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The conserved charges for p-form gauge fields coupled to gravity are defined using Lagrangian
methods. Our expression for the surface charges is compared with an earlier expression derived using
covariant phase space methods. Additional properties of the surfaces charges are discussed. The proof of
the first law for gauge fields that are regular when pulled back on the future horizon is detailed and is
shown to be valid on the bifurcation surface as well. The formalism is applied to black rings with dipole
charges and is also used to provide a definition of energy in plane wave backgrounds.
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Remarkably, the first law of black hole mechanics has
been demonstrated for arbitrary perturbations around a
stationary black hole with bifurcation Killing horizon in
any diffeomorphism invariant theory of gravity [1]. Also,
this law has been shown to hold when gravity is coupled to
Maxwell or Yang-Mills fields as a consequence of conser-
vation laws and of geometric properties of the horizon
[2,3].

Recently, black rings with gauge charge along the ring,
the so-called dipole charge, have been found in five-
dimensional supergravity [4]. As is shown in [5], the black
ring solutions with dipole charge have a potential which
diverges at the bifurcation surface. This implies that the
computations of [1,2] are not directly applicable to that
case.

Hamiltonian methods were applied to gravity coupled to
a p form and a scalar field in order to explain the occur-
rence of dipole charges in the first law [5]. Quasilocal
formalism [6] as well as covariant phase space methods
[7,8] have also been developed. The first aim of this paper
is to improve the covariant analysis [7,8] by deriving an
expression for the conserved charges taking better care of
the form factors. Following the Lagrangian methods based
on cohomological results [9,10], our expression for the
surface charges will moreover get round the usual ambi-
guities of covariant phase methods. Several properties of
these surface charges will be discussed.

It was observed in [3,8] that a consistent thermodynam-
ics can be done on the future event horizon with gauge
potentials that may be irregular on the bifurcation surface
if, nevertheless, the potential is regular when pulled back
on the future horizon. We will extend the analysis of [7,8]
by detailing how this regularity hypothesis allows for
proving the first law in that context. We point out that the
proof of the first law is valid on the bifurcation surface as
well. We will then show that the potential for the black
rings [4] admits a regular pullback on the future event
horizon and can thus be treated by this method. Note that
this analysis covers only electric-type charges and not

magnetic charges where the potential is necessarily singu-
lar on the future event horizon.

Conservation laws have been defined in asymptotically
flat and anti-de Sitter backgrounds, see e.g. the seminal
works [11–13]. A natural question, raised in [14–16], is
how mass can be defined in asymptotic plane wave geome-
tries. We show in the last section that the conserved charges
defined in this paper can be used in this context and lead to
the correct first law.

In what follows, we will consider the action
 

S�g;A; �� �
1

16�G

Z �
?1R� ?1
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2
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2
e���H ^ ?H

�
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where � is a dilaton and H � dA is the field strength of a p
form A, p � 1 [17]. The fields of the theory are collec-
tively denoted by�i � �g��;A; ��. We will set 16�G � 1
for convenience.

I. CONSERVATION LAWS

A very convenient mathematical setting to handle with
n� 1 or n� 2-form conservation laws or more generally
�n� q�-form conservation laws (0 	 q < n) is the study
of local cohomology in field theories [18,19], see also [20]
for an introduction. A conservation law consists of the
existence of a �n� q� form k�n�q� which is conserved on
shell dk�n�q� 
 0 and which is nontrivial, i.e. not the
differential of another form on shell, k�n�q� � d���.

In Minkowski spacetime g�� � ���, � � 0 and for a
trivial bundle A, all these lower degree conserved forms
are classified by the characteristic cohomology of p-form
gauge theories [21]. These laws are generated in the ex-
terior product by the forms ?H dual to the field strength
[22]. More precisely, for odd n� p� 1, one can construct
the conserved n� p� 1 form ?H. For even n� p� 1,
factors ?H mutually commute and one may construct the
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conserved forms l�n� p� 1� ?H ^ � � � ^ ?H|������������{z������������}
l

for any

integer l such that l�n� p� 1�< n� 1.
When gravity and the scalar field are present, the charges

 Q �n�p�1� � e��� ?H; n� p� 1 odd (2)

 Q l�n�p�1� � e�l��?H ^ � � � ^ ?H|������������{z������������}
l

; n� p� 1 even

(3)

still enumerate the nontrivial conservation laws [21,23,24].
In order to investigate the first law of thermodynamics,

where variations around a solution are involved, we now
extend the analysis to the linearized theory.

In linearized gravity, only �n� 2�-form conservation
laws are allowed [25]. The classification of nontrivial
conserved �n� 2� forms was described in [9] and is
straightforward to specialize in our case. The equivalence
classes of conserved �n� 2� forms of the linearized theory
for the variables ��i around a fixed reference solution �i

are in correspondence with equivalence classes of gauge
parameters 	��x�, ��x� satisfying the reducibility equa-
tions �	;��i � 0 [26], i.e.

 

8>><
>>:
L	g�� � 0;

L	A� d� � 0;

L	� � 0:

(4)

In this paper, we construct a �n� 2� form k	;� enjoying
the following properties. First, for each generalized Killing
vector �	;�� satisfying the reducibility equations (4), the
surface form k	;� will be closed on shell. As a result, the
infinitesimal charge difference between solutions �i and
�i � ��i associated with any parameter �	;�� satisfying
(4),

 �Q	;��̂
I
S

k	;����;��; (5)

will only depend on the homology class of S. Second, since
the �n� 2� form will be built from the weakly vanishing
Noether current, the usual ambiguities that should be
treated with care in covariant phase space methods [1]
will be avoided here [27]. For additional properties of these
surface charges, as the representation theorem of the Lie
algebra of reducibility parameters, the reader is referred to
the original work [9,10].

II. SURFACE FORMS

Following the lines of [9,10], one can construct the
weakly vanishing Noether currents associated with the
couple �	;�� by integrating by parts the expression
�	;��i �L

��i and using the Noether identities. We obtain

 

S	;� � ?
�
��2G�

� � TA
�
� � T�

�
��	�dx

�

�
1

�p� 1�!
D
�e���H�


�1����p�1
�

 �	�A��1����p�1 ���1����p�1�dx�
�
; (6)

where the stress tensors are given by

 T��A � e���
�

1

p!
H�

�1����pH��1����p
�

1

2�p� 1�!
g��H2

�
;

(7)

 T��� � �@��@��� 1
2g
��@��@���: (8)

The surface form k	;����;�� � k����	;� �d
n�2x��� can be

obtained as a result of a contracting homotopy In�1
�� acting

on the current S	;�, see e.g. [10,18]. Using the following
property of the homotopy operators,

 dIq�1
�� !�q�1��Iq��d!

�q�1� ��!�q�1�; 8!�q�1�; q	n;

(9)

one has

 dk	;� � �S	;� � In�2
��

�
�	;��i �L

��i

�
: (10)

The closure dk	;����;�� 
 0 then holds whenever �i

satisfies the equations of motion, ��i the linearized equa-
tions of motion, and �	;�� the system (4).

Let us now split the current into different contributions,
S	;� � Sg	 � S�	 � SA

	;� with

 S g
	 � ?��2G�

�	�dx��; (11)

 S �
	 � ?�T���	�dx��; (12)

and SA
	;� being the remaining expression. Since the homo-

topy In�1
�� is linear in its argument, the surface form can be

decomposed as k	;� � kg
	 � k�

	 � kA
	;�.

The gravitational contribution kg
	, which depends only

on the metric and its deviations, coincides with the Abbott-
Deser expression [12] and, for Killing vectors, with the
expression derived in the Hamiltonian approach of Regge-
Teitelboim [13]. It can be written as

 k g
	��g; g� � ��Qg

	 �Qg
�	 � i	���g� � EL�L	g; �g�;

(13)

where

 Q g
	 � ?�12�D�	� �D�	��dx

� ^ dx��; (14)

is the Komar n� 2 form and

 � ��g� � ?��D��g�� � g
�
D��g�
�dx

��; (15)
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 E L�L	g; �g� � ?
�
1

2
�g���D�	� �D�	��dx� ^ dx�

�
:

(16)

The supplementary term, EL, with respect to the Iyer-Wald
form [1] vanishes for Killing vectors.

The scalar contribution is easily found to be
k�
	 ��g; ��; g; �� � i	�� [28] with

 � � � ?�d����: (17)

Let us now compute the contribution kA
	;� from the p

form. After some algebra, one can rewrite the current SA
	;�

as

 S A
	;� � �dQA

	;� � e
����L	A� d�� ^ ?H

� 1
2e
���i	�H ^ ?H� (18)

with

 Q A
	;� � e����i	A��� ^ ?H: (19)

Using the property (9), the surface form kA
	;� reduces to

 

kA
	;� � ��QA

	;� �QA
�	;�� � dIn�2

�� QA
	;�

� In�1
�� �e

����L	A� d�� ^ ?H

� 1
2e
���i	�H ^ ?H��; (20)

where the exact term dIn�2
�� QA

	;� is trivial and can be
dropped. The last term can then be computed easily since
it admits only first derivatives of the gauge potential. The
homotopy thus reduces in that case to In�1

�A � 1
2�A @

@H . We
eventually get

 k A
	;���g; �A; ��; g;A; �� � ��QA

	;� �QA
�	;�� � i	�A

� EA
L�L	A� d�; �A�

(21)

with

 � A � e����A ^ ?H; (22)

 

EA
L�L	A�d�;�A� � e��� ?

�
1

2

1

�p� 1�!
�A��1����p�1

�L	A�d��
�1����p�1
� dx�^dx�

�

(23)

which has a very similar structure as the gravitational field
contribution (13). For reducibility parameters (4), the term
involving L	A� d� vanishes. The form (19) will be
referred to as a Komar term, in analogy with the gravita-
tional Komar term (14).

For p � 1 and reducibility parameters, the surface form
(21) reduces to the well-known expression for electromag-
netism, see e.g. [29]. Expression (21) and the one derived

in [7,8] have a similar structure but differ in two respects.
First, our surface form contains the additional term
EA

L�L	A� d�; �A�. Nevertheless, since this term van-
ishes for reducibility parameters, it will not be relevant for
exact conservation laws. Second, the form factors in the
Komar term QA

	;� differ from [7,8]. The results of [7,8]
agree with ours when the right-hand side of Eq. (10) of [7]
and Eq. (4) of [8] are multiplied by � p�1

2 .
Let us assume that (4) holds for a field configuration

�g;A; ��. As a consistency check, note that the surface
form (21) satisfies the equality on shell kA

	;���g �

0; �A � d!�p�1�; �� � 0;g;A; �� 
 d���. The charge
difference (5) between two configurations differing by a
gauge transformation �A � d!p�1, is thus zero on shell.

Besides generalized Killing vectors �	;�� which are
also symmetries of the gauge field and of the scalar �,
there may be charges associated with nontrivial gauge
parameters (	 � 0, � � d���). For p � 1, in electromag-
netism, � � constant � 0 is such a parameter and the
associated charge is the electric charge (2). For p > 1,
nonexact forms � may exist if the topology of the manifold
is nontrivial. The charges with a nontrivial closed form �
which does not vary along solutions is given by

 Q 0;�� �
I
S
e���� ^ ?H �

I
T
e��� ?H; (24)

where S is a n� 2 surface enclosing the nontrivial cycle T
dual to the form �. It is simply the integral of (2) on the
nontrivial cycle. The charges (24) are thus the general-
ization for p forms of electric charges.

The properties of the surface form (21) under trans-
formations of the potential A are worth mentioning. The
transformation A! A� d preserves the reducibility
equations (4) if dL	 � 0. In that case, L	 can be written
as the sum of an exact form and a harmonic form that we
denote as f�; 	��0 with �0 not varying along solutions,
��0 � 0 and f�; 	� constant. In Einstein-Maxwell theory,
one has �0 � 1 and f�; 	� � L	. Under the transforma-
tion A! A� d, the surface form (21) changes accord-
ing to
 

kA
	;� ! kA

	;� � f�; 	����
0 ^ e��� ?H� � d��� � t	;

t	 
 0: (25)

Defining the charge associated to �0 as (24), one sees that
the infinitesimal charge (5) varies on shell as

 �Q	;� ! �Q	;� � f�; 	��Q0;��0 : (26)

As a consequence, a transformation A! A� d admit-
ting a nonvanishing function f�; 	� cannot be considered
as a gauge transformation because such a transformation
does not leave the conserved charges of the solution
invariant.
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III. FIRST LAW

We now assume that �i and �i � ��i are stationary
black hole solutions with Killing horizon. The generator of
the Killing horizon of �i, 	 � @t ��a@’a is a combina-
tion of the Killing vectors @t and @’a , a � 1 . . . b�n�
1�=2c. The variation of energy �E and angular momenta
�J a are defined as the charges associated with the Killing
vectors @t and�@’a , respectively [30]. We remark that this
definition of energy is more natural than the one used in
[7,8], where a factor � � n�3

n�2 was artificially added in
Eq. (16) of [7] and in Eq. (8) of [8].

We assume that 	 is a solution of (4) with � � 0. We
also require that 	� �	 is a symmetry of the perturbed
black hole �i � ��i.

The first law is then a consequence of the equality [31]

 

I
S1

k	;0���;�� �
I
H

k	;0���;��; (27)

where S1 is a �n� 2�-sphere at infinity and H is any cross
section of the Killing horizon.

Using the linearity of k	;0 with respect to 	, the left-
hand side is simply given by �E ��a�J a. Splitting the
right-hand side, we get

 

�E ��a�J a �
I
H

kg
	;0���;�� �

I
H

k�
	;0���;��

�
I
H

kA
	;0���;��: (28)

The geometric properties of the Killing horizon then
allow one to express the pure gravitational contribution
into the form [1,32–34]

 

I
H

kg
	;0���;�� �

�
8�G

�A; (29)

where � is the surface gravity and A the area of the black
hole and where G factors have been restored. Here, the
cross section of the horizon could be chosen to lie on the
future horizon or, when it exists, to be the bifurcation
surface HB. See also [35] for a derivation of the first law
(29) for stationary perturbations on the future event hori-
zon without assumption on the way to perform the
variation.

It is now convenient for the rest of the computation to
choose a cross -section lying on the future horizon. The
integration measure for the �n� 2� forms then becomes

 

������
jgj

q
�dn�2x��� �

1
2�	�n� � n�	��dA; (30)

where dA is the angular measure and n� is an arbitrary
null vector transverse to the horizon normalized with
n�	� � �1, see e.g. Eqs. (6.14) and (6.70) of [36] for
details.

Using (17), the scalar contribution can be written as

 

I
H

k�
	;0���;�� � �

I
H
dA���L	�� 	

2Ln�� � 0;

(31)

which vanishes thanks to the reducibility equations (4),
assuming the regularity of the scalar field on the horizon.
By continuity, this result is also valid on the bifurcation
surface HB.

The contribution of the p form can be computed using
the arguments of [5,37]. The Raychaudhuri equation gives
R��	

�	� � 0 on the horizon. It follows by Einstein’s
equations and by the identity L	� � 0 that i	H has van-
ishing norm on the horizon. But as i	�i	H� � 0, i	H is
tangent to the horizon. i	H has thus the form 	 ^ � � � ^ 	
by antisymmetry of H and its pullback to the horizon
vanishes. The equation L	A � 0 can be written as di	A �
�i	H. Therefore, the pullback of i	A on the horizon is a
closed form.

For p � 1, �i	A � � is simply the scalar electric
potential at the horizon. When p > 1, the quantity �i	A
pulled back on the horizon is the sum of an exact form de
and a harmonic form h. If the horizon has nontrivial n�
p� 1 cycles Ta, one can define the harmonic forms dual to
Ta by duality between homology and cohomology as

 

Z
Ta
� �

Z
H

�a ^ �; 8 �: (32)

The harmonic form h is then a sum of terms h � �a�a
with �a constant over the nontrivial cycles.

The contribution from the potential contains three terms
(21). The Komar term (19) can be written as

 

I
H

QA
	;0 � ��a

I
Ta
e��� ?H; (33)

where the exact form de does not contribute on shell. We
recognize on the right-hand side the conserved form writ-
ten in (24). Let us denote by Qa the integral

H
Ta
e��� ?H.

Using (30), the contribution
H
H i	�A���;�� reads as

 I
H
i	�A���;�� �

I
H
e����i	�A� ^ ?H

�
I
H
dA	2 ? ��A ^ ?�inH��: (34)

The first term of (34) nicely combines with the second term
of (21) into �

H
Ta
��ae��� ?H � ���aQa because

��a is constant as a consequence of the hypotheses on
the variation. In the second term of (34), one can replace
�A by its pullback ���A on the future horizon. Indeed,
decomposing �A � n ^!�1� ����A, one sees that the
term involving n does not contribute because of the anti-
symmetry of H. Therefore, the second term in (34) will
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vanish if H is regular and if the pullback ���A on the
future horizon is regular.

Finally, the contribution from the potential on the hori-
zon reduces to

 

I
H

kA
	;0���;�� � �a�Qa; (35)

as it should to give the first law

 �E ��a�J a �
�

8�G
�A��a�Qa: (36)

Since the computation can be done entirely on the future
horizon, this first law is valid in the extremal case, with
� � 0. The relations (29) and (31) hold on any cross
section of the horizon. Since the surface charges (5) only
depend on the homology class of the surface S, the third
term in the right-hand side of (28) has to be equal to (35)
for any cross section of the horizon as well. Therefore,
when the bifurcation surface exists and when the regularity
hypotheses are fulfilled, the first law (36) also holds there.

IV. APPLICATION TO BLACK RINGS

Let us consider the black ring with dipole charge de-
scribed in [4]. This black ring is a solution to the action (1)
in five dimensions for a two-form A. The solution admits
three independent parameters: the mass, the angular mo-
mentum, and a dipole charge

H
S2 e��� ?H where S2 is a

two-sphere section of the black ring whose topology is
S2  S1.

The thermodynamics of this solution was worked out in
the original paper [4]. The role of dipole charges in the
formalism of Sudarsky and Wald [2] was elucidated in [5].
The metric, the scalar field, and the gauge potential are
written in Eqs. (3.2)–(3.4) of [5]. There, the gauge potential

 A � Bt dt ^ d ; (37)

was shown to be singular on the bifurcation surface in
order to avoid a delta function in the field strength on the
black ring axis. Here, we point out that this singularity in
the potential does not prevent one from studying thermo-
dynamics on the future event horizon along the lines above
since the pullback of the potential is regular there.

Indeed, following [38], one can introduce ingoing
Eddington-Finkelstein coordinates near the horizon of the
black ring as

 d � d 0 �
dy
G�y�

���������������������������
�F�y�HN�y�

q
; (38)

 dt � dv� CDR
�1� y�

���������������������������
�F�y�HN�y�

p
F�y�G�y�

dy: (39)

The metric is regular in these coordinates and the gauge
potential can be written as

 A � Bt dv ^ d 0 � dy ^!�1�; (40)

for some !�1�. The pullback of the gauge potential to the
future horizon y � �1=� is explicitly regular because Bt 
is finite and v and  0 are good coordinates.

The first law for black rings may then be seen as a
consequence of (36).

V. APPLICATION TO BLACK STRINGS IN PLANE
WAVES

We now turn to the definition of mass in asymptotic
plane wave geometries. Here, we show that the integration
of the surface form k@t;0���;�� along a path � in solution
space [10,39],

 E �
Z
�

I
S1

k@t;0���;�� (41)

provides a natural definition of mass, satisfying the first
law of thermodynamics.

The action of the Neveu-Schwarz (NS)-NS sector of
bosonic supergravity in n dimensions in string frame reads

 

S�G;B;�s� �
1

16�G

Z
dnx

��������
�G
p

e�2�s



�
RG � 4@��s@��s �

1

12
H2

�
;

when all fields in the D� n compactified dimensions
vanish. In the Einstein frame, g�� � e�4 ~�=�n�2�G��, � �

��s, the action can be written as (1) with � �
���������������������
8=�n� 2�

p
and A � B.

Neutral black string in the n-dimensional maximally
symmetric plane wave background P n, with n > 4, are
given by [14–16]

 

ds2
s � �

fn�r��1� 
2r2�

kn�r�
dt2 �

2
2r2fn�r�
kn�r�

dtdy

� r2d�2
n�3 �

�
1�


2r2

kn�r�

�
dy2 �

dr2

fn�r�

�
r4
2�1� fn�r��

4kn�r�
�2
n;

e�s �
1�����������
kn�r�

p ; B �

r2

2kn�r�
�fn�r�dt� dy� ^ �n;

(42)

where

 fn�r� � 1�
M

rn�4 ; kn�r� � 1�

2M

rn�6
: (43)

The black strings have horizon area per unit length given
by A � M�n�3�=�n�4�An�3 where
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 An�3 �
2��n�2�=2

��n�2
2 �

; (44)

is the area of the n� 3 sphere. Choosing the normalization
of the horizon generator as 	 � @t, the surface gravity is

given by � �
����������������������������������������
�1=2�D�	�D

�	��
q

� n�4
2 M��1=�n�4��.

Using the surface forms defined above, the charge dif-
ference associated with @

@t between two infinitesimally
close black string solutions �, �� �� is given by

 �Q@t �
I
k@t;0���;�� �

n� 3

16�G
An�3�M; (45)

which reproduces the expectations of [14–16]. This quan-
tity is integrable and allows one to define Q@t �
n�3

16�G An�3M where the normalization of the background
has been set to zero. It is easy to check that the first law is
satisfied.

Note that one freely can choose a different normaliza-
tion for the generator 	0 � N@t. In that case, the surface
gravity changes according to �0 � N�, the charge associ-
ated to 	0 becomes �Q	0 �

n�3
16�GAn�3N�M, and the first

law is also satisfied. However, N cannot be a function of 
.
Otherwise, the charge Q	0 would not be defined.
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