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We consider Lorentz-conserving noncommutative field theory to construct the Lorentz-conserving
noncommutative standard model based on the gauge group SU�3� � SU�2� � U�1�. We obtain the
enveloping algebra-valued of Higgs field up to the second order of the noncommutativity parameter
���. We derive the action at the leading order and find new vertices which are absent in the ordinary
standard model as well as the minimal noncommutative standard model. We briefly study the phenome-
nological aspects of the model.

DOI: 10.1103/PhysRevD.75.125002 PACS numbers: 11.10.Nx, 12.60.Cn

I. INTRODUCTION

In recent years, many authors have considered noncom-
mutative (NC) field theories and their phenomenological
aspects [1]. A strong motivation for investigating these
field theories is their appearance in a definite limit of string
theory [2]. On the other hand the standard model of elec-
troweak and strong interactions has met the challenge of
many high precision experiments. In the high energy limit
the noncommutativity effects seem to be significant and
therefore the new interactions in the noncommutative
space and time can be potentially important to particle
physics and cosmology. For example, in the minimal ex-
tension of the standard model in the noncommutative
space, in contrast with the conventional theory, there is
neutrino-photon vertex which leads to neutrino-photon
interaction at the tree level [3]. In the canonical noncom-
mutative space-time, the coordinates are operators and
satisfy the following commutator relation:

 �x̂�; x̂�� � i���; (1)

where ��� � ���� is a real and constant Lorentz tensor.
As ��� is constant, there is, obviously, a preferred direction
in a given particle Lorentz frame which leads to the
Lorentz symmetry violation. On the other hand, experi-
mental inspections for Lorentz violation, including clock
comparison tests, polarization measurements on the light
from distant galaxies, analyses of the radiation emitted by
energetic astrophysical sources, studies of matter-
antimatter asymmetries for trapped charged particles and
bound state systems [4] and so on, have thus far failed to
produce any positive results. These experiments strictly
bound the Lorentz-violating parameters, therefore, in the
lower energy limit, the Lorentz symmetry is an almost
exact symmetry of the nature. However, it is natural to
explore the noncommutative field theories that are Lorentz
invariant from the beginning. In this class of NC theories,
the parameter of noncommutativity is not a constant but an
operator which transforms as a Lorentz tensor. Of course in

this way one needs to generalize the star product and
operator trace for functions of both x� and ���, appropri-
ately. However, in both cases experiment should confirm
the theories. Using the enveloping algebra-valued method,
introduced in [5,6], Carlson, Carone, and Zobin (CCZ)
have constructed Lorentz-conserving noncommutative
quantum electrodynamics based on a contracted Snyder
algebra [7]. Afterward, the miscellaneous aspects of the
theory had been considered by others [8–11]. In this paper
we introduce Lorentz-conserving noncommutative stan-
dard model (LCNCSM) using the CCZ approach and con-
sider differences between the LCNCSM and the Lorentz-
violating noncommutative standard model. To construct
the noncommutative field theory, according to the Weyl-
Moyal correspondence, an ordinary function can be used
instead of the corresponding noncommutative one by re-
placing the ordinary product with the star product as fol-
lows:

 f � g�x� � f�x� exp�i=2@
 

���� ~@��g�x�: (2)

Using this correspondence, however, there are two ap-
proaches to construct the gauge theories in the noncom-
mutative space. In the first one the gauge group is restricted
to U�n� and the symmetry group of the standard model is
achieved by reduction of U�3� � U�2� � U�1� to SU�3� �
SU�2� � U�1� by an appropriate symmetry breaking [12].
Nevertheless, for U�1� the charge of particles are allowed
to be 	1 and 0 [12,13]. In the second approach, the non-
commutative gauge theory can be constructed for every
charge and for SU�n� gauge group via Seiberg-Witten map
[5,6]. Meanwhile, to follow the second approach to con-
struct LCNCSM one needs the Seiberg-Witten map of all
fields in the standard model up to the second order of ���.
Fortunately, the map for all of the fields except the Higgs
field to this order has been obtained already [6].

In Sec. II we briefly review Lorentz-conserving non-
commutative field theory. In Sec. III we study enveloping
algebra and the Seiberg-Witten map for the fields of the
standard model and obtain the corresponding expression
for the Higgs field up to the second order of ��� which is
not calculated elsewhere. In Sec. IV we construct the
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LCNCSM and discuss possible vertices in this model.
Finally, we discuss the phenomenological aspects of this
model in Sec. V, and give the concluding remarks in
Sec. VI.

II. LORENTZ-CONSERVING NONCOMMUTATIVE
FIELD THEORY

In 1947 Snyder considered the Lorentz symmetry in
discrete space-time to avoid UV divergence [14]. For this
purpose, he assumed that the space-time coordinates are
noncommutative operators which led to a Lorentz-
invariant discrete space-time. CCZ by contracting the pro-
posed algebra found the following algebra:

 �x̂�; x̂�� � i�̂��; ��̂��; x̂�� � 0; ��̂��; �̂��� � 0;

(3)

which is similar to the canonical noncommutative algebra
but �̂�� is an antisymmetric operator that is not constant
but transforms as a Lorentz tensor. The action for Lorentz-
conserving field theories on noncommutative spaces are
then obtained using the Weyl-Moyal correspondence. In
fact, in order to find the noncommutative action, the usual
product of fields should be replaced by the star product:

 f � g�x; �� � f�x; �� exp�i=2@
 

��
�� ~@��g�x; ��: (4)

It should be noted that here the mapping to c-number
coordinates involves ��� as a c-number due to the presence
of the operator �̂�� in the Lorentz-conserving case. In this
formulation, the operator trace that is a map from operator
space to numbers is defined as

 Tr f̂ �
Z
d4xd6�W���f�x; ��; (5)

whereW��� is a Lorentz-invariant weight function with the
normalization

R
d6�W��� � 1 and is assumed to be a

positive and even function of ���. Therefore,

 

Z
d6�W������ � 0: (6)

Also for every even Lorentz-invariant weighting function
W��� one has

 

Z
d6�W��������� �

h�2i

12
�g��g�� � g��g���; (7)

where

 h�2i �
Z
d6�W���������: (8)

Furthermore, the weight function is assumed to fall suffi-
ciently fast so that all integrals are well defined. In fact
W��� suppresses the cross section for center-of-mass en-
ergy beyond the value of noncommutative scale; therefore,
working with truncated power series expansion of func-
tions in ��� is permitted. Now the properties of W��� and

the definition of the operator trace allows one to obtain the
Lagrangian for the Lorentz-conserving noncommutative
field theory

 L �x� �
Z
d6�W���L��; @���; (9)

in which L��; @��� depends on both x and ���, and its
subscript indicates the � product defined in Eq. (4).

III. ���-EXPANDED FIELDS UP TO THE SECOND
ORDER

A non-Abelian gauge theory, based on a Lie group, for
example SU�n�, in the noncommutative space cannot be
constructed in the same way as the commutative one. In
fact the main difference is that for every two gauge pa-
rameters, � and �0, one has

 �� ?; �0� � 1
2�T

a; Tb�f�1;a�x� ?; �2;b�x�g 

1
2fT

a; Tbg

� ��1;a�x� ?; �2;b�x��; (10)

where � � �a�x�Ta. Obviously, the anticommutators of
Ta’s do not close the Lie algebra of a non-Abelian gauge
theory except for U�N�, and they reproduce all the higher
powers of the generators. Meanwhile, the enveloping alge-
bra consists of all ordered tensor powers of the generators
Ta and seems to be a proper choice for such a gauge theory
[5,6]. However, the enveloping algebra is infinite dimen-
sional and as a consequence the enveloping algebra-valued
noncommutative gauge parameter and fields would have an
infinite number of degrees of freedom which can be con-
sidered as follows:

 �̂ � � �
 @�1
� 
 @

2�2
� 
 . . . ; (11)

 �̂ � �0 
 @�1 
 @
2�2 
 . . . ; (12)

 Â � � A0
� 
 @A1

� 
 @
2A2

� 
 . . . ; (13)

 �̂ � �0 
 @�1 
 @
2�2 
 . . . ; (14)

where � is the ordinary gauge parameter and �0, A0
�, and

�0 are, respectively, the commutative fermion fields,
gauge fields and Higgs fields, and the superscript i stands
for their order in the expansion. The infinite number of
degrees of freedom can be restricted demanding that the
enveloping algebra-valued quantities (such as gauge and
matter fields and so on) depend on the algebra-valued ones
and their space-time derivatives only. This requirement,
based on existence of the Seiberg-Witten map to all orders,
reduces the number of degrees of freedom of the NC gauge
theory to the same one of the gauge theory of the commu-
tative space. In fact, Seiberg and Witten have shown that
there is an equivalence between ordinary and noncommu-
tative gauge fields to any finite order in ��� which is
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realized by a map in a way that preserves the gauge
equivalence relation. In other words if Â� and Â0� are
equivalent gauge fields in noncommutative space-time,
the corresponding ordinary gauge fields A� and A0� should
be equivalent too. This means

 	Â� � 	̂Â�; 	�̂ � 	̂ �̂ : (15)

In the ordinary space the commutator of two infinitesimal
gauge transformations are closed. Therefore, it is necessary
to consider the following consistency condition for the
noncommutative gauge parameter:

 i	��̂� � i	��̂� 
 ��̂�
?; �̂�� � i�̂�i��;��: (16)

By substituting the expansion of �̂� from (11) in (16), one
up to the first order of ��� finds
 

i�	��1
� � 	��1

�� 
 ��;�
1
�� 
 ��

1
�; �� � i�

1
�i��;��

�
i
2
���f@��; @��g; (17)

and after a little algebra up to the second order of ��� one
has
 

i�	��2
� � 	��2

�� 
 ��;�2
�� 
 ��

2
�; �� � i�2

�i��;��

�
1

8
�������@�@��; @�@��� � ��1

�;�
1
��

�
i
2
����f@��1

�; @��g � f@��1
�; @��g�; (18)

which in terms of �1
� and �2

� are inhomogeneous linear
equations with the following solutions, respectively [5,6]:

 �1
� � �

1
4�
��fA0

�; @��g; (19)

and
 

�2
� �

1

32
�������fA0

�; f@�A
0
�; @��gg 
 fA

0
�; fA

0
�; @�@��gg


 ffA0
�; @�A

0
�g; @��g � ffF

0
��; A

0
�g; @��g

� 2i�@�A0
�; @�@����: (20)

In the second step the noncommutative field �̂ can be
determined by replacing the expansion of �̂� and �̂ which
is given, respectively, in (11) and (12) in the gauge trans-
formation 	�̂ � i�̂� � �̂ [5,6]. It can be easily shown that
up to the first order of ��� one has

 	��1 � i��1 � i�1
��0 � 1

2�
��@��@��0; (21)

and up to the second order of ���, it results in
 

	��2 � i��2 � i�2
��0 
 i�1

��1 �
1

2
���@��1

�@��0

�
1

2
���@��@��1

�
i
8
������@�@��@�@��0: (22)

The first equation can be solved by

 �1 � �
1

2
���A0

�@��0 

i
4
���A0

�A0
��0; (23)

and the solution of the second equation can be obtained as
follows:

 

�2 � �
i
8
�������@�A0

�@�@��0 
 iA0
�A0

�@�@��0 � i@�A0
�A0

�@��0 
 iF0
��A0

�@��0 � iA0
�@�A0

�@��0 
 2iA0
�F0

��@��0


 2A0
�A

0
�A

0
�@��0 � A0

�A
0
�A

0
�@��0 �

i
4
�2@�A

0
�@�A

0
��0 � 2i@�A

0
�A

0
�A

0
��0 
 2iA0

�A
0
�@�A

0
��0


 i��@�A0
�; A0

��; A0
���

0 
 4iA0
�F0

��A0
��0 � A0

�A0
�A

0
�A0

��0 
 2A0
�A0

�A0
�A0

��0��: (24)

The enveloping algebra gauge potential can be found by
inserting Â and �̂� from (11) and (13), respectively, in the
transformation 	Â� � @��̂� � i�Â� ?; �̂��, and retaining
the coefficients up to the first order of ��� leads to

 	�A1

 � i��;A1


� � @
�1
� � i�A0


;�1
��


 1
2�
��f@�A

0

; @��g; (25)

which has the solution

 A1

 � �

1
4�
���fA0

�; @�A
0

g � fF

0
�
; A

0
�g�: (26)

For the next order of ���, after some manipulation one has

 

	�A
2

 � i��;A

2

� � @
�2

� � i�A
0

;�

2
�� � i�A

1

;�

1
��



1

2
���f@�A1


; @��g



1

2
���f@�A0


; @��1
�g



i
8
�������@�@�A0


; @�@���; (27)

with the solution given in the following equation. There are
differences in signs of some terms of given equation in
comparison with the corresponding one given in Ref. [6].
The misprinting in the signs can be verified easily by
considering the reduction of the equation to the Abelian
case
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A2

 �

1
32�

������ffA0
�; @�A

0
�g; @�A

0

g � ffF

0
��; A

0
�g; @�A

0

g

� 2i�@�A0
�; @�@�A0


� � fA0
�; f@�F0

�
; A0
�gg

� fA0
�; fF0

�
; @�A0
�gg 
 fA

0
�; f@�A0

�; @�A0

gg


 fA0
�; fA0

�; @�@�A0

gg � ffA0

�; @�F0
�
g; A0

�g


 ffD0
�F0

�
; A
0
�g; A

0
�g 
 2ffF0

��; F
0

�g; A

0
�g


 2i�@�F0
�
; @�A0

�� � fF0
�
; fA0

�; @�A0
�gg


 fF0
�
; fF0

��; A
0
�gg�; (28)

where F0
�� � @�A

0
� � @�A

0
� � i�A

0
�; A

0
�� is the Lie algebra

field strength. Finally, to construct LCNCSM we need to
determine the hybrid Seiberg-Witten map for Higgs fields.
The gauge transformation for Higgs field which transforms
on the left and on the right under two arbitrary gauge
groups with corresponding gauge potentials is

 	�̂ � i�̂� � �̂� i�̂ � �̂0�; (29)

in which �̂, �̂�, and �̂0� are defined by the Eqs. (11) and
(14). Therefore, the noncommutative Higgs transformation
at the first order of ��� reduces to

 

	�1 � i��1 
 i�1� � �1
2�
��@��0@��0


 1
2�
��@��0@��


 i�1
��0 � i�0�10

� ; (30)

with the solution

 �1 �
1

2
���A0

�

�
@��0 �

i
2
�A0

��0 ��0A00
��

�



1

2
���

�
@��0 �

i
2
�A0

��0 ��0A00
��

�
A00
� ; (31)

and at the next order leads to

 

	�2 � i��2 
 i�2� �
i
8
������@�@��0@�@���

i
8
������@�@��@�@��0 �

1

2
���@��1

�@��0 �
1

2
���@��@��1



1

2
���@��0@��10

� 

1

2
���@��1@��
 i�

1
��1 
 i�2

��0 � i�0�20
� ��1�10

� ; (32)

which can be solved up to this order as

 �2 � �2
1 
�2

2 
�2
3; (33)

where �2
1 � �2 and is given in Eq. (24),

 

�2
2 � ������

�
�

3

32
�0A00

�A
00
�A

00
�A

00
� 


1

8
�0A00

�A
00
�A

00
�A

00
� �

1

16
�0A00

�A
00
�A

00
�A

00
� �

5i
32

�0A00
�@�A

00
�A

00
�

�
i

32
�0@�A00

�A
00
�A00

� �
i
8
@��0A00

�A
00
�A00

� �
i

16
�0A00

�A
00
�@�A00

� �
i

16
�0@�A00

�A
00
�A00

�



i
8
@��0A00

�A
00
�A

00
� 


i
32

�0A00
�A

00
�@�A

00
� �

3i
32

�0A00
�@�A

00
�A

00
� �

i
8
@��0A00

�A
00
�A

00
�

�
1

16
�0@�A00

�@�A
00
� �

1

8
@��0@�A00

�A
00
� 


1

8
@�@��0A00

�A
00
� 


1

4
@��0@�A00

�A
00
�



1

8
@��0A00

�@
0
�A00

� �
i
8
@�@��0@�A00

�

�
; (34)

and �2
3 is

 �2
3 � ������

�
�
i
4
A0

�@�A
0
��0A00

� 

i
8
A0

�A
0
�@��0A00

� �
i
8
A0

�A
0
��0@�A

00
� �

i
4
A0

��0@�A
00
�A

00
�



i
8
A0

�@��0A00
�A00

� �
i
8
@�A0

��0A00
�A00

� 

1

8
A0

�A0
�A0

��0A00
� �

1

8
A0

��0A00
�A00

�A00
�



1

4
@�A0

��0@�A00
� 


1

4
A0

�@�@��0A00
� 


1

8
@�A0

��0@�A00
� �

1

8
A0

�A0
��0A00

�A00
�

�
1

16
A0

�A0
��0A00

�A00
� 


i
8
F0

��A0
��0A00

� 

i
8
A0

��0A00
�F00

�� �
i
4
A0

�@��0A00
�A

00
�



1

8
A0

�@��0F00
�� 


i
4
A0

�A0
�@��0A00

� 

1

8
F0

��@��0A00
�

�
:

(35)
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It should be noted that the Seiberg-Witten maps cannot be
obtained uniquely. Indeed the maps for each noncommu-
tative fields are arbitrary up to a solution of the correspond-
ing homogeneous equations with undetermined
coefficient. However, the physical results do not depend
on this freedom, therefore, those terms which are solutions
of the homogeneous equation are physically irrelevant [6].

IV. CONSTRUCTING LCNCSM ACTION

Lorentz-conserving noncommutative standard model
can be constructed in three steps:

(i) Replacing the ordinary products with the star
products.

(ii) Substituting the noncommutative fields for each cor-
responding commutative one.

(iii) Performing the trace with respect to the noncommu-
tative tensor with even weight function to make the
theory Lorentz invariant.

As was mentioned in the previous section, the noncommu-
tative fields cannot be uniquely determined by the Seiberg-
Witten map i.e. there is freedom in construction of the
noncommutative gauge parameter and fields by the
Seiberg-Witten map. Therefore, the fields can be appropri-
ately redefined to neglect physically irrelevant terms in the
action. In this paper we extend the electroweak sector of
the standard model to the noncommutative space. One can
easily follow the three steps prescription to derive the
action of the LCNCSM for this sector. To this end we
separate the action into four parts as

 SLCNCSM � Sfermion 
 Sgauge 
 SHiggs 
 Syukawa; (36)

in which each term will be explained in the following.
(i) Sfermion: This part describes the fermion interaction

in the electroweak sector of the LCNCSM and can be
written easily as

 Sfermion �
Z
d6�

Z
d4xW���� �̂L � iD̂6 L̂
 �̂R � iD̂6 R̂�;

(37)

with L̂ � L̂l or L̂Q where

 L̂ l �
�̂L�l

�̂Ll

 !
; L̂Q �

�̂Lu

�̂Ld

 !
; (38)

and

 R̂ � �̂Rl ; �̂Ru ; �̂Rd ; (39)

in which subscripts u and d, respectively, refer to up-
type and down-type quarks for all generations and
the subscripts l and Q stand for the leptons and
quarks, respectively. The covariant derivative D̂�

in terms of the gauge fields W�, B�, and G� is
defined as

 D̂ �L̂ �
�
@� � igT

aŴa
� � ig

0 Y
2
B̂�

� igsTas Ĝ
a
�

�
L̂; (40)

and

 D̂ �R̂ �
�
@� � ig

0 Y
2
B̂� � igsT

a
s Ĝ

a
�

�
R̂; (41)

where Tas , Ta, and Y
2 are the generators of the gauge

groups SU�3�C, SU�2�L, and U�1�Y , respectively. The
gauge eigenstate weak bosons are related to the mass
eigenstates (i.e. the electroweak gauge bosons
�W	; Z� and the photon �A�) by

 W	� �
W1
� �W

2
����

2
p ; (42)

 Z� �
�g0B� 
 gW

3
�������������������

g2 
 g02
p � � sin�WB� 
 cos�WW3

�;

(43)

 A� �
gB� 
 g

0W3
�������������������

g2 
 g02
p � cos�WB� 
 sin�WW

3
�;

(44)

where the electric charge is e � g sin�w � g0 cos�w.
It should be noted that the covariant derivative acts
on the fermion or Higgs fields according to their
representations given in Table I. Furthermore, the
fields with a hat are the noncommutative fields and
should be replaced by the appropriate expressions in
terms of the ordinary fields which are obtained up to
the second order of ��� by using the Seiberg-Witten
maps in Eqs. (23) and (24), Eqs. (26), (28), and (31)–
(33) for the fermion field, gauge boson, and Higss
fields, respectively. One also can see that the com-
mutative gauge potential A0

� appears in the expan-
sion of all quantities of noncommutative gauge
theory; therefore, for the matter fields we have to
use the appropriate vector fields corresponding to

TABLE I. Matter and Higgs fields content of the standard
model and their representations.

SU�3�c SU�2�L U�1�Y

eR 1 1 �2

Ll �
�L
eL

� �
1 2 �1

uR 3 1 4
3

dR 3 1 �2
3

Lq �
uL
dL

� �
3 2 1

3

� �
�


�0

� �
1 2 1
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their representations. Namely,

 L̂ l�L0
l ; A

0
�� � L̂l

�
L0
l ; gT

aWa
� 
 g0

Y
2
B�

�
; (45)

 L̂ Q�L
0
Q; A

0
�� � L̂Q

�
L0
Q; gsT

a
s Ga

� 
 gTaWa
�


 g0
Y
2
B�

�
; (46)

 �̂ Rl��Rl ; A
0
�� � �̂Rl

�
�Rl ; g

0 Y
2
B�

�
; (47)

 �̂ RQ��RQ; A
0
�� � �̂RQ

�
�RQ; gsT

a
s Ga

� 
 g0
Y
2
B�

�
;

(48)

where A0
� for the left handed sector is

 A0
� �

1
2g
0YB� 
 gTaWa

� 
 gsTas Ga; (49)

and for the right handed sector is

 A0
� �

1
2g
0YB� 
 gsTas Ga: (50)

Now inserting the appropriate expansion of the non-
commutative fields in terms of the ordinary fields in
(37) leads to the following equation for Sfermion at the
leading order of ��� as

 

Sfermion �
Z
d4x� �Li 6DL
 �Ri 6DR� 


Z
d6�

Z
d4x������W���

�
�
i
8

�L��F0
��F

0
��D

0
�L�

i
4

�L��F0
��F0

��D
0
�L

�
1

8
�L���D0

�F
0
���D

0
�D

0
�L�

i
8

�L��F0
��F

0
��D

0
�L
�


Z
d6�

Z
d4x������W���

�

�
�
i
8

�R��F0
��F0

��D
0
�R�

i
4

�R��F0
��F0

��D
0
�R�

1

8
�R���D0

�F0
���D

0
�D

0
�R�

i
8

�R��F0
��F0

��D
0
�R
�
:

(51)

In obtaining (51) the irrelevant terms are ignored by
redefinition of the fields via the freedom in determin-
ing of the Seiberg-Witten maps. Equation (51) shows
that besides the usual standard model and the NCSM
interactions, there are new couplings between the
fermions and the electroweak gauge bosons such as
ff���, ff��Z, ff�ZZ, ffZZZ, and so on. The
vertex ff��� is one of the vertices of LCNCQED
[7,8]. In the noncommutative space, a neutral parti-
cle can interact with photon in the adjoint represen-
tation [3,15]. These interactions are proportional to
the odd power of ���; therefore, they are absent in
the Lorentz-invariant noncommutative field theory,
see the action (51). Nevertheless, in contrast to the
minimal NCSM there is no photon-neutrino cou-
pling in the LCNCSM [3].

(ii) Sgauge: This term contains the kinetic terms for the
gauge bosons of the standard model. The general
form of the gauge invariant action for the gauge
sector of the LCNCSM can be written as follows:

 Sgauge � �
1

2

Z
d6�

Z
d4xW���Tr

�
1

G2 F̂
�� � F̂��

�
;

(52)

where Tr is trace over all representations. G is an
operator which determines the coupling constants of
the theory and commutes with all generators of
SU�2� and SU�3� and is defined as [16]

 

1

g2
I
� Tr

�
1

G2 T
a
I T

a
I

�
; (53)

where gI and TaI are the ordinary coupling constants
and generators of the gauge group, respectively.
Since the gauge group is extended to incorporate
the noncommutative corrections, according to the
Seiberg-Witten map and using the enveloping alge-
bra [5], one encounters all ordered tensor powers of
the generators Ta in the trace in (52). Therefore, the
trace in the kinetic terms for gauge bosons in con-
trast to the ordinary case is not unique and depends
on a choice of the representation of the gauge group
[16–18]. The minimal choice can be the simplest
choice in which Tr is a sum of three traces over the
U�1�, SU�2�, and SU�3� sectors with the fundamental
representations for SU�2� and SU�3� generators in
the corresponding traces and [16]

 Y �
1 0
0 �1

� �
: (54)

However, the freedom in the choice of the traces can
be used to construct new versions of the LCNCSM.
Since the fermion-gauge boson interactions remain
the same regardless of the choice of traces in the
gauge sector, the matter sector of the action is the
same for all versions of the LCNCSM. Nevertheless,
in the nonminimal versions of the theory, new pa-
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rameters appear which cannot be uniquely obtained in the theory [16,18]. The general form of Sgauge in terms of SM
fields can be obtained by inserting the expansion of the field strength F̂�� � @�Â� � @�Â� � i�Â�; Â�� in terms of
the commutative one in (52) as follows:

 Sgauge � �
1

2

Z
d6�

Z
d4xW���Tr

�
1

G2

�
�

1

2
F0
��F0�� 
 ������

�
1

8
F0
��F

0
��F

0
�
F0�
 �

i
4
F0
���D

0
�F0

�
��D
0
�F

0�
�

�
1

8
�D0

�D
0
�F0

�
��D
0
�D

0
�F

0�
� 

i
2
�D0

�F0
����D

0
�F

0

��F

0�
 

1

2
F0
��F0

�
F
0�
� F0


� 

1

2
F0
��F0

�
F0

� F

0�
�

�
1

2
F0
��F0

��F0
�
F

0�
 �
1

2
F0
��F0

�
F
0
��F0�
 


1

2
�F0

��F0
��F0

�
 
 2F0
��F0

��F0
�
 
 F

0
�
F

0
��F0

���F0�

���

;

(55)

where F0
�� � @�A

0
� � @�A

0
� � i�A

0
�; A

0
�� is the field strength in the usual space and

 A� �
1
2g
0YB� 
 gT

aWa
� 
 gsT

a
s G

a
s�: (56)

In Eq. (55) there are new vertices in all versions of LCNCSM in comparison with the commutative standard model.
Meanwhile, in contrast to the minimal noncommutative standard model, new interactions appear in the electroweak
part of the LCNCSM at the leading order of ���. However, inserting the electroweak part of (56) in (55) and
performing the trace operation in the minimal case leads to the electroweak sector of the minimal version of Sgauge:

 

SmLCNCSM
gauge ��

1

2

Z
d6�

Z
d4xW���

�
1

2
B��B

��
Wa
��W

a��
������
�
g02
�

1

64
B��B��B�
�

1

8
B��B��B�




1

4
B��B��B�


�
B�



g2

4

�
1

8
�Wa

��W
a
����W

b
�
W

b�
�
�Wa
��W

a�
� ��W

b
�
W

b

� �


�Wa
��W

a

� ��W

b
�
W

b�
� ���Wa

��W
a�
��Wb

��W
b
�
�
2�Wa

��W
a
����W

b
�
W

b�
�

�


g0g
�

1

32
�B��B����Wa

�
Wa�
�

1

32
�B�
B�
��Wa

��Wa
���


1

8
�B��B�
��Wa

��W
a�
�

�
1

2
�B��B����Wa

�
W
a�
��

1

2
�B�
B�
��Wa

��Wa
����

1

4
�B��B�
��Wa

��Wa
�
��

1

4
�B��B�
��Wa

��Wa�
�



1

2
�B��B�
��Wa

��Wa
�
�


1

2
�B��B�
��Wa

��Wa�
�
�B��B����Wa
�
W

a�
�
�B�
B�
��Wa
��Wa

���

�

�
g3

8
abcWa

�@�W
b�
@�@�W

c
�
�

g4

16
abcdceWa

�W
b�
Wd

�@�@�W
e
�
�

g4

16
abcdec@��W

a
�W

b�
�Wd
�@�W

e
�


�
g4

16
abcdecWa

�@�W
b�
@�W

d
�W

e
�
�

g4

16
abcdecWa

�@�W
b�
Wd

�@�W
e
�


�
g4

16
abcdecWa

�W
b�
Wd

�@�u@�W
e
�
�

g5

16
abcdcefgeWa

�W
b�
Wd

�W
f
�@�W

g
�


�
g5

16
abcdcefgeWa

�W
b�
Wd

�@��W
f
�W

g
�
��

g5

16
abcdcefgeWa

�Wb�
Wd
�@��W

f
�W

g
�
�

�
g5

16
abcdcefgeWa

�Wb�
Wd
�W

f
�@�W

g
�
�

g6

16
abcdcefghiheWa

�Wb�
Wd
�W

f
�W

g
�
Wi

�

��
; (57)

where for the hypercharge, B�� is defined as

 B�� � @�B� � @�B�; (58)

and for SU(2) gauge fields we define

 Wa
�� � @�Wa

� � @�Wa
� 
 gabcWb

�Wc
�: (59)

As (57) shows in the minimal version of LCNCSM

(mLCNCSM) at the lowest order there are vertices
such as ����, ���Z, ��ZZ, �ZZZ, ZZZZ, and so
on.

(iii) SHiggs: This part of the action is responsible for
breaking of the SU�2�L � U�1�Y gauge symmetry
of the standard model via the Higgs mechanism
which in turn generates masses for the gauge bosons.
The Higgs action in the Lorentz-invariant noncom-
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mutative space can be written as
 

SHiggs �
Z
d6�

Z
d4xW�����D̂��̂�y � �D̂��̂�

��2�̂y � �̂� ���̂y � �̂�2�; (60)

where the noncommutative Higgs field is given by
the hybrid Seiberg-Witten map which is obtained
already up to the second order of ��� in the previous
section. In the leading order of the expansion in ���,
one explicitly obtains

 

SHiggs �
Z
d6�

Z
d4xW�����D0

��0�y�D0��0� ��2�0y�0 � ���0y�0�2


 ��������D0
��0�y�D0

��2
����� 
 �D

0
��2

�����
y�D0

��0� 
 �D0
��1

���
y�D0

��1
���

� i�D0
��0�yA2�

�����0 
 i��0�yA2�
�����D

0
��0� � i�D0

��0�yA1�
���1

��


 i��1
���
yA1�

���D
0
��0� 
 i�0yA1�

���D
0
��1

��� � i�D
0
��1

���
yA1�

���0 
�0yA1�
��A

1
����0��: (61)

Here D� can be appropriately defined very similarly to (40) and (41) according to the representations given in
Table I. The functions �1

��, �2
����, A1

���, and A2
����� can be obtained easily by comparing (26), (28), (31), and (33),

respectively, with

 

�1��0;A0
�;A

00
����

���1
��

�
�0;

g0

2
YB�
gT

aWa
�;0

�
; �2��0;A0

�;A
00
����

������2
����

�
�0;

g0

2
YB�
gT

aWa
�;0

�
;

A1
��A0

������A1
���

�
g0

2
YB�
gTaWa

�

�
; A2

��A0
���������A2

�����

�
g0

2
YB�
gTaWa

�

�
: (62)

The ���-independent part of (61) is the same as the
usual action for the Higgs part of the standard model.
Meanwhile, the remaining part of the action contains
the derivative of the Higgs field (which does not have
contribution to the minimum value of the potential)
and terms containing the gauge and Higgs fields
both. The latter terms are also vanished by fixing
the vacuum expectation value. Therefore, the spon-
taneous symmetry breaking occurs according to the
commutative standard model but in contrast to the
standard model, numerous new couplings between
the Higgs and the electroweak gauge bosons appear
in this theory. One can see easily from (61) that
among these new interactions there are couplings
solely between the gauge fields with the coupling
strength proportional to �h�i0�2.

(iv) Syukawa: This part describes the Yukawa interactions

between fermions and Higgs field which lead to the
mass generation for fermions after the symmetry
breaking. The Yukawa action of LCNCSM can be
written as
 

Syukawa � �
Z
d6�

Z
d4xW����Gij

�̂L
i
� �̂ � R̂j


Gij
�̂Ri � �̂y � L̂j�; (63)

where i and j refer to the different generations. Once
again the noncommutative fields have to be ex-
panded in terms of the corresponding ordinary fields
up to the second order of ���, but one should note
that �̂ has to be written appropriately with respect to
the representation of its left and right fields accord-
ing to Table I. After some algebra, the general form
for the Yukawa action, up to the leading order, is

 

Syukawa � �
Z
d6�

Z
d4xW���Gij

�
�Li�Rj 
 ������

�
�Li�1

��R
1j
�� 


�L1i
���1

��R
j 
 �L1i

���R1j
��


 �L2i
�����Rj 
 �Li�R2j

���� 

�Li�2

����R
j 


i
2

�L1i
��@��@�Rj 


i
2

�Li@��1
��@�R

j



i
2

�Li@��@�R
1j
�� �

1

8
�Li@�@��@�@�R

j
��

 C:C:; (64)

where L, R, and � are ordinary fields and for leptons we define
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 R1�R0; A0
�� � ���R1

��

�
R0;

g0

2
YB�

�
; R2�R0; A0

�� � ������R2
����

�
R0;

g0

2
YB�

�
;

L1�Lo; A0
�� � ���L1

��

�
L0;

g0

2
YB� 
 gTaWa

�

�
; L2�Lo; A0

�� � ������L2
����

�
L0;

g0

2
YB� 
 gTaWa

�

�
;

�1��0; A0
�; A

00
�� � ����1

��

�
�0;

1

2
g0YB� 
 gT

aWa
�;

1

2
g0YB�

�
;

�2��0; A0
�; A

00
�� � �������2

����

�
�0;

1

2
g0YB� 
 gT

aWa
�;

1

2
g0YB�

�
;

(65)

while for quarks gsTas Ga
s should be added to gauge fields to define

 R1�R0; A0
�� � ���R1

��

�
R0;

g0

2
YB� 
 gsT

a
s G

a
�

�
; R2�R0; A0

�� � ������R2
����

�
R0;

g0

2
YB� 
 gsT

a
s G

a
�

�
;

L1�Lo; A0
�� � ���L1

��

�
L0;

g0

2
YB� 
 gT

aWa
� 
 gsT

a
s G

a
�

�
;

L2�Lo; A0
�� � ������L2

����

�
L0;

g0

2
YB� 
 gTaWa

� 
 gsTas Ga
�

�
;

�1��0; A0
�; A

00
�� � ����1

��

�
�0;

1

2
g0YB� 
 gT

aWa
� 
 gsT

a
s G

a;
1

2
g0YB� 
 gsT

a
s G

a
�
;

�2��0; A0
�; A

00
�� � �������2

����

�
�0;

1

2
g0YB� 
 gT

aWa
� 
 gsT

a
s G

a;
1

2
g0YB� 
 gsT

a
s G

a
�
:

(66)

L and R in the left-hand sides of (65) and (66) are
defined in (38) and (39) and can be used to obtain
L1
��, R1

�� and so on by expanding the left-hand side
of the equations up to the desired order of ��� and
comparing the result with the right- hand sides of
(65) and (66). One can see that (64) reproduces its
counterpart in the standard model and many new
couplings between the standard model fields.
Finally, we note that in the LCNCSM, as in the
standard model, a Cabibbo-Kobayashi-Maskawa
matrix in the charged currents can be obtained by
diagonalizing the Yukawa coupling matrices using
biunitary transformations.

V. THE PHENOMENOLOGICAL TEST OF
LCNCSM

In constructing LCNCSM one finds besides the usual
standard model many new couplings between the ordinary
fields of the standard model. For instance, here one has four
gauge boson couplings such as 4-�, 4-Z, . . .; fermion-
gauge boson couplings such as ff��, ff���, . . . and so
on. Furthermore, each usual vertex in the standard model
receives corrections from the LCNCSM. Therefore, there
are many measurable quantities in the LCNCSM which can
show, if they exist, the effects of noncommutative space in
future experiments. To this end we consider the neutral
current interaction with Z0 for leptons which can read from
(51) as

 Z
d6�

Z
d4xW���

g
2 cos�

�
��LZ6 0�L�

1

8
������ ��L

� ��@�Z0��@�@��L

�
2sin2��

1

2

�
�eZ6 0e

�
1

8
������

�
2sin2��

1

2

�
�e��@�Z0��@�@�e




�
2sin2��

1

2

�
�eZ6 0�5e�

1

8
������

�
2sin2��

1

2

�

� �e���5@�Z0��@�@�e
�
; (67)

where Z0�� � @�Z0� � @�Z0�. This action leads to the
following Feynman rule for eeZ-vertex, Fig. 1:

FIG. 1. Zee vertex. The bold and wavy lines show the electron
and Z gauge boson, respectively. In the LCNCSM, the vertex is
corrected with respect to the standard model as �NC� � ���1

h�2i
96 �

k4

4 �m
2
fk

2��, see (68).
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ig
sin�2�W�

����2Qfsin2�W 
 T3�1� �5��

�

�
1

h�2i

96

�
k4

4
�m2

fk
2

��
: (68)

Thus the vector coupling constant CV and the scalar oneCA
are corrected by the new term proportional to Q4. On the
other hand, according to the implemented experiments,
such dependency was not confirmed. The noncommutative
correction of the coupling constants cannot absorb through
their redefinitions; therefore, this correction must be
smaller than the resolution of the experiments.
Comparing with [19], we find the noncommutative scale

�C �
������
12
h�2i

q
must be larger than 112 GeV. To find a better

bound on the noncommutative scale, we should use linear
colliders with a center-of-mass energy around a few TeV’s.
The QED sector of the LCNCSM has been investigated by
the authors of [8] which leads to �C � 300 GeV and by the
authors of [9] which leads to �C � 160 GeV.

VI. CONCLUSIONS

In this paper we have constructed the Lorentz-
conserving version of the noncommutative standard model.
For this purpose the ��� expansion of the standard model
fields, up to the second order of ��� is obtained as given in
(24), (28), and (33). The Seiberg-Witten map for the Higgs
field, up to the second order of ���, is calculated for the
first time, see (33). While (24) and (28) have been calcu-
lated already but there are differences in signs of (28) in
comparison with the corresponding equation given in
Ref. [6]. The misprinting can be understood easily by
considering the reduction of the equation to the Abelian

case, though to find its correct form we have recalculated
the equation. Consequently, the action of the LCNCSM is
introduced in terms of four terms, see (36). It is shown that
in all versions of the LCNCSM new vertices appear in
comparison with the ordinary standard model. In the mini-
mal version of LCNCSM there are also new point inter-
actions in contrast to the minimal NCSM. For instance, in
the minimal LCNCSM besides the usual standard model
and the NCSM interactions, there are new couplings be-
tween the fermions and the electroweak gauge bosons such
as ff���, ff��Z, ff�ZZ, and ffZZZ and so on. The
vertex ff��� is one of the vertices of LCNCQED [7,8].
Nevertheless in contrast to the minimal NCSM there is not
any photon-neutrino coupling in the LCNCSM [3]. Indeed
such interactions are proportional to the odd power of ���
which are absent in the Lorentz-invariant noncommutative
field theory, see the action (51). Furthermore, it is shown
that in the mLCNCSM at the lowest order there are vertices
such as ����, ���Z, ��ZZ, �ZZZ, ZZZZ, and so on, see
(57).

In constructing the LCNCSM besides many new cou-
plings between the ordinary fields of the standard model,
each usual vertex in the standard model receives correc-
tions from the LCNCSM. Therefore, there are many mea-
surable quantities in the LCNCSM which can show the
effects of noncommutative space in future experiments.
However, among the measurable quantities, the coupling
constant CV and CA can be corrected by considering the
eeZ vertex which leads to the value �C � 112 GeV for the
noncommutative scale.
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