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limx!0f�x� � 1. We will show that the divergences of the
algebra coefficients are related to the divergence of the
partition function itself in this limit. Such interpretation
comes from a simple algebraic manipulation. A continuous
change of basis of H , parametrized by x, is used to isolate
the singular part of Z, which is then found to be a function
of f.

Note that the partition function Z, being a scalar of H ,
does not change its value if a different basis B0 is chosen to
write the link and face weights of the theory. But the
weights itself do change, and thus we have a different
lattice field theory with the same partition function. For
instance, consider the change of basis, which we will use in
the low-temperature limit, given by the scaling transfor-
mation

 �0 � f�1�0; �1 � f�1�1: (8)

In the new basis B0 � f�0; �1g, the structure constants of
H are given by

 �0 	 �0 � �1 	 �1 � �0 �
e
f
�1;

�0 	 �1 � �1 	 �0 �
e
f
�0 � �1;

(9)

and the coproduct is

 ���a� � f�a � �a: (10)

The hinge weights, determined by Eq. (6), are now given
by

 �0a1a2...an�1an � fn�a1;an�a2;an . . .�an�1;an : (11)

They still allow a link configuration interpretation of the
theory. But now there is a local weight fn at each link,
which does not depend on the configuration at the link. The
face weights given by Eq. (4) read

 M0000 � M0011 � 2� 6
�
e
f

�
2
;

M0001 � M0111 � 6
e
f
� 2

�
e
f

�
3
;

(12)

and are cyclically symmetric.
The theory obtained with the basis B0 can thus be

summarized as follows. There are configurations a � 0,
1 at all lattice links. At each link, there is a local weight fn,
where n is the number of faces meeting at the link. On each
face, there is a cyclically symmetric weight whose value is
given by Eq. (12). The partition function Z is the sum over
all link configurations of the product of all face weights in
the lattice. This partition function has the same value as
that of Z(2) pure gauge theory. This is an example of a new
duality relation between lattice spin models, and we will
discuss it later in this paper.

A simplification can be achieved if the contribution of
the weights fn is removed from Z. For any configuration,
these weights taken together lead to a factor f3Nf , where

Nf is the total number of faces in the lattice. Thus if we
define a new theory with face weights given by Eq. (12),
but with no link weights, it will have a partition function
X � Zf�3Nf . Its CFS description is given by the algebra
displayed in Eq. (9), with the coproduct of Eq. (5).

We consider the low-temperature limit of such a theory.
This is enough for us, since a solution for X gives a solution
for Z. But when x! 0 (�! 1), the structure constants
are:
 

�0 	 �0 � �1 	 �1 � �0; �0 	 �1 � �1 	 �0 � �1;

���a� � �a � �a: (13)

This product and coproduct, taken together with an anti-
pode Sab � �ab, constitute a Hopf algebra, which can be
recognized as the Z(2) group algebra.

A direct implication of the Hopf structure of the low-
temperature limit of H given in Eq. (13) is that in three
dimensions the partition function Xj�!1 is a topological
invariant. Thus its value does not depend on the details of
the lattice, being determined by the topology of L alone.
Actually, as we defined the theory, there is an extra factor
yet. From Kuperberg’s work [7], we have that

 Xj�!1 � ��L�22Nt2Nv�1; (14)

where ��L� is Kuperberg’s topological invariant for the
Z(2) group algebra, and Nt and Nv are the total number of
tetrahedra and vertices in L, respectively.1 Then we can
write the partition function of three-dimensional Z(2) lat-
tice gauge theory in the low-temperature limit as

 Zj�!1 � ��L��2f3�2Nt2Nv�1; (15)

i.e., as the product of a topological invariant ��L�, a
volume-dependent factor �2f3�2Nt , and a factor 2Nv�1

which counts gauge equivalent configurations. The factor
�2f3�2Nt gives the temperature dependence of Z as �
approaches 1. This factor diverges at zero temperature,
and is the singular part of Zj�!1. For a given �, the value
of Zj�!1 depends only on Nt, the discrete version of the
volume. The remaining factor 2Nv�1 is quite irrelevant, and
could well be eliminated by gauge fixing.

The proof of Kuperberg’s theorem which leads to
Eq. (15) is based on methods of combinatorial topology
which are valid only in three dimensions. Yet the validity of
the equation is not restricted to dimension 3. In fact, we
will show while discussing the interpretation of the invari-
ant ��L� that this result can be restated in a form which is

1Kuperberg’s theory is equivalent to CFS theory, but is defined
on Heegard diagrams D, instead of on lattices. For any Hopf
algebra H , the partition function is Z�H � � #�D;H �

�dimH �nu�nv�g�S�, where #�D;H � is a topological invariant,
g is the genus of D, and nu, nv are the number of upper and
lower curves of D, respectively. In the language of triangula-
tions, this formula reduces to Z�H � � ��L;H �22Nt2Nv�1,
where ��L;H � � #�D;H �.
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valid for any dimension d. A new approach will be required
for that purpose. In Kuperberg’s work, a Heegard diagram
description [10] of the lattice model is used in order to
prove that the partition function is invariant under elemen-
tary transformations which generate all homeomorphisms
of 3-manifolds (compact and orientable). In lower dimen-
sions, and especially for d < 4, the requirement of invari-
ance under a set of basic homeomorphisms is usually an
efficient method to study topological invariants (see
[11,12], for example). In higher dimensions, however, the
growing number of elementary transformations makes this
combinatoric approach cumbersome. Then the methods of
algebraic topology should be applied. In order to prove that
a quantity is a topological invariant, one may try to write it
in terms of known invariants coming from homology or
cohomology theories, for example. We will see in the next
section that this can be done for the low-temperature
partition function Zj�!1 in any dimension d.

The formula in Eq. (15), in addition to the algebraic
reformulation of the theory, is the main result of this paper.
Next we will discuss it further, and show how to use the
equation in explicit calculations. In particular, we will give
solutions for the zeroth and first-order terms in the low-
temperature expansion of Z.

IV. APPLICATIONS

A. Interpretation of the invariant ��L�

Let us give an interpretation for the topological invariant
��L�. For that, consider the low-temperature limit of the
weights M0abc which define X. As limx!0�e=f� � 0, then
we can write

 M0000�� M0011�j�!1 � 2; M0001�� M0111�j�!1 � 0:

(16)

These formulae have a very simple meaning. The weight of
a gauge configuration is the product of all local weights
M0abc. According to Eq. (16), it is nonzero, in the low-
temperature limit, only if w�f� � 1 at all faces of L. In this
case, it is equal to 2Nf . Suppose there are A0 such gauge
configurations. Then Xj�!1 � 2NfA0. From Eq. (14), it
follows that in three dimensions

 ��L� �
A0

2Nv�1 ; (17)

so that in this case ��L� is the number of equivalence
classes of gauge configurations for which w�f� � 1,8f 2
L. This condition selects gauge configurations with mini-
mal energy, that is, ground state configurations. Thus ��L�
is the degeneracy of the ground state on the lattice L, and
we have just proved that it is a topological invariant.

The determination of the degeneracy of the ground state
is the first step in any low-temperature expansion of the
theory, and can be severely simplified due to topological
symmetry. The evaluation of A0 is naturally a hard combi-

natorial problem. One must enumerate all gauge configu-
rations on L, check one by one if the ground state condition
is satisfied, and count the number of occurrences. We give
an alternative procedure. There is a topological field theory
which performs this counting. Its partition function is
Xj�!1 � 2NfA0, and one can take the simplest lattice L0

homeomorphic to L in order to evaluate it, as topological
symmetry implies that X�L� � X�L0�. For the usual top-
ologies, L0 will be a lattice with a small number of tetrahe-
dra, and the calculation of Xj�!1 is feasible (a small finite
sum). Then we get a solution for A0, namely, A0 �

2�NfXj�!1.
In the case of a generic dimension d, the topological

invariance of ��L� can be proved in an alternative way
with more traditional methods of algebraic topology. This
is done in Appendix A. There it is shown that the number of
equivalence classes of gauge configurations for which
!�f� � 1 at all faces f of a lattice L is equal to the number
of elements in the first cohomology group of L with
Z2-coefficients, denoted H1�L; Z2�, which is a well-known
topological invariant. In other words, it is proved that

 A0 � 2Nv�1#H1�L; Z2�; (18)

where #H1�L; Z2� is the number of elements in H1�L; Z2�.
Comparing Eqs. (17) and (18), we find that in three dimen-
sions the invariant #H1�L; Z2� is equal to Kuperberg’s
invariant ��L� evaluated with the Z(2) group algebra, a
result which agrees with [7]. In the language of lattice
gauge theory, this invariant corresponds to the degeneracy
of the ground state, as discussed. Furthermore, Eq. (18)
allows us to write the low-temperature partition function in
any dimension d as

 Zj�!1 � �2f
3�Nf2Nv�1#H1�L; Z2�:

This is the generalization of Eq. (15) to arbitrary dimension
d. The low-temperature partition function is the product of
the topological invariant #H1�L; Z2�, a temperature-
dependent factor �2f3�Nf , whose value is fixed at each
temperature by the number of faces in the triangulation,
and an additional factor which counts gauge
transformations.

Now consider the low-temperature expansion of Z as
given in [9]. At zero temperature, only ground state con-
figurations are accessible. These configurations give the
zeroth-order approximation of Z, which reads

 Z�0� � A0e
�Nf � 2Nv�1e�Nf#H1�L; Z2�: (19)

The first-order correction can also be solved. It consists of
contributions coming from elementary excitations of the
lattice. Pick a ground state configuration. There is a weight
e� at each face. Now let a be any link, and �a the local
gauge variable at it. Invert its sign, �a � ��a. A new
gauge configuration is obtained, for which w�f� � 1 at all
faces, except for those meeting a. The contributions for the
first-order correction of Z come from these configurations.
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We write it as

 Z�1� � A0

X
a

e��Nf�2na�; (20)

where na is the number of faces meeting the link a. The
determination of the combinatorial factors na should not
bring problems. For instance, for a hypercubic lattice na �
2�d� 1� is constant, and we have

 Z�1� � 2Nv�1Nle
��Nf�4�d�1��#H1�L; Z2�: (21)

This is our solution for Z�1�, and another example of a
calculation based on the formalism we presented here.

B. Dualities

Before concluding the work, we would like to get back
to Eqs. (8)–(12), and discuss the meaning of the change of
basis presented there. The theory given by the original
basis B is just Z(2) gauge theory, which can be thought
of as a spin model. The spins �a are situated at the links of
L, and there are Boltzman local weights Mabc at faces.
After the change of basis, a new spin model is defined. The
spins are still at the lattice links, but the face weights are
M0abc, and there are also link weights. Yet, the partition
function is the same. Thus we have an example of a new
duality between spin models, similar to those depicted in
[2]. In the CFS formalism, there is one such duality for
each change of basis of H . If, beyond the scaling trans-
formations studied in this work, more general changes of
basis are considered, one may hope that a larger class of
new dualities will arise. This method for studying dualities
can be applied to any lattice theory which can be reformu-
lated as a CFS theory.

The Z(2) lattice gauge theory studied in this paper is
related by a Kramers-Wannier duality to the Ising model in
three dimensions. It is interesting to observe that this dual-
ity can be obtained as a certain change of basis in H , as
demonstrated in Appendix B. There are also similar dual-
ities relating Z(2) lattice gauge theory to different classes
of statistical mechanics models in any dimension d, all of
which can be reformulated as changes of basis in H as
well. Therefore, these transformations are in fact a general-
ization of the classical Kramers and Wannier dualities as
presented in [2].

V. CONCLUSION

We have shown in this paper that Z(2) lattice gauge
theory can be reformulated as a CFS theory, giving it an
algebraic interpretation in terms of a vector space H with
algebra and coalgebra structure, and proved that the low-
temperature limit of the theory is equivalent to a topologi-
cal field theory. The reformulation is based on the appli-
cation of mathematical prescriptions coming from
topological field theories to the realm of lattice gauge
theory. Calculations made in the low-temperature limit

are considerably simplified when topological symmetry
is taken into account, and can be evaluated for arbitrary
triangulations. Moreover, we have found that any change
of basis of H is related to some duality relation among
spin models. This observation leads to an algebraic method
for the investigation of dualities, which we shall develop
elsewhere.
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APPENDIX A: PROOF THAT ��L� � H1�L;Z2�

The link variables �ij � �1, where the indices i, j refer
to the vertices at the two ends of the link, can be rewritten
as

 �ij � ei�Aij � �1;

where Aij 2 f0; 1g. Similarly, gauge transformations�i are
in 1-to-1 correspondence with Z2-valued fields 	i on lattice
sites:

 �i � ei�	i � �1:

The gauge transformation �ij ! �i�ij��1
j corresponds to

 Aij ! Aij � 	i � 	j: (A1)

The variables fAijg and f	ig, with the gauge transforma-
tions (A1) and the condition !�f� � 1, 8f 2 L, have
simple and natural interpretation in terms of Z2-valued
cochain structure of the lattice L. The Aij’s form a
Z2-valued 1-cochain. i.e. a function A on the lattice links,
given by

 A��i; j�� � Aij;

with values in Z2. Similarly, the 	i’s form a Z2-valued 0-
cochain, i.e. a function 	 on the lattice sites, given by

 	��i�� � 	i:

There is a ‘‘coboundary operator’’ d which maps
p-cochains to �p� 1�-cochains, given in terms of the
boundary operator @ on �p� 1�-cells of L by

 d
��i1; . . . ; ip�1� � 
�@�i1; . . . ; ip�1��

�
Xp�1

k�1

��1�k
��i1; . . . ; îk; . . . ; ip�1��;

where îk denotes an omitted vertex. Note that d 
 d � 0.
The gauge transformation (A1) can now be expressed as

 A! A� d	:
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To interpret the condition !�f� � 1, 8f 2 L, use the
notation f � �i; j; k� where the sites i, j, k are the vertices
of the face f. Then

 !��i; j; k�� � �ij�jk�ki � ei��Aij�Ajk�Aki�:

Noting that Alm � �Alm mod 2, we have (mod 2)

 Aij � Ajk � Aki � A�@�i; j; k��� � dA��i; j; k��;

hence !�f� � ei�dA�f�. Thus !�f� � 1, dA�f� � 0, and
therefore

 !�f� � 18f , dA � 0

as a Z2-valued 2-cochain. The collection of Z2-valued 1-
cochains A satisfying dA � 0 modulo transformations
A! A� d	 is precisely H1�L; Z2�, the first cohomology
group of the cochain complex. It is a fundamental result in
algebraic topology that H1�L; Z2� is independent of the
lattice L used to discretize a space M, and one therefore
denotes itH1�M;Z2�. In particular, the number of elements
in H1�L; Z2� is independent of the triangulation L. This
completes the argument. Note that there was no restriction
on the dimension of the spacetime manifold M.

APPENDIX B: KRAMERS-WANNIER DUALITY AS
A CHANGE OF BASIS IN H

In the three-dimensional Ising model, there are spin
variables �i at the vertices i of the lattice, and an energy
term El � ��I�i�j for each link l, where�I is the inverse
temperature, and the indices i, j refer to the vertices at the
two ends of the link. There corresponds to this term a local
link weight

 Wl � exp��I�i�j�: (B1)

The partition function is

 ZIS �
X
f�ig

Y
l

Wl;

where the sum runs over all spin configurations on links of
L, and the product runs over all links l of the lattice. This
model can be reformulated as having spin variables at
links. For that purpose, define the link variables

 �l � �i�j; (B2)

in terms of which the local weights are Wl � exp���l� �
�1. The product of link spins �l over any closed circuit is
always 1, as the spin associated with a vertex crossed in the
circuit appears twice in the product. In particular, the
product !�f� of the spins at the boundary of any face f
is always 1. Now we can rewrite the partition function as

 ZIS � 2
X
f�lg

Y
l

Wl;

where the sum runs over all configurations for which
!�f� � 1 at all faces. The factor 2 accounts for the fact

that two distinct vertex configurations f�ig are related to
each link configuration f�lg, as reversing all spins �i 2
f�ig does not change f�lg.

Now consider the change of basis E of H given by

 E �
1
2�e

�x 1
2�e

�x

1
2�e

x � 1
2�e

x

 !
; (B3)

and denote the new basis by B0 � f�0; �1g. The products of
the vector basis are given by

 �2
0 � ��1ex�0; �2

1 � ��1e�x�1;

�0 	 �1 � �0 	 �1 � 0;

and the trace is

 T��0� � ��1 exp�x�; T��1� � ��1 exp��x�:

The coproduct is given by

 ���0� � �0 � �0 � �1 � �1

���1� � �0 � �1 � �1 � �0;

and the cotrace is C � 2�0. Evaluating the local weights
for this algebra and coalgebra we find

 M0000 � ��3e3x; M0111 � ��3e�3x (B4)

for the face weights, and

 �0a1a2			am � 2���1�a1�a2�			am ;1 (B5)

for the link weights.
The new weights of Eqs. (B4) and (B5) are interpreted in

the dual lattice L0 [2] as follows. In three dimensions,
dualization interchanges the roles of faces and links: a
face in L is related to a link in L0, and a link in L to a
face in L0. Thus the coefficients of M0abc describe link
weights in L0. From Eq. (B4), these are nonzero only if
all spins meeting at the link are equal, i.e. if in M0abc, we
have a � b � c. Such a spin can be thought of as assigned
to the link itself. The corresponding weights are, up to a
common factor ��3, given by

 Wl � exp��l3x�; (B6)

where �l is the spin at the link. Moreover, the face weights
of Eq. (B5) are all equal to one or zero, up to a common
factor 2. These restrict the set of spin configurations f�lg to
be considered in the sum over states: the nonzero weights
correspond to those configurations for which the product of
spins at the boundary of any face in L0 is equal to 1, since

 ��1�a1�a2�			am � 1, �a1
�a2

. . .�am � 1:

Collecting the results, we have found the following. The
new model, obtained from the Z(2) pure gauge theory by
the application of the transformation E of Eq. (B3), has
spins �l at links in the dual lattice L0, local link weights
Wl � exp��l3x�, and configurations restricted to those for
which the product of spins at the boundary of any face is
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equal to 1. According to previous discussions, this gives an
Ising model in L0. Furthermore, comparing Eqs. (B1) and
(B2) with Eq. (B6), we find that the inverse temperature of
this Ising model is �I � 3x. And from Eq. (3), it follows
that

 e�2�g � tanh�I;

which is the classical Kramers and Wannier duality rela-
tion for Z(2) pure gauge theory in three dimensions [2].

If the change of basis E defined in Eq. (B3) is applied for
the weights of the d-dimensional Z(2) pure gauge theory,
we find the same face and link weights given in Eqs. (B4)
and (B5), since the same algebra H describes the model in
any dimension. The interpretation of these weights on the
dual lattice is changed, however. The dual of a link is a
�d� 1�-simplex, and the dual of a face is a �d�
2�-simplex. Thus Eq. (B4) means that in the dual lattice
there are configurations� � �1 at �d� 2�-simplexes, and
local weights exp��3x� corresponding to these. The
Eq. (B5) restricts again the set of allowed configurations.
The weight at a �d� 1�-simplex is nonzero only if the
product of the spins at its boundary is 1, in which case the
weight is equal to one. This condition is automatically
satisfied if one thinks of the spins at the �d�
2�-simplexes as obtained from another set of spin variables
s � �1 sitting at the �d� 3�-simplexes of the triangula-
tion, that is, if the spin ���d�2� at a simplex ��d�2� is written
as

 ���d�2� �
Y

@��d�2�

si;

where the si denote the spins at the �d� 3�-faces of���d�2� .
This prescription implies that in the product of all spins �
at the boundary of a �d� 1�-simplex, each spin s of a �d�
3�-face appears twice. Thus the product is equal to 1, as
claimed. Moreover, there is a fixed number Q of

s-configurations over �d� 3�-faces corresponding to
each �-configuration at �d� 2�-simplexes. That follows
from the fact that two distinct s-configurations are always
related by a local transformation

 si ! si i;

where the variables  i � �1 define a Z(2)-valued field
over �d� 3�-simplexes. The effect of this transformation
on the spins ���d�2� is given by

 ���d�2� ! ���d�2�

Y
@��d�2�

 i:

Therefore, two s-configurations define the same
�-configuration if and only if they are related by a trans-
formation for which

Q
@��d�2� i � 1 at all �d�

2�-simplexes of the triangulation. We denote the number
of such transformation by Q.

Thus we have found the following. The dual of Z(2)
gauge theory on a d-dimensional triangulation is a model
with spins si � �1 sitting at �d� 3�-simplexes, and local
weightsWd�2 at the �d� 2�-simplexes, which are given by

 Wd�2��
�d�2�� � exp

�
�?

Y
@��d�2�

si

�
;

where �? � 3x. The partition function Z? of this model is
related to that of Z(2) gauge theory by

 QZ��;L� � Z?��?; L?�; (B7)

where L? is the lattice dual to the original triangulation L.
From Eq. (3), it follows that

 e�2� � tanh�?: (B8)

The expressions in Eqs. (B7) and (B8) correspond to the
dualities of Wegner in any dimension d.
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